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Abstract

Background: Competing risks methodology allows for an event-specific analysis of the single components of
composite time-to-event endpoints. A key feature of competing risks is that there are as many hazards as there are
competing risks. This is not always well accounted for in the applied literature.

Methods: We advocate a simulation point of view for understanding competing risks. The hazards are envisaged
as momentary event forces. They jointly determine the event time. Their relative magnitude determines the event
type. ‘Empirical simulations’ using data from a recent study on cardiovascular events in diabetes patients illustrate
subsequent interpretation. The method avoids concerns on identifiability and plausibility known from the latent
failure time approach.

Results: The ‘empirical simulations’ served as a proof of concept. Additionally manipulating baseline hazards and
treatment effects illustrated both scenarios that require greater care for interpretation and how the simulation
point of view aids the interpretation. The simulation algorithm applied to real data also provides for a general tool
for study planning.

Conclusions: There are as many hazards as there are competing risks. All of them should be analysed. This
includes estimation of baseline hazards. Study planning must equally account for these aspects.

Background
The analysis of time-to-event data (’survival analysis’)
has evolved into a well established application of
advanced statistical methodology in medicine. E.g., in
the New England Journal of Medicine, survival methods
have evolved from an occasionally used technique in the
late 70s over moderate use in the late 80s into the lead-
ing statistical procedure by 2005 [1]. The archetypical
application analyses time until death, but combined end-
points are also frequently considered. E.g., a recent lit-
erature review in clinical oncology [2] found a multitude
of combined endpoints including, e.g., progression-free
survival, distant metastasis-free survival, locoregional
relapse-free survival, etc. The medical problems at hand
will, as these endpoints exemplarily suggest, usually be
more complex than can be addressed by the analysis of
time until one potentially combined event type.

Competing risks techniques allow for a more specific
analysis in that they consider time until occurrence of
the combined endpoint and endpoint type, e.g., progres-
sion in contrast to death without prior progression. The
relevance of competing risks in medical research is high-
lighted by methodological papers in various medical
fields. We mention [3-5] as recent examples. A classical
statistics textbook account has been given in the first
edition of [6] in 1980, and a definite mathematical treat-
ment based on counting processes is included in [7].
Excellent tutorial papers in the statistical literature are
[8,9].
However, despite an obvious practical relevance and a

firmly established methodological background, compet-
ing risks are not always well accounted for in published
survival analyses in medical journals: E.g., another recent
literature review [10] in clinical oncology found that 27
out of 125 included randomised controlled trials consid-
ered time to progression, but only 5 out of 125 studies
accounted for such endpoint types being non-exclusive.
A similar picture has been reported for studies on the
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effect of implantable cardioverter defibrillator on subse-
quent cardiac events [11].
The key to an adequate competing risks analysis is:

There are as many hazards as there are competing risks.
Unless all of these hazards, which are often called
cause-specific hazards, have been analysed, the analysis
will remain incomplete. In particular, only a complete
analysis will allow for predicting event probabilities.
The aim of this paper is to suggest an algorithmic or

simulation point of view towards this key issue. The idea
behind this point of view is that it gives a clear building
plan of how the involved hazards generate competing
risks data over the course of time. However, although the
algorithm is mathematically well established [12], it is
rarely used in practice [13]. We will use it as an opera-
tional device for understanding competing risks.
The remainder of the paper is organised as follows: The

Methods Section introduces competing risks as arising
from a multistate model, gives an algorithmic interpreta-
tion of the involved hazards and provides a description of
the data example from a recent study on cardiovascular
events in diabetes patients [14]. In this Section, we also
explain ‘empirical simulation’, where one simulates based
on the empirical study probabilities, and give an overview
on simulation scenarios that will be considered. The Sec-
tion closes with a brief summary of the difference
between the present paper and the common latent failure
time approach to competing risks. Results are reported in
the Results Section. Our simulations are ‘empirical simu-
lations’, and they work as a proof of concept: Interpreting
a competing risks analysis from a simulation perspective
can be viewed as a thought experiment. The actual simu-
lations show that the simulation perspective works.
Finally, a discussion and a conclusion are offered, with a
focus on consequences for practical competing risks ana-
lyses, including graphical presentation and planning in
the presence of competing events.

