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Abstract

Background: In epidemiological studies explanatory variables are frequently subject to measurement error. The aim
of this paper is to develop a Bayesian method to correct for measurement error in multiple continuous exposures in
individually matched case-control studies. This is a topic that has not been widely investigated. The new method is
illustrated using data from an individually matched case-control study of the association between thyroid hormone
levels during pregnancy and exposure to perfluorinated acids. The objective of the motivating study was to examine
the risk of maternal hypothyroxinemia due to exposure to three perfluorinated acids measured on a continuous
scale. Results from the proposed method are compared with those obtained from a naive analysis.

Methods: Using a Bayesian approach, the developed method considers a classical measurement error model for
the exposures, as well as the conditional logistic regression likelihood as the disease model, together with a
random-effect exposure model. Proper and diffuse prior distributions are assigned, and results from a quality
control experiment are used to estimate the perfluorinated acids’ measurement error variability. As a result,
posterior distributions and 95% credible intervals of the odds ratios are computed. A sensitivity analysis of
method’s performance in this particular application with different measurement error variability was performed.

Results: The proposed Bayesian method to correct for measurement error is feasible and can be implemented
using statistical software. For the study on perfluorinated acids, a comparison of the inferences which are corrected
for measurement error to those which ignore it indicates that little adjustment is manifested for the level of
measurement error actually exhibited in the exposures. Nevertheless, a sensitivity analysis shows that more
substantial adjustments arise if larger measurement errors are assumed.

Conclusions: In individually matched case-control studies, the use of conditional logistic regression likelihood as a
disease model in the presence of measurement error in multiple continuous exposures can be justified by having a
random-effect exposure model. The proposed method can be successfully implemented in WinBUGS to correct
individually matched case-control studies for several mismeasured continuous exposures under a classical
measurement error model.

Background
Measurement error refers to the variation of the
observed measurement from the true value, and consists
of two components, random error and systematic error.
The first component, the random error, is caused by
any factors that randomly affect the measurement across
a sample, and usually arises from inaccuracy in a

measuring laboratory instrument or random fluctuations
in the environmental conditions. The second error com-
ponent, the systematic error, is caused by any factors
that systematically affect the measurement across a sam-
ple, and can be attributed to non-random problems in
the system of measurement (e.g. wrong use or improper
calibration of the measurement instrument).
In many scientific areas where statistical analysis is

performed, the problem of dealing with explanatory
variables subject to measurement error is present. In
particular, in epidemiologic studies, the explanatory
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variables (or ‘exposures’) that reflect exposure to sus-
pected risk factors associated with a disease (the out-
come variable) are commonly measured with error.
These errors can be either differential or non-differential,
according to whether they depend on the values of other
variables in the study, for instance the outcome variable
[1,2]. As has been discussed by many authors [3-6], mea-
surement error reduces power for detecting relationship
between exposures and disease, and ignoring this error
may bias the assessment of the association between
health outcome and exposure variables. In particular,
ordinary logistic regression can lead to biased estimates
of odds radios (ORs) when the covariates are subject to
measurement error [7]. Researchers have proposed non-
Bayesian methods to correct for measurement error in
exposures in individually matched case-control studies.
For instance, Guolo et al. [8] used conditional likelihood
methods to correct for measurement error in a single
continuous exposure using simulated data. These authors
compared the performance of the likelihood methods
with two other corrections techniques (regression cali-
bration [7] and simulation-extrapolation (SIMEX) [9]),
observing that the likelihood approach outperforms the
alternative methods when a single continuous exposure
is measured with error. McShane et al. [5] proposed a
conditional scores procedure to correct for measurement
error in some components of one or more continuous
covariates. In that study, the authors treated the true cov-
ariates as fixed unknown parameters, which were
removed from the likelihood by conditioning on a suffi-
cient statistic and estimated together with the unknown
parameters. However, the conditional scores procedure
experienced convergence problems in the presence of
large relative risks or when large measurement errors
were considered. Also, conditional scores procedures are
typically not very generalizable when data structures are
changed even slightly. In addition, Liu et al. [6], Prescott
and Garthwaite [10], and Rice [11] proposed Bayesian
adjustments for misclassification of a binary exposure
variable. Nevertheless, to our knowledge, very little atten-
tion has been given to measurement error in multiple
continuous exposures in matched case-control studies,
except for McShane et al. [5] whose procedure may be
challenging numerically, and which is quite dependent
on the settings of the problem.
Thus, in this paper, we develop a Bayesian method to

correct for measurement error in multiple continuous
exposures in individually matched case-control studies
that may be generalized to different settings, where
information regarding the measurement error variability
is available from additional experiments. The methodol-
ogy is illustrated using data from a study of association
of perfluorinated acids (PFAs) with disruption of thyroid
homeostasis in pregnant women [12]. PFAs are global

