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Network meta-analysis on the log-hazard scale,
combining count and hazard ratio statistics
accounting for multi-arm trials: A tutorial
Beth S Woods1*, Neil Hawkins1,2, David A Scott1

Abstract

Background: Data on survival endpoints are usually summarised using either hazard ratio, cumulative number of
events, or median survival statistics. Network meta-analysis, an extension of traditional pairwise meta-analysis, is
typically based on a single statistic. In this case, studies which do not report the chosen statistic are excluded from
the analysis which may introduce bias.

Methods: In this paper we present a tutorial illustrating how network meta-analyses of survival endpoints can
combine count and hazard ratio statistics in a single analysis on the hazard ratio scale. We also describe methods
for accounting for the correlations in relative treatment effects (such as hazard ratios) that arise in trials with more
than two arms. Combination of count and hazard ratio data in a single analysis is achieved by estimating the
cumulative hazard for each trial arm reporting count data. Correlation in relative treatment effects in multi-arm
trials is preserved by converting the relative treatment effect estimates (the hazard ratios) to arm-specific outcomes
(hazards).

Results: A worked example of an analysis of mortality data in chronic obstructive pulmonary disease (COPD) is
used to illustrate the methods. The data set and WinBUGS code for fixed and random effects models are provided.

Conclusions: By incorporating all data presentations in a single analysis, we avoid the potential selection bias
associated with conducting an analysis for a single statistic and the potential difficulties of interpretation,
misleading results and loss of available treatment comparisons associated with conducting separate analyses for
different summary statistics.

Background
Network meta-analyses enable us to combine trials that
compare different sets of treatments, and form a net-
work of evidence, within a single analysis [1] and to use
all available direct and indirect evidence to inform a
given comparison between treatments. Network meta-
analysis is based on the assumption that, on a suitable
scale, we can add and subtract within-trial estimates of
relative treatment effects i.e. the difference in effect
between treatments A & B (dAB) is equal to the differ-
ence in effects between treatments A & C and B & C
(dAB = dAC - dBC) [1-3].
In this paper we show how network meta-analyses of

survival endpoints can be conducted on the hazard ratio

scale when some or all trials report cumulative count
data. We also describe how trials with more than two
arms reporting relative treatment effects (such as hazard
ratios) should be included.
A survival endpoint is one where, over time, an

increasing number of patients experience an event.
Although death is the ultimate survival endpoint, many
other endpoints may also be considered as survival end-
points. For example, in the study of epilepsy, seizure
freedom may be regarded as a survival endpoint as over
time the number of patients experiencing one or more
seizures can only increase and the probability of being
seizure free decreases. In contrast, the number of
patients with a greater than 50% reduction in seizure
frequency relative to baseline is not a survival endpoint
as the number of patients achieving this response can
increase or decrease over time.
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Data on survival endpoints may be expressed either in
the form of hazard ratio statistics derived from para-
metric or non-parametric methods of survival analysis
[4,5] or as cumulative count statistics (the total number
of subjects who have experienced an event at a specific
time point). Unlike cumulative count statistics, hazard
ratio statistics from survival analysis account for censor-
ing, incorporate time to event information, and may be
adjusted for co-variables. Where both hazard ratio and
cumulative count statistics are available for a given
study, use of the hazard ratio data may therefore be
considered preferable.
The methods described in this paper allow hazard

ratio and cumulative count survival statistics to be com-
bined within a single network meta-analysis on the log-
hazard scale; this might be termed a multi-statistic evi-
dence synthesis. Treatment effects can then be esti-
mated based on an inclusive set of data, and separate
analyses for hazard ratio and count statistics are avoided
[6-9].
Network meta-analyses should account for the corre-

lations in relative treatment effect estimates that arise
from trials with more than two treatment arms (multi-
arm trials) [10]. These correlations are accounted for ‘by
default’ when count statistics for individual trial arms
are included in a network meta-analysis [10]. When
hazard ratio statistics are used, we show how these cor-
relations can be accounted for by deriving estimates of
the mean log hazards (and their variances) for individual
trial arms.

