TY - STD TI - Turner RM, Davey J, Clarke MJ, Thompson SG, Higgins JPT. Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane Database of Systematic Reviews. Int J Epidemiol. 2012; 41(3):818–27. https://doi.org/10.1093/ije/dys041. ID - ref1 ER - TY - STD TI - Röver C, Knapp G, Friede T. Hartung-Knapp-Sidik-Jonkman approach and its modification for random-effects meta-analysis with few studies. BMC Med Res Methodol. 2015;15. https://doi.org/10.1186/s12874-015-0091-1. ID - ref2 ER - TY - STD TI - Friede T, Röver C, Wandel S, Neuenschwander B. Meta-analysis of few small studies in orphan diseases. Res Synth Methods. 2017; 8(1):79–91. https://doi.org/10.1002/jrsm.1217. ID - ref3 ER - TY - STD TI - Higgins JPT, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. Journal of the Royal Statistical Society A. 2009; 172(1):137–59. https://doi.org/10.1111/j.1467-985X.2008.00552.x. ID - ref4 ER - TY - STD TI - Friede T, Röver C, Wandel S, Neuenschwander B. Meta-analysis of two studies in the presence of heterogeneity with applications in rare diseases. Biom J. 2017; 59(4):658–71. https://doi.org/10.1002/bimj.201500236. ID - ref5 ER - TY - STD TI - Bender R, Friede T, Koch A, Kuss O, Schlattmann P, Schwarzer G, Skipka G. Methods for evidence synthesis in the case of very few studies. Res Synth Methods. 2018. https://doi.org/10.1002/jrsm.1297. ID - ref6 ER - TY - BOOK AU - Böhning, D. AU - Rattanasiri, S. AU - Kuhnert, R. PY - 2008 DA - 2008// TI - Meta-analysis of Binary Data Using Profile Likelihood PB - Francis CY - Boca Raton UR - https://doi.org/10.1201/9781420011333 DO - 10.1201/9781420011333 ID - Böhning2008 ER - TY - STD TI - Morris TP, Fisher DJ, Kenward MG, Carpenter JR. Meta-analysis of Gaussian individual patient data: two-stage or not two-stage?Stat Med. 2018. https://doi.org/10.1002/sim.7589. ID - ref8 ER - TY - STD TI - Mathew T, Nordström K. Comparison of one-step and two-step analysis models using individual patient data. Biom J. 2010; 52(2):271–87. https://doi.org/10.1002/bimj.200900143. ID - ref9 ER - TY - JOUR AU - Burke, D. L. AU - Ensor, J. AU - Riley, R. D. PY - 2017 DA - 2017// TI - Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ JO - Stat Med VL - 36 UR - https://doi.org/10.1002/sim.7141 DO - 10.1002/sim.7141 ID - Burke2017 ER - TY - STD TI - Kontopantelis E. A comparison of one-stage vs two-stage individual patient data meta-analysis methods: a simulation study. Res Synth Methods. 2018. https://doi.org/10.1002/jrsm.1303. ID - ref11 ER - TY - JOUR AU - Debray, T. AU - Moons, K. G. M. AU - Abo-Zaid, G. M. A. AU - Koffijberg, H. AU - Riley, R. D. PY - 2013 DA - 2013// TI - Individual participant data meta-analysis for a binary outcome: one-stage or two-stage? JO - PLoS ONE VL - 8 UR - https://doi.org/10.1371/journal.pone.0060650 DO - 10.1371/journal.pone.0060650 ID - Debray2013 ER - TY - STD TI - Jackson D, Law M, Stijnen T, Viechtbauer W, White IR. A comparison of seven random-effects models for meta-analyses that estimate the summary odds ratio. Stat Med. 2018; 37(7):1059–85. https://doi.org/10.1002/sim.7588. ID - ref13 ER - TY - STD TI - IntHout J, Ioannidis JPA, Borm GF. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Med Res Methodol. 