contaminants of human blood and environment [13].
The objective of the motivating study was to examine
the risk of maternal hypothyroxinemia due to exposure
to three PFAs measured on a continuous scale. No
human study has previously examined the influence of
PFAs on the development of hypothyroxinemia, but
there are reports on the relationship between PFAs and
thyroid hormones and thyroid disease. In a sample from
the US general population from 1999 to 2006, both men
and women exposed to some PFAs had higher preva-
lence of physician-diagnosed thyroid disease [14]. How-
ever, a small study in a highly contaminated community
failed to find similar association [15], and two other stu-
dies also did not report associations [16,17]. Dallaire et
al. [18] reported a mixture of negative and positive asso-
ciations of thyroid hormones with PFAs. The extent to
which measurement error may contribute to apparent
heterogeneity among these reports is unknown, but it
certainly should be considered as an explanation.
We start this paper by describing the data in the moti-

vating example in detail, followed by derivation of an
estimate of the random error variability from percent
recovery experiments, description of the proposed Baye-
sian model and justification of conditional logistic
disease model for measurement error correction. Next,
application of the method is illustrated along with a sen-
sitivity analysis of the impact on the results if greater-
than-estimated random error was present. The proposed
Bayesian method is implemented in WinBUGS software
and inferences are compared to those drawn from a
naive analysis, which ignores measurement errors in the
exposures.

Methods
Data
The developed Bayesian method is illustrated using indi-
vidually matched case-control data from a study of Chan
et al. [12]. The objective of the study was to examine
the risk of maternal hypothyroxinemia due to exposure
to three PFAs: perfluorooctanoic acid (PFOA), perfluor-
ooctane sulfonate (PFOS) and perfluorohexane sulfonate
(PFHxS). Chan et al. [12] extracted PFAs from maternal
sera samples from 271 pregnant women, aged 18 or
older, who elected to undergo a second trimester prena-
tal “triple screen”, delivered at 22 weeks gestation or
more to live singletons without evidence of malforma-
tions, and were referred by a physician who made a
least eight recommendations for the “triple screen” over
the study period. The exposure variables were reported
on a continuous scale, and censored/non-detectable
values (about 5.4% of the total number of records) were
recorded as half the value of the limit of detection. Con-
centrations of the PFAs were transformed to log-molar
units, and it was seen that after this transformation the
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measured exposures approximately follow a normal dis-
tribution. A quality control experiment was performed
in order to assess the amount of error incurred in the
measurement of the exposures. In this experiment, per-
centages of recovery were calculated for each exposure
and the results revealed the presence of a random error
in the measurements. Details of this procedure and
results are presented in Appendix I.
Chan et al. [12] classified the subjects into cases or

controls, based on the analysis of their thyroid stimulat-
ing hormone (TSH) and free thyroxin (T4) concentra-
tions. The hypothyroxinemia cases correspond to women
exhibiting normal TSH concentrations with no evidence
of hyperthyroidism (between 0.15 and 4.0 mU/L) and
free T4 in the 10th percentile (less than 8.8 pmol/L).
Meanwhile the controls correspond to women with nor-
mal TSH concentrations but having free T4 concentra-
tions between the 50th and 90th percentiles (between 12.0
and 14.1 pmol/L). Each case was matched to between
one and three controls on the basis of two matching fac-
tors: maternal age at blood draw (± 3 years) and referring
physician (a total of 29 physicians). Further details on the
construction of the data can be found in Chan et al. [12].
In summary, the matched case-control data used to

illustrate the Bayesian method to correct for measure-
ment error contain information from 96 cases and 175
individually matched controls. For the purpose of this
paper, it is assumed there is no misclassification of con-
trol/case status. In addition, the data contain, for each
subject, the corresponding exposure to PFOA, PFOS
and PFHxS, which are reported on a continuous scale in
log- molar units and are assumed to be subject only to
random measurement error. Moreover, four potential
confounders which are precisely measured are reported:
maternal age (years), maternal weight (pounds), mater-
nal race (Caucasian and non-Caucasian) and gestational
age (days). All potential confounders except for maternal
race were reported on a continuous scale. The maternal
age variable is retained despite its use as a matching fac-
tor, in case the matching is too coarse to fully eliminate
confounding.

Measurement model
Generally, in observational studies, the vector of impre-
cise surrogate exposures W is commonly recorded,
instead of X itself. Therefore, in order to understand the
relationship between the disease risk and the explana-
tory variables X, having data on Y and W, it is necessary
to account for measurement error in the exposures. In
this paper, the attention is concentrated on the problem
of having only random error, by assuming zero systema-
tic error. However, the present methodology can be
adapted to introduce the effect of a systematic error.