Methods
We use an example data set describing mortality in
randomised controlled trials of treatments for chronic
obstructive pulmonary disease (COPD). The data set
consists of a subset of trials from Baker et al [11]. We
chose five trials providing mortality data for the fol-
lowing comparators: salmeterol, fluticasone, salmeterol
fluticasone combination (SFC) or placebo. Three of
the trials report count data [12-14], one reports
hazard ratio data from a two arm trial [15] and one
reports hazard ratio data from a multi (four)-arm trial
[16]. Hazard ratio data were obtained from the trial
publications and an existing meta-analysis of hazard
ratio data [17].
The count statistics used are presented as Table 1 and

the hazard ratio statistics as Table 2. The derived esti-
mates of the mean log hazard ratio and it’s standard
error, required for the analysis, are also presented in
Table 2, these were estimated using formulae (1) and (2):

ln( )
ln( ) ln( )

HR
HR HRuci lci= +

2
(1)

se
HR HRuci lci= −

×
ln( ) ln( )

.2 1 96
(2)

The results of this example analysis are purely illustra-
tive of the methodology and do not provide any indica-
tion of the comparative effectiveness of treatments for
decision-making purposes, as the data set omits relevant
direct and indirect data.
Using the example data set we show how to:

(a) Perform a meta-analysis of count statistics on the
log hazard ratio scale;
(b) Reflect correlation in relative treatment effect
estimates from multi-arm trials;
(c) Combine count and hazard ratio statistics in a
single analysis on the log-hazard ratio scale; and
(d) Include a random effect in to the analysis, whilst
preserving the correlation in relative treatment
effects for multi-arm trials.

We also discuss how other possible presentations of
survival data, not available from our motivating exam-
ple, could be incorporated into an analysis on the log-
hazard ratio scale.
All analyses described were conducted using Win-

BUGS [18]. The WinBUGS code for the fixed and ran-
dom effects analyses are presented as an Appendix.

(a) Meta-analysing count statistics on the log hazard
ratio scale

The count data are incorporated in the network meta-
analysis model using a binomial likelihood:

r Bin F ns k s k s k, , ,~ ( , ) (3)

where rs,k is the cumulative count of subjects who
have experienced an event in arm k of study s; ns,k is the
total number of subjects in arm k of study s; and Fs,k is
the cumulative probability of a subject having experi-
enced an event (or ‘failure’).

Table 1 Count Statistics

Author/Trial (Date) Treatment r (deaths) N (patients)

Boyd (1997) [12] Salmeterol 1 229

Placebo 1 227

Calverly/TRISTAN (2003) [13] Fluticasone 4 374

Salmeterol 3 372

SFC 2 358

Placebo 7 361

Celli (2003) [14] Salmeterol 1 554

Placebo 2 270
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A log cumulative hazard for each trial arm ln(Hs,k) is
then derived from Fs,k.

ln( ) ln ln, ,H Fs k s k= − −( )( )1 (4)

The log cumulative hazard estimates are then included
in a treatment effect model with a linear regression
structure. The log cumulative hazard is estimated as the
sum of a study specific ‘baseline’ term as and a treat-
ment effect coefficient bk:

ln( ),Hs k s k b= + −   (5)

where b1 = 0 for the reference treatment (placebo in
our example) and bb represents the treatment effect for
the baseline treatment in study s. The fixed study level
‘baseline’ term is a nuisance parameter, included to
ensure that the treatment effect estimates are informed
by within trial differences between treatment arms and
not by differences in baseline event rates across trials.
Under an assumption of proportional hazards, the bk

coefficient is equal to both the log cumulative hazard
ratio and the log hazard ratio:
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where hs,b represents the hazard for the baseline treat-
ment in study s. This identity allows us to combine the
count statistics analysed on the log cumulative hazard
scale with the hazard ratio data analysed on the log
hazard scale. It also demonstrates that analysis of count
statistics on the log hazard scale does not require a
stronger assumption than proportional hazards.

(b) Reflecting correlations in relative treatment effects
from multi-arm trials

Estimates of relative treatment effects from trials
with more than two treatment arms will be correlated
[10]. In our example the TORCH trial [16] is the only

multi-arm trial reporting hazard ratio data. Estimated
treatment effects from TORCH will be correlated, for
example, the hazard ratio comparing SFC to placebo
and the hazard ratio comparing salmeterol to placebo
will be correlated due to their joint dependence on the
time to event data in the placebo arm.
If a network meta-analysis is based on estimates of

treatment effect in individual trial arms rather than
estimates of relative treatment effect between arms
(“contrast” statistics), this correlation will automatically
be captured in the analysis [10]. This is the case when
a network meta-analysis is based on count statistics.
However, if the network meta-analysis is conducted
based on estimates of relative treatment effect, this
correlation between arms will not automatically be
captured [10].
For multi-arm trials reporting hazard ratio statistics,