2014; 14:25. https://doi.org/10.1186/1471-2288-14-25. ID - ref14 ER - TY - JOUR AU - Fleiss, J. L. PY - 1993 DA - 1993// TI - The statistical basis of meta-analysis JO - Stat Methods Med Res VL - 2 UR - https://doi.org/10.1177/096228029300200202 DO - 10.1177/096228029300200202 ID - Fleiss1993 ER - TY - BOOK AU - Hedges, L. V. AU - Olkin, I. PY - 1985 DA - 1985// TI - Statistical Methods for Meta-analysis PB - Academic Press CY - San Diego ID - Hedges1985 ER - TY - BOOK AU - Hartung, J. AU - Knapp, G. AU - Sinha, B. K. PY - 2008 DA - 2008// TI - Statistical Meta-analysis with Applications PB - Wiley CY - Hoboken UR - https://doi.org/10.1002/9780470386347 DO - 10.1002/9780470386347 ID - Hartung2008 ER - TY - STD TI - DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986; 7(3):177–88. https://doi.org/10.1016/0197-2456(86)90046-2. ID - ref18 ER - TY - STD TI - Viechtbauer W. Bias and efficiency of meta-analytic variance estimators in the random-effects model. J Educ Behav Stat. 2005; 30(3):261–93. https://doi.org/10.3102/10769986030003261. ID - ref19 ER - TY - CHAP AU - Raudenbush, S. W. ED - Cooper, H. M. ED - Larry, V. H. ED - Valentine, J. C. PY - 2009 DA - 2009// TI - Analyzing effect sizes: random-effects models BT - The Handbook of Research Synthesis and Meta-Analysis PB - Russell Sage Foundation CY - New York City ID - Raudenbush2009 ER - TY - STD TI - Morris CN. Empirical Bayes methods for combining likelihoods: comment. J Am Stat Assoc. 1996; 91(434):555–8. https://doi.org/10.2307/2291646. ID - ref21 ER - TY - STD TI - Paule RC, Mandel J. Consensus values and weighting factors. J Res Natl Bur Stand. 1982; 87(5):1–9. https://doi.org/10.6028/jres.087.022. ID - ref22 ER - TY - STD TI - Turner RM, Jackson D, Wei Y, Thompson SG, Higgins PT. Predictive distributions for between-study heterogeneity and simple methods for their application in Bayesian meta-analysis. Stat Med. 2015; 34(6):984–98. https://doi.org/10.1002/sim.6381. ID - ref23 ER - TY - STD TI - Dias S, Sutton AJ, Welton NJ, Ades AE. NICE DSU Technical Support Document 2: A Generalized Linear Modelling Framework for Pairwise and Network Meta-analysis of Randomized Controlled Trials. London: National Institute for Health and Clinical Excellence (NICE); 2014. National Institute for Health and Clinical Excellence (NICE). available from: http://www.nicedsu.org.uk. UR - http://www.nicedsu.org.uk ID - ref24 ER - TY - STD TI - Röver C. Bayesian random-effects meta-analysis using the bayesmeta R package. arXiv preprint 1711.08683. 2017. http://www.arxiv.org/abs/1711.08683. UR - http://www.arxiv.org/abs/1711.08683 ID - ref25 ER - TY - STD TI - Spiegelhalter DJ, Abrams KR, Myles JP. Bayesian Approaches to Clinical Trials and Health-care Evaluation. Chichester: Wiley; 2004. https://doi.org/10.1002/0470092602. ID - ref26 ER - TY - JOUR AU - Turner, R. M. AU - Omar, R. Z. AU - Yang, M. AU - Goldstein, H. AU - Thompson, S. G. PY - 2000 DA - 2000// TI - A multilevel model framework for meta-analysis of clinical trials with binary outcomes JO - Stat Med VL - 19 UR - https://doi.org/3.0.CO;2-L DO - 3.0.CO;2-L ID - Turner2000 ER - TY - STD TI - van Houwelingen HC, Zwinderman KH, Stijnen T. A bivariate approach to meta-analysis. Stat Med. 1993; 12(24):2273–84. https://doi.org/10.1002/sim.4780122405. ID - ref28 ER - TY - STD TI - Stijnen T, Hamza TH, Özdemir P. Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data. Stat Med. 2010; 29(29):3046–67. https://doi.org/10.1002/sim.4040. ID - ref29 ER - TY - STD TI - Hartung J, Knapp G. On tests of the overall treatment effect in meta-analysis with normally distributed responses. Stat Med. 2001; 20(12):1771–82. https://doi.org/10.1002/sim.791. ID - ref30 ER - TY - STD TI - Hartung J, Knapp G. A refined method for the meta-analysis of controlled clinical trials with binary outcome. Stat Med. 2001; 20(24):3875–89. https://doi.org/10.1002/sim.1009. ID - ref31 ER - TY - STD TI - Sidik K, Jonkman JN. A simple confidence interval for meta-analysis. Stat Med. 2002; 21(21):3153–9. https://doi.org/10.1002/sim.1262. ID - ref32 ER - TY - STD TI - Knapp G, Hartung J. Improved tests for a random effects meta-regression with a single covariate. Stat Med. 2003; 22(17):2693–710. https://doi.org/10.1002/sim.1482. ID - ref33 ER - TY - STD TI - Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002; 21(11):1539–58. https://doi.org/10.1002/sim.1186. ID - ref34 ER - TY - STD TI - Hoaglin DC. Misunderstandings about Q and ’Cochran’s Q test’ in meta-analysis. Stat Med. 2016; 35(4):485–95. https://doi.org/10.1002/sim.6632. ID - ref35 ER - TY - STD TI - Borenstein M, Higgins JPT, Hedges LV, Rothstein HR. Basics of meta-analysis: I2 is not an absolute measure of heterogeneity. Res Synth Methods. 