Assume the vector of independent surrogates W arises
from a classical additive measurement error model,
which can be expressed as

W = X + U, (1)

where U refers to the measurement error component.
This classical model assumes the true exposures are
recorded with an additive, independent error. In addition,
it can be assumed the measurement error is non-differen-
tial, and unbiased. The assumption of non-differential
measurement error refers to the fact that the distribution
of the surrogate exposures depends only on the actual
exposure variables and not on the response variable or
other variables in the model. As a result, the conditional
distribution of (W|X,Y) is identical to the conditional dis-
tribution of (W|X). The unbiased assumption E(U|X) = 0
implies E(U|X) = X. Typically, the measurement error
component is also assumed to be normally distributed
with constant variance, i.e. U ~ NP(0, ∑), where is ∑ a
diagonal matrix with the main diagonal entries given by
�pp = σp

2, for p = 1, ..., P.
Under the stated assumptions, W|X follows a

P-dimensional multivariate normal distribution with a
mean vector given by the vector of true exposures and
a covariance matrix ∑, which in this case is known.
Thus, the density corresponding to the measurement
model is given by W|X, ∑ ~ Np(X, ∑). Therefore, under
the assumptions of an individually matched case-control
data, the density of the measurement model is given by

N∏
i=1

ni∏
j=1

f
(
wij|xij,�

)
, (2)

where wij and xij correspond to the vector of surrogate
and true exposures variables, respectively, for the j - th
member of the i - th matched set, and N refers to the
number of matched sets.
For the particular case of data used in the study on

PFAs, the surrogate variables are measured concentra-
tions of PFOA, PFOS, and PFHxS, which correspond to
the exposures to the compounds reported on a continu-
ous scale in log-molar units. Consequently, an additive
measurement error model for the exposures in
log-molar units translates into a multiplicative error
structure, in which the corresponding error term is pro-
portional to the true exposure in molar scale. In many
epidemiological studies, positive explanatory variables
are subject to this sort of measurement error. Using
available validation data from the quality control proce-
dure performed by Chan et al.[12], the covariance
matrix ∑ of the measurement model can be estimated.
In Appendix I we present a statistical argument for esti-
mating ∑ from this particular form of quality control
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data. The argument is based on the multivariate version
of the delta method [19] and uses the estimated stan-
dard deviation of the percentages of recovery for the
concentrations of the three compounds in parts-per-
billion to obtain information about the incurred error in
the measurement of the exposures.

Disease model
In order to describe a relationship between the true
exposures and the probability associated to the response
variable, it is necessary to specify a disease model. Since
the study analysed in this paper involves matched sets,
the conditional logistic regression likelihood is adopted.
Consider a study having N matched sets, such that the

j-th member (j = 1, ..., ni) of the i-th set (i = 1, ..., N)
has P associated continuous exposures Xij = (Xij1, ...,
Xijp)

T. In addition, let Yi = (Yi1, ..., Yini)
T be a vector of

response variables associated to the i-th matched set,
such that Yij = 1 for the cases and Yij = 0 for the con-
trols. Without loss of generality, the subjects can be
labelled such that Yi1 = 1 and Yij = 0, for j = 2, ..., ni.
Thus, the underlying objective is to model the retro-
spective probabilities for the case (i.e. P(Xi1 | Yi1 = 1) ),
and the controls (i.e. P(Xij | Yij = 0), for j = 2, ... ni),
which can be accomplished by using the conditional
logistic regression model.
The conditional likelihood is obtained by conditioning

on the number of cases in each matched set, i.e. condi-

tioning on

ni∑
j=1

Yij. In the particular case of individual

matching, the number of cases is one; therefore, the
conditional likelihood for the i - th matched set (i = 1,
..., N) is given by [20,21]

LCi
(
β
)
= f (y

i
= (1, 0, · · · , 0)|xi,

ni∑
j=1

yij = 1)

=
exp

(
βTXi1

)
ni∑
j=1

exp
(
βTXij

)

where b= (b1, ..., bP)
T corresponds to the log ORs

associated with unit changes in each of the exposures.
Under the assumptions of a matched case-control study,

the full conditional likelihood is the product of LCi
(
β
)

over the N strata or matched sets, which is

LC
(
β
)
=

N∏
i=1

LCi
(
β
)
. (3)

The parameter bis assumed to be constant across
matched sets, and it is the target of statistical inference.

Bayesian model
Consider a retrospectively collected matched case-con-
trol data where each case is matched to one or more
controls based on suspected confounders as matching
factors. Let Y be the response variable, such that Y = 1
for cases and Y = 0 for controls, let X= (X1, ..., XP)

T be
the P -dimensional vector of the true, latent, continuous
exposures which are subject to measurement error, and
let W= (W1, ..., WP)

T be the P-dimensional vector of
surrogate exposures.
The aim of this subsection is to develop a Bayesian

method to understand the association between the vec-
tor of continuous exposures X and the probability of the
response variable Y, after correcting for random mea-
surement error in the exposures.
Under the Bayesian paradigm, the posterior density of

the unknown quantities is given by

f
(
x, θ |w, y) ∝ f

(
x,w|y, θ)

f (θ) (4)

where θ refers to the vector of unknown parameters.
The first term of the right hand side of (4) refers to the
joint posterior distribution of the true exposures X and
the surrogate variables W. As will be shown in Appen-
dix II, this term contains the densities of the measure-
ment model, disease model and exposure model.
Meanwhile, the second term corresponds to the prior
distribution of the unknown parameters.