this problem can be addressed by converting the log
hazard ratios (contrast statistics) to log hazards (arm-
specific statistics). Log hazards for individual trial arms
are derived by nominally setting the log hazard for the
baseline treatment b for the trial to zero. The mean log
hazards for the other treatments are then equal to the
log hazard ratios compared to baseline treatment.
The variance for a log hazard ratio is the sum of the

variances for the individual log hazards. Standard errors
of the log hazards for each trial arm can therefore be
estimated by solving simultaneous equations based on
the standard errors for the set of log-hazard ratios. For
example:

se se se seb k b k b k k= + −( )( ) /, , ,1 2 1 2

2 2 2 2 (7)

Where se2i,j is the variance of the log hazard ratio
comparing arm i to arm j and sei is the standard error
of the log hazard for arm i.
The standard errors of the log hazards for the other

treatment arms are then estimated as:

se se sek k b b= −,
2 2 (8)

Mean log hazards and associated standard errors for
each treatment in TORCH [16] are reported in Table 3.

Table 2 Hazard ratio and log hazard ratio statistics

Author/Trial (Date) Treatment Base HR HRLCI HRUCI ln HR( ) se HRln ( )( )
Burge/ISOLDE (2000) [15] Fluticasone Placebo 0.76 0.51 1.13 -0.276 0.203

Calverly/TORCH (2007) [16] SFC Placebo 0.811 0.670 0.982 -0.209 0.098

Salmeterol Placebo 0.857 0.710 1.035 -0.154 0.096

Fluticasone Placebo 1.056 0.883 1.264 0.055 0.092

SFC Salmeterol 0.946 0.777 1.151 -0.056 0.100

SFC Fluticasone 0.768 0.636 0.927 -0.264 0.096

Woods et al. BMC Medical Research Methodology 2010, 10:54
http://www.biomedcentral.com/1471-2288/10/54

Page 3 of 9



These are derived from the hazard ratio data presented
in Table 2.
In order to estimate standard errors of the log hazards

for each treatment, we required estimates of the uncer-
tainty associated with four treatment contrasts. In some
cases this data may not be available and thus the meth-
ods presented in equations 7 and 8 may not be feasible.
For example, hazard ratios and associated measures of
uncertainty may only be available for each active treat-
ment relative to a single common comparator (e.g. pla-
cebo) as is commonly reported in the published
literature.
In this situation, we can approximate the standard

error for the comparison between active treatments by
assuming the standard error is proportional to 1

n
. For

example

se se se n n n n nk k k b k b k k k k b1 2 1 2 1 2 1 2

2 2 1 1 1 1 2, , ,= +( ) ⋅ +( )( ) + +( )( ) (9)

(c) Combining count and hazard ratio statistics in a
network meta-analysis

The log hazard ratio statistics from two arm trials
comparing treatments k to b are incorporated in the
network meta-analysis model using a normal likelihood:
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where x s k b, , is the log hazard ratio estimate for study
s comparing treatments k to b and se s k b, ,

2 is the corre-
sponding variance.
The log hazard ratio estimates are then included in a

treatment effect model with a linear regression struc-
ture, with the predicted log hazard ratio for a study s
comparing treatments k and b equal to the difference
between the two treatment coefficients:

ln ,

,

hs k
hs b

k b
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⎠
⎟⎟ = −  (11)

where b1 = 0 for the reference treatment (in our
example placebo) and bb represents the treatment effect
for the baseline treatment in study s. As in equation 5,
the bk coefficient is equal to the log hazard ratio for
treatment k compared to the reference treatment.
The log hazard statistics from a multi-arm trial are

incorporated in the analysis using the following likeli-
hood functions. For the baseline treatment, b:

x ses b s b, ,~ N 0, 2( ) (12)

For the other treatments:

x h ses k s k s k, , ,~ ln ,N ( )( )2 (13)

where x s k, is the log hazard for treatment arm k from
study s and se s k,

2 is the associated variance.
The log hazard estimates are then included in a treat-

ment effect model with a linear regression structure.
The log hazard is estimated as the sum of a study speci-
fic ‘baseline’ term as and a treatment effect coefficient
bk:

ln ,hs k s k b( ) = + −   (14)

where b1 = 0 for the reference treatment (placebo in
our example) and bb represents the treatment effect for
the baseline treatment in study s. The fixed study level
‘baseline’ term is a nuisance parameter, included to
ensure that the treatment effect estimates are informed
by within trial differences between treatment arms and
not by differences in baseline event rates across trials.
As the bk coefficient is equal to the log hazard ratio for
the cumulative count data, the log hazard ratio data and
the log hazard data, they can be combined within a sin-
gle analysis. Where an individual study reports both
cumulative count and hazard ratio data, only one set of
data should be included in the analysis to avoid double
counting.