2017; 8(1):5–18. https://doi.org/10.1002/jrsm.1230. ID - ref36 ER - TY - STD TI - Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003; 327(7414):557–60. https://doi.org/10.1136/bmj.327.7414.557. ID - ref37 ER - TY - STD TI - R Core Team. R: a Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2016. R Foundation for Statistical Computing. https://www.R-project.org/. UR - https://www.R-project.org/ ID - ref38 ER - TY - STD TI - Viechtbauer W. metafor: Meta-analysis Package For R. 2009. R package. https://cran.r-project.org/package=metafor. UR - https://cran.r-project.org/package=metafor ID - ref39 ER - TY - JOUR AU - Viechtbauer, W. PY - 2010 DA - 2010// TI - Conducting meta-analyses in R with the metafor package JO - J Stat Softw VL - 36 UR - https://doi.org/10.18637/jss.v036.i03 DO - 10.18637/jss.v036.i03 ID - Viechtbauer2010 ER - TY - STD TI - Röver C. bayesmeta: Bayesian random-effects Meta-analysis. 2015. R package. https://cran.r-project.org/package=bayesmeta. UR - https://cran.r-project.org/package=bayesmeta ID - ref41 ER - TY - STD TI - Seide SE, Röver C, Friede T. Meta-analysis data extracted from IQWiG publications. Göttingen Research Online. 2018. https://doi.org/10.25625/BWYBNK. ID - ref42 ER - TY - STD TI - Turner RM, Davey J, Clarke MJ, Thompson SG, Higgins JPT. Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane Database of Systematic Reviews. Int J Epidemiol. 2012; 41(3):818. https://doi.org/10.1093/ije/dys041. ID - ref43 ER - TY - STD TI - Kontopantelis E, Springate DA, Reeves D. A re-analysis of the Cochrane Library data: the dangers of unobserved heterogeneity in meta-analyses. PLoS ONE. 2013; 8(7):1–14. https://doi.org/10.1371/journal.pone.0069930. ID - ref44 ER - TY - STD TI - Rukhin AL. Estimating heterogeneity variance in meta-analysis. J R Stat Soc Ser B (Stat Methodol). 2013; 75(3):451–69. https://doi.org/10.1111/j.1467-9868.2012.01047.x. ID - ref45 ER - TY - STD TI - Partlett C, Riley RD. Random effects meta-analysis: Coverage performance of 95% confidence and prediction intervals following REML estimation. Stat Med. 2017; 36(2):301–17. https://doi.org/10.1002/sim.7140. ID - ref46 ER - TY - STD TI - Günhan BK, Friede T, Held L. A design-by-treatment interaction model for network meta-analysis and meta-regression with integrated nested Laplace approximations. 2018; 9(2):179–94. https://doi.org/10.1002/jrsm.1285. ID - ref47 ER - TY - STD TI - Jackson D, White IR. When should meta-analysis avoid making hidden normality assumptions?Biom J. 2018. https://doi.org/10.1002/bimj.201800071. ID - ref48 ER - TY - STD TI - Veroniki AA, Jackson D, Bender R, Kuß O, Langan D, Higgins JPT, Knapp G, Salanti G. Methods to calculate uncertainty in the estimated overall effect size from a random-effects meta-analysis. 2018. https://doi.org/10.1002/jrsm.1319. ID - ref49 ER - TY - STD TI - Röver C, Friede T. Contribution to the discussion of “When should meta-analysis avoid making hidden normality assumptions?”: A Bayesian perspective. Biom J. 2018; 60(6):1068–70. https://doi.org/10.1002/bimj.201800179. ID - ref50 ER - TY - STD TI - Günhan BK, Röver S, Friede T. Meta-analysis of few studies involving rare events. arXiv preprint 1809.04407. 2018. ID - ref51 ER -