Exposure model
The conditional logistic regression model has been suc-
cessfully applied in matched retrospective case-control
studies, and the use of this procedure has been statisti-
cally justified using Bayesian (see for example [11,22,23])
and non-Bayesian (see for instance [20,21]) approaches.
This justification is based on the fact that the likelihood
term describing the distribution of the total number of
cases within-stratum given the exposures can be dis-
carded. The reason for this is that it does not provide
information about the parameter of interest, since the
likelihood is only a function of the unknown parameter
b. However, this justification is no longer directly applic-
able when adjusting for measurement error in expo-
sures, since the omitted likelihood term might also
contain information about these exposures [6], i.e., the
likelihood is a function of b and the unobserved expo-
sures. As a result, the use of a conditional likelihood
approach in the presence of measurement error in mul-
tiple continuous exposures has not been widely adopted.
We justify the use of conditional logistic regression

likelihood as a disease model when adjusting for mea-
surement error in an individually matched case-control
study via a random-effect exposure model; details are
presented in Appendix II. A different approach that
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does not involve a random-effect exposure model is pro-
vided by Gulo et al. [8].
In order to describe the random-effect exposure

model, we assume that the vector of exposures for the
j - th subject from the i - th matched set follows a mul-
tivariate normal distribution around the vector of expo-
sure means of the corresponding matched set.
Moreover, since the vector of exposure means of a
matched set is unknown, we assume that this vector fol-
lows a multivariate normal distribution centered on the
across-set exposures means. That results in

Xij = μ
i
+ γ

ij

and

μ
i
= μ̄ + λi

where γ
ij

iid∼NP
(
0,VW

)
, and λi

iid∼NP
(
0,VB

)
, such that

gij and li are mutually independent. Also notice that the
within-stratum covariance matrix VW is assumed to be
constant across matched sets. As a result,

Xij|μi

iid∼NP

(
μ
i
,VW

)
, and μ

i

iid∼NP

(
μ̄,VB

)
. Thus, the

density corresponding to the random-effect exposure
model is given by

f (x|μ
i
, μ̄,VW ,VB) =

N∏
i=1

ni∏
j=1

f (xij|μi
,VW) ×

N∏
i=1

f (μ
i
|μ̄,VB). (5)

It has been assumed that the vector of true expo-
sures follows a P-dimensional multivariate normal dis-
tribution. However, in observational studies, exposures
often have a skew distribution [24]. Therefore, it is
important to keep in mind that incorrect model speci-
fication may lead to biased estimates. To overcome
potential misspecifications, for the univariate case
some authors [24-26] have proposed the use of flexible
distributions to increase the robustness to model speci-
fication. However, implementation of such methods
can be quite challenging in the context of multivariate
exposures.

Joint posterior density
For the particular case of this paper, the data considered
consist of N = 96 matched sets, such that the i-th
matched set has j = 1, ..., ni subjects, with ni Î {2,3,4}.
Thus one subject is the case per set and the remaining
ni - 1 subjects are the controls. Let

θ =
(
β ,μ

i
, μ̄,VW ,VB

)
be the vector of unknown para-

meters. Therefore, by (4) and (AII.3), and using densities
in (2), (3) and (5), it follows that the posterior density of
the unknown quantities can be expressed as

f
(
x, θ |w, y) ∝

96∏
i=1

⎧⎨
⎩

ni∏
j=1

f
(
wij|xij,�

)
×

exp
(
βTXi1

)
ni∑
j−1

exp
(
βTXij

)×

ni∏
j=1

f
(
xij|μi

,VW

)
× f

(
μ
i
|μ̄,VB

)⎫⎬
⎭ ×

f (β, μ̄,VW ,VB).

It is commonly assumed that the unknown parameters
are independent of each other a priori, so that

f (β, μ̄,VW ,VB) = f
(
β
)

× f
(
μ̄

)
× f (VW) × f (VB). In

order to implement a Bayes-Markov chain Monte Carlo
(MCMC) inference, it is necessary to assume prior dis-
tributions for the unknown parameters. Proper prior
distributions are assumed for all the parameters. More-
over, the corresponding hyperparameters are chosen so
that the parameters reflect prior ignorance:

β ∼ NP
(
0, 10000IP

)
,

μ̄ ∼ NP

(
μ, 10000Ip

)
,

V−1
W ∼ WP (IP,P + 2) ,

V−1
B ∼ WP (IP,P + 2) ,

where WP(R, b) indicates a P-dimensional Wishart dis-
tribution with a positive definite inverse scale matrix R,
and b degrees of freedom. And IP is an identity matrix
of size P. For the particular case of the matched case-
control data from the epidemiological study on PFAs,
P = 3 and μis estimated using the across-set sample
mean of the corresponding observed exposures.