(d) Incorporating a random effect

In a random effects analysis of a network containing
multi-arm trial contrast data, the correlation in the ran-
dom effects must also be taken in to account. Again this
is due to the joint dependence of the multiple contrast
estimates on common trial arms.
This correlation is reflected in the model by separating

the random effect deviation for each contrast in to the
contributions to the random effect deviation of the two
treatments that form the contrast. This is achieved by
modifying the linear predictor component of the model

Table 3 Log hazard statistics for a multi-arm trial (TORCH
[16])

Comparator Log-hazard se(log-hazard)

SFC -0.209 0.072

Salmeterol -0.154 0.070

Fluticasone 0.055 0.063

Placebo 0.000 0.066
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for the cumulative count, log hazard ratio and log
hazard data:

ln , , ,H re res k s k b s k s b( ) = + − + −   (15)

ln
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ln , , ,h re res k s k b s k s b( ) = + − + −   (17)

where res,k is the random effect deviation for arm k of
study s and is assumed to be normally distributed with
zero mean and variance s2 /2 where s2 is the random
effect variance for a treatment contrast:

re Ns k, ~ ( , )0 22 (18)

This approach assumes that s2 is the same for all treat-
ments and consequently that the random effect variance
will be the same for all treatment contrasts. The assump-
tion of a common random effect variance across treat-
ment contrasts implies that the covariance for any pair of
treatment contrasts from the same study will equal half
the treatment contrast random effect variance [10].
A vague prior for the study specific baseline as~N

(0,106) is used to ensure estimates of treatment effect
are informed by within trial differences between treat-
ment arms, and not by differences in absolute response
between trials. A vague prior is also used for the treat-
ment effect coefficients with bk ~ N(0,106) and b1 = 0
(representing placebo).
Each model was run for 40,000 burn-in simulations

and 200,000 runs which were then thinned every 20th

simulation to reduce autocorrelation.
Two sets of initial values were used and convergence

was assessed by examining caterpillar plots and Brooks
Gelman-Rubin (BGR) statistics. The deviance informa-
tion criteria (DIC) was used to compare the fit of the
fixed and random effects models [19].

Results
Results of the fixed and random effects models are pre-
sented as Table 4. The results provide no evidence that

the random effects model is preferred; the DIC for the
random effects model is marginally higher (lower DIC
values are preferred, with differences of 2-5 considered
important [19,20]) and the high level of uncertainty
around the random effects standard deviation estimate
indicates that there is little information to inform the
random effect parameter.
Figure 1 provides a presentation of the uncertainty in

the analysis, showing the probability that each treatment
takes each possible ranking (1st best, 2nd best, etc). For
example, the figure tells us that there is a very low prob-
ability that fluticasone is the first or second most effica-
cious treatment in this analysis and that there is a 56%
probability that is the third best and a 42% probability
that it is the worst treatment.
Again it must be noted that this example data set is

not an appropriate basis for answering the clinical ques-
tion of which is the most efficacious treatment with
respect to the mortality endpoint.

Discussion
In this tutorial we have described how network meta-
analysis can be conducted on the log-hazard ratio scale
when the data on the survival endpoint available from
the network of studies takes varying forms: count statis-
tics and hazard ratio statistics from two and multi-arm
trials.
In highlighting the importance of network meta-analy-

sis as an extension to conventional pairwise meta-analy-
sis Ades et al point out that “...to ignore indirect
evidence either makes the unwarranted claim that it is
irrelevant, or breaks the established precept of systema-
tic review that synthesis should embrace all available
evidence” [6]. A similar criticism can be levelled at
meta-analyses that omit data points on the basis of the
summary measure reported. This may result in inten-
tional or unintentional selection bias. Furthermore, even
if separate analyses are conducted for each summary
measure available, this may have undesirable conse-
quences by: producing conflicting results; producing
coherent results that would not be supported by an ‘all
embracing’ analysis; and unlinking some comparators
from the network entirely.
Other authors have presented methods for combining

arm-based mean change from baseline data with contrast

Table 4 Network meta-analysis results

Comparator Hazard ratio (95% CI) vs. placebo - fixed effects Hazard ratio (95% CI) vs. placebo - random effects