Adjustment for additional confounders
Considering the possibility that confounding is only par-
tially addressed by matching, further potential confoun-
ders can be introduced in the disease model. In general,
potential confounders should also be included in the expo-
sure model; however, for simplicity these confounders are
not considered in our random-effect exposure model,
keeping it as presented in equation (5). For the case of the
PFA’s data, this simplification might be justified by the
fact that the exposures and the confounders exhibit small
correlations (less than 0.18), so we do not expect the
potential confounders to be very helpful in reconstructing
the true exposures. In addition, due to the assumption of
non-differential measurement error, the measurement
model also remains as presented in equation (2).
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Consider the situation where the j-th member of the i-
th set has associated K potential confounding variables
Zij = (Zij1, ..., Zijk)

T which are precisely measured.
Therefore, the full conditional likelihood corresponding
to the disease model in (3) can be rewritten as

LC
(
β, δ

)
=

N∏
i=1

exp
(
βTXi1 + δTZi1

)
ni∑
j=1

exp
(
βTXij + δTZij

) ,

where δ= (δ1, ..., δK)
T is the vector of parameters asso-

ciated with the confounding effect.
Thus, the posterior density of the unknown quantities

can be rewritten as

f
(
x, θ |w, y, z) ∝

96∏
i=1

⎧⎨
⎩

ni∏
j=1

f
(
wij|xij,�

)
×

exp
(
βTXi1 + δTZi1

)
ni∑
j−1

exp
(
βTXij + δTZij

)×

ni∏
j=1

f
(
xij|μi

,VW

)
× f

(
μ
i
|μ̄,VB

)⎫⎬
⎭ ×

f (β, δ, μ̄,VW ,VB),

where θ =
(
β, δ,μ

i
, μ̄,VW ,VB

)
is the new vector of

unknown parameters, and a proper and diffuse prior
distribution is assumed for the parameter δ, by having
δ~ Nk(0, 10000IK), where K = 4 for the particular case
of the motivating example.

Results and Discussion
In this section, the proposed Bayesian method to cor-
rect for measurement error is illustrated using data
from the study of Chan et al. [12]. Inferences drawn
from a naive analysis and an analysis correcting for
measurement error are presented. The naive analysis
ignores error in exposure measurements, by pretending
the observed exposures (PFOA, PFOS, and PFHxS) are
precisely measured. Meanwhile, in the analysis
accounting for measurement error, the surrogate expo-
sures are corrected for random measurement error.
Two models are considered in each analysis: a simple
model assuming the only confounding is via matching
factors, and a model adjusted by four further potential
confounders (maternal age, maternal weight, maternal
race, and gestational age). In summary, the results
from four Bayesian models are compared: a simple
model under the naive analysis (N-S), an adjusted
model by confounders under a naive analysis (N-A), a
simple model under a measurement error analysis

(ME-S), and an adjusted model by confounders under
a measurement error analysis (ME-A).
The models are implemented in WinBUGS software,

version 1.4.3 [27], which is freely distributed and can be
downloaded from the web [28]. Our WinBUGS code as
available (Additional file 1). The analysis of the results
was carried out using the statistical package R, version
2.11.1, which is also freely distributed on the web [29].
Two MCMC chains of length 55,000 were run for each
model, using different initial values. The first 5,000
“burn-in” iterations were discarded from each chain and
the last 50,000 MCMC iterations were used to perform
Bayesian statistical inference. The computer running
times on an Intel Core 2 Duo CPU at 2.10 GHz with
3.00 GB of RAM for N-S and N-A were approximately
1.5 and 4 minutes, respectively. Meanwhile, running
times for ME-S and ME-A were about 9 and 13 min-
utes, respectively. The convergence to the posterior dis-
tributions and mixing of the two chains were assessed
from the trace, autocorrelation, and the Gelman-Rubin
convergence statistic plots. Moreover, under both types
of analysis the estimated Monte Carlo standard errors of
the posterior log ORs were smaller than 0.0026 for the
simple models (N-S and ME-S) and smaller than 0.0030
for the models adjusted by the confounding variables
(N-A and ME-A).
Posterior means and 95% equal-tailed credible inter-

vals of the ORs obtained for the models under the naive
Bayesian analysis and the proposed Bayesian method to
correct for measurement error are depicted in Table 1.
This table indicates that under the two types of analysis,
there is an absence of evidence for an association
between the risk of maternal hypothyroxinemia and
exposure to the PFAs. The point and credible intervals
estimates of the ORs under both analyses are very simi-
lar, suggesting that a slight adjustment is manifested for
the level of measurement error exhibited in the PFAs.

Table 1 Comparison of posterior means and credible
intervals of the ORs

OR 95% Cred. Int. Adjusted OR 95% Cred. Int.

Naive analysis

PFOA 0.905 (0.661, 1.209) 0.828 (0.584, 1.127)

PFOS 0.802 (0.495, 1.214) 0.752 (0.445, 1.181)

PFHxS 1.315 (0.964, 1.755) 1.302 (0.934, 1.779)

Measurement error
analysis

PFOA 0.904 (0.656, 1.212) 0.821 (0.568, 1.131)

PFOS 0.794 (0.482, 1.221) 0.743 (0.431, 1.191)

PFHxS 1.333 (0.960, 1.816) 1.329 (0.938, 1.856)

Posterior means and 95% equal-tailed credible intervals of the ORs for the
simple model and the model adjusted for confounding variables. Results are
presented for the Bayesian naive analysis and for the Bayesian method
proposed to correct for measurement error.
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However, a priori, there was not intuition that the
adjustment would necessarily be slight.
Figure 1 presents the posterior densities and 95%

credible intervals of the ORs for the simple model and
the model adjusted by confounders, both under the
measurement error analysis. Plots indicate there is no
substantial association between the exposure to any PFA
and maternal hypothyroxinemia. In addition, plots show
a wider posterior distribution of the OR for the expo-
sure to PFHxS, suggesting a bigger uncertainty in the
risk associated to this exposure. Moreover, the posterior
distributions for the simple model and the model after
adjusting for the confounding variables are quite similar,
in particular for the exposures PFOS and PFHxS, sug-
gesting little or no further confounding effect. This con-
clusion is confirmed after calculating 95% equal-tailed
credible intervals of the estimated parameter δ(not
shown).
A sensitivity analysis of the measurement error varia-

bility ∑ estimated in Appendix I is carried out in order
to validate the performance of the method. Figure 2
gives posterior means and 95% equal-tailed credible
intervals for the ORs after increasing up to ten times
the assumed measurement error variability for the expo-
sures. Plots show that, for all the exposures, more sub-
stantial measurement error adjustments arise if larger
measurement errors are assumed. Furthermore, the esti-
mated ORs move in the anticipated directions, i.e., away
from the null. However, in all cases the credible inter-
vals widen, so that they still include the value of one,
providing little evidence of any association between
exposures and the outcome, regardless of the assumed
measurement error magnitudes. The aforementioned

MCMC diagnostics indicated that MCMC convergence
and mixing worsened slightly as the assumed measure-
ment error magnitude increased. However, chains of
length 55,000 were run with the first 5,000 interactions
used as a “burn-in” period were still adequate.

Conclusions
We propose a Bayesian method to correct for measure-
ment error in multiple continuous exposures for indivi-
dually matched case-control studies. This method
assumes a classical measurement model in order to
account for random error in the exposures. It uses the
conditional logistic regression likelihood as a disease
model. We justify the use of this model in the presence
of measurement error in the exposures by having a ran-
dom-effect exposure model.
The proposed method can be implemented in Win-

BUGS software, which manages the computational com-
plexity associated with likelihood-based approaches, to
which Guolo et al. [8] referred. Moreover, as was
pointed out by Guolo et al. [8], the likelihood-based
methods, such as Bayesian and maximum-likelihood
methods, perform well under different measurement
error structures, can provide accurate inferential results,
and outperform other corrections techniques (regression
calibration and SIMEX). Furthermore, unlike the
method proposed by McShane et al. [5] to correct for
measurement error in continuous exposures, the Baye-
sian method proposed in this paper is neither prone to
convergence errors nor highly dependent on the settings
of a particular individually matched case-control study.
For the particular case of the study on PFAs, Bayesian

inference of ORs indicates that little adjustment for
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exposure measurement error is needed for the magni-
tude of error determined from the quality control
experiment. However, bigger adjustments arise if larger
measurement errors are assumed.
Some avenues for future research are suggested by our

results. First, the method assumes a multivariate normal
distribution on the exposures. However, it is important
to keep in mind that a model misspecification may lead
to biased estimates. In this context some authors have
proposed the use of parametric and non-parametric
flexible models. Nevertheless, some complications are
involved in their implementations. For instance,
Richardson et al. [24] proposed using a normal mixture
model under a Bayesian approach and found that in the
absence of validation data, their approach requires very
strong priors on the mixture parameters to obtain rea-
sonable estimates. Carroll et al. [25] suggested the use
of a Bayesian approach in order to avoid the compli-
cated implementation of the Estimation-Maximization
(EM) algorithm under a traditional frequentist analysis
once the normal mixture model is implemented into the
likelihood. Furthermore, they advised to use partially
proper priors in order to avoid improper posteriors.
Guolo [26] suggested the use of skew-normal family of
distributions as long as this distribution is a good
approximation of the distribution of the unobserved
exposures in the case-control sampling. Generally, how-
ever, the implementation of flexible exposure models for
multivariate exposures remains challenging.
Second, we have not made explicit comparisons

between our method and other methods. We have, how-
ever, considered implementation issues for our method