Fluticasone 0.99 (0.84, 1.16) 0.89 (0.39, 1.42)

Salmeterol 0.82 (0.68, 0.98) 0.73 (0.29, 1.23)

SFC 0.78 (0.64, 0.93) 0.69 (0.26, 1.21)

random effect SD - 0.36 (0.31)

DIC 25.25 25.73
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mean difference data [21] and for combining mean time,
median time and count data within a parametric survival
model [22]. Further research is required in this area, for
example in to methods for combining incidence rate data
with count data, as these summary measures are often
reported interchangeably across trials.
Other approaches to combining alternative reporting

of time to event data have been discussed [8,23-26],
recommended [27] and implemented [28,29]. These
approaches involve the approximation of the log hazard
ratio and its variance using available count statistics.
The methods used in this tutorial avoid the use of
approximations, instead utilising cumulative count sta-
tistics directly in the analysis.
A further common statistic reported for survival end-

points is arm-specific median survival time. This data
can be incorporated using a similar approach as for
count data. A binomial likelihood is used to incorporate
the number of subjects experiencing an event (half the
number of patients) and the number of patients ana-
lysed in to the model:

r Bin F ns k s k s k, , ,~ ( , ) (19)

Note that rs,k should be calculated outside the model
to ensure it is a whole number. A log hazard for each

trial arm ln (hs,k) is then derived from the cumulative
failure probability Fs,k and median survival time Ts,k:

ln( ) ln
ln( , )

,
,h

Fs k
Ts k

s k =
−⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ (20)

The arm-specific log hazard estimates are then
included in a treatment effect model that takes the same
form as that for hazard ratio reporting multi-arm trials
(see equation 14). It should be noted that analysis of
median survival times requires the strong assumption of
a constant hazard in each trial arm. The code for incor-
porating median survival time data is also provided in
the Appendix.
Where multiple statistics are reported for a trial, hazard

ratio statistics should be used in preference to median
survival time and count data as hazard ratio statistics
incorporate information about time to event and censor-
ing, and analysis of hazard ratio statistics does not
require assumptions stronger than proportional hazards.
If both median survival time and count data are reported,
a judgement is required to weigh up the relative merits of
each presentation, as median survival time incorporates
information about censoring but its analysis requires the
stronger assumption of constant hazards.

Figure 1 Probability of treatments rankings.
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Finally, this tutorial discusses methods for running
analyses on the log hazard ratio scale. However, the
question of which is the most appropriate scale for a
given analysis (the scale on which transitivity and
exchangeability are most likely to hold) - is an empirical
question. Further work is required to develop methods
for selecting the most appropriate scale for a given data
set.

Conclusions
Meta-analysis of summary statistics continues to play an
important role in medical research [30,31]. Where only
summary statistics are available, the analyst performing
pairwise or network meta-analysis may be faced with
multiple summary statistics for a given endpoint. We
present methods for meta-analysing different statistics
summarising survival data on the hazard ratio scale. By
incorporating all data presentations in a single analysis,
we avoid the potential selection bias associated with
conducting an analysis for a single statistic only, and the
potential difficulties of interpretation, misleading results
and loss of available treatment comparisons associated
with conducting separate analyses for different summary
measures. The methods described also allow use of the
most informative statistic available from each study.

Appendix - WinBUGS code
A) Fixed effects analysis
model{
#Define Prior Distributions

#On tx effect mean
beta[1] < -0
for (tt in 2:nTx){
beta[tt]~dnorm(0,1.0E-6)
}
#On individual study baseline effect
for(ss in 1:nStudies){
alpha[ss] ~ dnorm(0,1.0E-6)
}

#Fit data
#For hazard ratio reporting studies
for(ii in 1:LnObs ){
Lmu[ii] < - alpha[Lstudy[ii]]*multi[ii] + beta[Ltx