versus others. Particularly, we considered regression
calibration techniques which impute best-guess expo-
sure values and then plug these in to the disease model.
While this is a simple procedure with some data for-
mats, it would be no simpler that our method in the
present format. The imputation involves estimating E(X|
W), which in turn requires estimating variance compo-
nents from a multivariate random effect model applied
to unbalanced data, in order to acknowledge variation
between and within matched sets, in a similar fashion to
[5]. Thus fitting a model similar to our exposure model
is required, for which software options are somewhat
limited. Moreover, regression calibration requires post-
fitting adjustment of standard errors, say by bootstrap-
ping, which would be very burdensome computationally
in the present setting.
Finally, using available information from the quality

control experiment performed on the PFA concentra-
tions and the multivariate version of delta method, we
present a statistical approach to estimate the measure-
ment error variability. However, different assumptions
and estimation methods can be developed in the pre-
sence of additional validation data or a different struc-
ture of quality control data. For instance, the
complicated structure of the percent recovery experi-
ments necessitated a ‘plug-in’ approach to dealing with
the measurement error covariance matrix. Simpler data
structures for informing the measurement error var-
iance, such as a validation subsample, replicates, or an
instrumental variable, would much more easily lend
themselves to incorporating uncertainty about this cov-
ariance matrix as part of the overall Bayesian analysis.
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Appendix I. Measurement error variability
estimation
In reference to the epidemiological matched case-con-
trol study on PFAs, Chan et al. [12] performed a quality
control procedure on the PFAs in ppb concentrations.
Serum samples for subjects were divided into batches of
approximately 16 per set for analysis of PFAs. Each set
had a pooled sample consisting of: a paired sample of
spiked serum (50 ppb of mixed standard in pooled
serum) and unspiked serum (only pooled serum),
besides a gold standard sample (50 ppb into methanol).
Percentages of recovery were calculated by comparing
the spiked concentration (i.e. difference between the
paired spiked and unspiked samples) to the gold stan-
dard sample. The results showed that the standard
deviations of the percent recoveries for PFAs in ppb
concentrations were: 0.157 for PFOA, 0.139 for PFOS
and 0.252 for PFHxS.
Let W∗

p, W
∗
p,spiked, and W∗

p,gold be the unspiked serum,
spiked serum and gold standard corresponding to expo-
sure p in ppb concentration, with p ε {1,2,3} = {PFOA,
PFOS, PFHxS}. Using this notation, the percent recovery
corresponding to exposure p is given by

Qp =
W∗

p,spiked − W∗
p

W∗
p,gold

.

Let mp be the factor used to convert molar units to
ppb concentrations, corresponding to exposure p.
Therefore, the percent recovery can be expressed as

Qp =
mp ∗ exp(Wp,spiked) − mp ∗ exp(Wp)

mp ∗ exp(Wp,gold)
, (AI:1)

where Wp, Wp, spiked and Wp, gold correspond to the
unspiked serum, spiked serum and gold standard sam-
ples in log-molar concentrations, respectively.
Using the normality and homogeneity assumptions of

the error component, the corresponding equation (1) for
a particular exposure p is equivalent to

Wp = Xp + σpεp, with εp ∼ N(0, 1).

Therefore, it follows that

Wp,spiked = Xp,spiked + σpεp,spiked, with εp,spiked ∼ N(0, 1),

Wp,gold = Xp,gold + σpεp,gold, with εp,gold ∼ N(0, 1).

By substituting these three equations into (AI.1), it is
possible to see that

Qp =
mp ∗ exp(Xp,spiked) ∗ exp(σpεp,spiked) − mp ∗ exp(Xp) ∗ exp(σpεp)

mp ∗ exp(Xp,gold) ∗ exp(σpεp,gold)
. (AI:2)

Moreover, according to the description of the samples
in the quality control procedure Xp,spiked, Xp,gold, which

correspond to the true spiked serum and gold standard
samples in log-molar concentrations, have the following
underlying structures

mp ∗ exp(Xp,spiked) = mp ∗ exp(Xp) + 50,

mp ∗ exp(Xp,gold) = 50.
(AI:3)

Substitution of (AI.3) into equation (AI.2) yields

Qp =

(
50 + cp

) ∗ exp(σpεp,spiked) − cp ∗ exp(σpεp)

50 ∗ exp(σpεp,gold)
,

where cp = mp* exp(Xp). Therefore, the percentage of
recovery corresponding to exposure p is a twice-differ-
entiable function of Tp = (εp, εp,spiked, εp,gold)

T. Assuming
(εp, εp,spiked, εp,gold) are independent, Tp follows a trivari-
ate normal distribution with a mean vector of zeros and
a covariance matrix equal to the identity matrix. Thus,
based on the multivariate delta method, the variance of
the percent recovery is given by

Var
(
Qp

) ∼= ∇Qp(0)
TI3∇Qp(0)

∼=
[( cp

50

)2
+

(
1 +

cp
50

)2
+ 1

]
∗ σ 2

p ,
(AI:4)

where is the gradient of ∇Qp(Tp). Using the gradient of
Qp results of the quality control procedure (standard
deviations of the percentages of recovery for PFAs in
ppb concentrations), and by taking cp as the sample
average of the ppb concentrations recorded for exposure
across-sample, estimates for the measurement error
variability for each exposure can be obtained as follows

σ̂ 2
p

∼= V̂ar(Qp)[(
ĉp
50

)2

+
(
1 +

ĉp
50

)2

+ 1

] .

Using that information, the estimate of covariance
matrix ∑ in (2) is given by

Σ̂ ≈ diag
(
σ̂ 2
1 , σ̂

2
1 , σ̂

2
3

)
≈ diag

(
σ̂ 2
PFOA, σ̂

2
PFOS, σ̂

2
PFHxS

)
≈ diag (0.01180007, 0.007957311, 0.03042517) .

(AII:1)

Appendix II. Justification for conditional
likelihood in matched case-control studies with
measurement error in continuous exposures
Bayesian justifications for using conditional likelihood
when actual exposure is observed are given by Rice
[11,22,23], but the situation is less clear when the actual
exposure is unobserved and treated as an unknown
quantity inside the posterior distribution. Thus we
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provide the following argument for using the conditional
likelihood as a disease model, as long as the model for
exposure acknowledges both across-stratum and within-
stratum variation. For simplicity the argument is pre-
sented in the situation without confounders that vary
within matched sets, i.e., all confounding is addressed
via matching.
Under the Bayesian paradigm, for individually

matched case-control data retrospectively collected and
subject to measurement error, the joint posterior model
of the true exposure and surrogate variables for a speci-
fic stratum (matched set) s is given by

f
(
x,w|y = (1, 0, · · · , 0), s

)
= f

(
w|x, y = (1, 0, · · · , 0), s

)
× f

(
x|y = (1, 0, · · · , 0), s

)
= f

(
w|x) × f

(
x|y = (1, 0, · · · , 0), s

)
.

The first term of the right hand side of (AII.1) is
obtained under the assumption of nondifferential mea-
surement error model. Regarding the second term, since∑
j

Yj depends explicitly on the values of the elements

of the vector Y, the distribution of (X, Y= (1,0, ..., 0), S)
is the same as the distribution of

(X,Y = (1, 0, · · · , 0), S,
∑
j

Yj = 1). Therefore, the retro-

spective probability in the second term of the right hand
side of (AII.1) can be rewritten as

f
(
x|y = (1, 0, · · · , 0), s

)
= f

⎛
⎝y = (1, 0, · · · , 0)|x,

∑
j

yj = 1, s

⎞
⎠×

f

(∑
j
yj = 1|x, s

)

f
(
y = (1, 0, · · · , 0)|s

)×

f
(
x|s) .

(AII:2)

Notice the distribution of Yis independent of the spe-
cific stratum, and it is mainly determined by the expo-
sure variables. Therefore, by standard arguments,
under a prospective logistic regression model with
stratum-specific intercept, the probability of⎛
⎝Y = (1, 0, · · · , 0)|X,

∑
j

Yj = 1, S

⎞
⎠ is simply the condi-

tional likelihood term. On the other hand, arguably the
dominant variation in the prospective distribution of⎛
⎝∑

j

Yj

⎞
⎠given (X, S) will be with S rather than X, via

the stratum-specific intercept. As a result,

f

⎛
⎝∑

j

yj = 1|x, s
⎞
⎠ ≈ f

⎛
⎝∑

j

yj = 1|s
⎞
⎠. Thus, (AII.2) can

be approximated as

f
(
x|y = (1, 0, · · · , 0), s

)
≈ f

⎛
⎝y = (1, 0, · · · , 0)|x,

∑
j

yj = 1

⎞
⎠ ×

f

(∑
j
yj = 1|s

)

f
(
y = (1, 0, · · · , 0)|s

)×

f
(
x|s) .

Since Y1, · · · ,Yns |S are exchangeable, it is possible to
see that

f
(
y = (1, 0, · · · , 0)|s

)

f

(∑
j
yj = 1|s

) = f

⎛
⎝y = (1, 0, · · · , 0)|

∑
j

yj = 1, s

⎞
⎠ = 1/ns.

Thus, the joint posterior density of the true exposure
and surrogate variables for a specific stratum s can be
expressed as

f
(
x,w|y = (1, 0, · · · , 0), s

)
∝ f

(
w|x) × f

⎛
⎝y = (1, 0, · · · , 0)|x,

∑
j

yj = 1

⎞
⎠ × f

(
x|s) , (AII:3)

where the conditional density of (W|X) corresponds to
the measurement model. This describes how the surro-
gate vector of explanatory variables arises from the true
values of X. And the density (X|S) of refers to the
within-stratum density of the exposure model. The
within-stratum density of the exposures can be imple-
mented as a random-effect model. Therefore, the use of
a conditional logistic regression model, when the expo-
sures are measured with error, is justified by having a
random-effect exposure model.

Additional material

Additional file 1: WinBUGS Code. Code used to perform the Bayesian
adjustment for measurement error in a matched case-control study with
multiple continuous covariates
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