[ii]] - beta[Lbase[ii]]
Lprec[ii] < - 1/pow(Lse[ii],2)
Lmean[ii] ~ dnorm(Lmu[ii],Lprec[ii])
}
#For binary data reporting studies
for(ss in 1:BnObs){
logCumHaz[ss] < - alpha[Bstudy[ss]] + beta[Btx

[ss]] - beta[Bbase[ss]]
cumFail[ss] < - 1-exp(-1*exp(logCumHaz[ss]))
Br[ss] ~ dbin(cumFail[ss], Bn[ss])
}

# Calculate HRs
for (hh in 1:nTx) {
hr[hh] < -exp(beta[hh])
}

# Ranking plot
for (ll in 1:nTx) {
for (mm in 1:nTx) {
rk[ll,mm] < - equals(ranked(beta[],mm),beta[ll])
}

}
}
# Data

# Data set descriptors
list(LnObs = 5, BnObs = 8, nTx = 4, nStudies = 5)
# Log hazard ratio and log hazard data
Lstudy[] Ltx[] Lbase[] Lmean[] Lse[] multi[]
1 1 1 0 0.066 1
1 2 1 0.055 0.063 1
1 3 1 -0.154 0.070 1
1 4 1 -0.209 0.072 1
2 2 1 -0.276 0.203 0
END
# Binary data
Bstudy[] Btx[] Bbase[] Br[] Bn[]
3 3 1 1 229
3 1 1 1 227
4 2 1 4 374
4 3 1 3 372
4 4 1 2 358
4 1 1 7 361
5 3 1 1 554
5 1 1 2 270
END

# Initial values
list(alpha = c(-0.50,-0.50,-0.50,-0.50,-0.50), beta =

c(NA,-0.5,-0.5,-0.5))
list(alpha = c(0.50,0.50,0.50,0.50,0.50), beta = c

(NA,0.5,0.5,0.5))
B)Random effects analysis (changes required to

incorporate random effect in bold)
model{
#Define Prior Distributions

#on random tx effect variance
sd~dunif(0,5)
reTau < - 2/pow(sd,2)
#On tx effect mean
beta[1] < -0
for (tt in 2:nTx){
beta[tt]~dnorm(0,1.0E-6)
}
#On individual study baseline effect
for(ss in 1:nStudies){
alpha[ss] ~ dnorm(0,1.0E-6)

}
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#Define random effect
for (ss in 1:nStudies){
for(tt in 1:nTx){
re[ss,tt]~dnorm(0,reTau)
}

}
#Fit data

#For hazard ratio reporting studies
for(ii in 1:LnObs ){
Lmu[ii] < - alpha[Lstudy[ii]]*multi[ii] + re[Lstudy

[ii],Ltx[ii]] -
re[Lstudy[ii],Lbase[ii]] + beta[Ltx[ii]] - beta

[Lbase[ii]]
Lprec[ii] < - 1/pow(Lse[ii],2)
Lmean[ii] ~ dnorm(Lmu[ii],Lprec[ii])
}
#For binary data reporting studies
for(ss in 1:BnObs){
logCumHaz[ss] < - alpha[Bstudy[ss]] + re[Bstudy

[ss],Btx[ss]] -
re[Bstudy[ss],Bbase[ss]] + beta[Btx[ss]] - beta

[Bbase[ss]]
cumFail[ss] < - 1-exp(-1*exp(logCumHaz[ss]))
Br[ss] ~ dbin(cumFail[ss], Bn[ss])
}

# Calculate HRs
for (hh in 2:nTx) {
hr[hh] < -exp(beta[hh])
}

# Ranking plot
for (ll in 1:nTx) {
for (mm in 1:nTx) {
rk[ll,mm] < - equals(ranked(beta[],mm),beta[ll])
}

}
}
# Data as for fixed effects analysis

############################
# Initial values

list(alpha = c(-0.50,-0.50,-0.50,-0.50,-0.50), beta =
c(NA,-0.5,-0.5,-0.5),sd = 0.1)

list(alpha = c(0.50,0.50,0.50,0.50,0.50), beta = c
(NA,0.5,0.5,0.5),sd = 1)

C) Additional code required for data reported as
median survival times

for (ii in 1:medianNObs ){
medianMu[ii] < - alpha[medianStudy[ii]] + beta

[medianTx[ii]] -
beta[medianBase[ii]]
prob[ii] < - exp(-median[ii]*exp(medianMu[ii]))
medianR[ii] ~ dbin(prob[ii],medianN[ii])
}
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