Methods
The competing risks multistate model
Figure 1 depicts the multistate model of a competing
risks process (Xt)t≥0 with initial state 0 and two

competing event states 1 and 2. Xt denotes the state
that an individual is in at time t. The restriction to two
competing events is for ease of presentation only. Initi-
ally, every individual is in state 0 at time origin, i.e., X0

= 0. The individual stays in this state, i.e., Xt = 0 until
occurrence of any first event. Usually, there is one event
of interest, modelled by transitions into state 1, and all
other first event types may be subsumed into the com-
peting event state 2.
The competing risks process moves out of the initial

state 0 at the event time T. At time T , the process
enters one of the competing event states 1 or 2. Hence,
the state XT that an individual is in at time T denotes
the type of the first event, often called cause of failure.
XT equals either 1 or 2.
Key quantities in competing risks are the cause-speci-

fic hazards (CSHs) a0j (t), j = 1, 2,

α0j(t)dt = P(T ∈ dt,XT = j, |T ≥ t), j = 1, 2. (1)

The dt notation in (1) is a short, but more intuitive
form of the more common a0j(t) = limΔt↘0 P(T Î [t, t +
Δt), XT = j | T ≥ t)/Δt. The interpretation of (1) is that
the CSH at time t times the length dt of a very (infinite-
simally) small time interval equals the conditional prob-
ability of making an 0 ® j transition within that very
small time interval [t, t + dt). The CSHs can be envi-
saged as forces of transition, which work along the
arrows in Figure 1. Analogous to cumulative distribution
functions, basic statistical inference addresses cumula-
tive quantities. We therefore also write A0j (t) for the
cumulative CSHs, A0j (t) = A0j(t) =

∫ t
0 α0j(u)du, j = 1, 2.

The CSHs are key, because, as seen below, the perti-
nent probabilities are deterministic functions of the
CSHs, and because both nonparametric estimation and
Cox-type regression modelling build on them. The fun-
damental nonparametric estimator is the Nelson-Aalen
estimator of the cumulative CSHs

Â0j(t) =∑
s≤t

#{observed 0 → j transitions at s}
#{individuals observed in state 0 just prior s} ,

j = 1, 2, where the summation is over all observed
event times s ≤ t. Variance estimation and, properly
standardised, asymptotic normality of Â0j is discussed in
detail in Chapter IV of [7]. The most important regres-
sion approach are Cox models for the CSHs. If, as is
usual, we assume that covariates have different, i.e.,
cause-specific effects on the CSHs, the partial likelihood
factorises such that a Cox model for a01(t) may be fitted
by additionally censoring type 2 events, and vice versa
for a Cox model for a02(t), see, e.g., Chapter VII of [7].
The R [15] packages mvna[16] and survival[17]

Figure 1 Competing risks multistate model. Competing risks
multistate model with cause-specific hazards a0j (t), j = 1, 2.
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provide for convenient computation of the Nelson-Aalen
estimator and the Cox model, respectively.
The a0j’s sum up to the all-cause hazard a0·(t)dt = P

(T Î dt | T ≥ t) with cumulative all-cause hazard A0·(t).
The survival function of T is therefore a function of
both a0j’s, P(T > t) = exp(− ∫ t

0 α0·(u)du). As usual, P (T
>t) is estimated using the Kaplan-Meier estimator,
which is a deterministic function of the cause-specific
Nelson-Aalen estimators.
The so-called cumulative incidence functions (CIFs)

are the expected proportion of individuals experiencing
a certain competing event over the course of time,

P(T ≤ t,XT = j) =
∫ t

0
P(T > u−)α0 j(u)du, (2)

j = 1, 2. The interpretation of the right hand side of (2) is
that the CIF at time t equals the integral over all ‘probabil-
ities’ to make an 0 ® j transition precisely at time u. For
this, an individual has to stay in state 0 until just before
time u, which is reflected by the term P (T >u-). Condi-
tional on being in state 0 just before time u, an 0 ® j tran-
sition at time u is reflected by the term a0j (u) du.
One consequence is that the CIFs are involved functions

of all CSHs via P (T >u-). The CIFs P (T ≤ t, XT = 1) and
P (T ≤ t, XT = 2) add up to the all-cause distribution func-
tion 1 - P (T >t). The Aalen-Johansen estimators of the
CIFs can be obtained from (2) by substituting P (T >u-)
with the Kaplan-Meier estimator and a0j (u) du with the
increment of the cause-specific Nelson-Aalen estimator. A
detailed discussion of the Aalen-Johansen estimator is in
Chapter IV of [7]; variance estimation is assessed in [18].
In R, survival is typically used for estimating P (T >t).
The Aalen-Johansen estimator may be computed using
etm[19], and prediction of the CIFs based on Cox models
for the CSHs is implemented in mstate[20].
It is crucial to any competing risks analysis that both

cause-specific hazards completely determine the sto-
chastic behaviour of the competing risks process [7,
Chapter II.6]. This is mirrored above by the CIFs and
the all-cause distribution function being deterministic
functions of all CSHs. However, these deterministic rela-
tionships are involved. Therefore, we will pursue an
algorithmic interpretation of the CSHs below.

Algorithmic interpretation of the cause-specific hazards
Thinking of the CSHs as momentary forces of transition
which move along the arrows in Figure 1 suggests that
competing risks data are generated over the course of
time as follows:

1. The event time T is generated with distribution
function 1 - P (T >t), i.e., with hazard a01(t) + a02(t)
= a0·(t).

2. At time T , event type j occurs with probability
a0j (T )/a0·(T ), j = 1, 2.

Using this algorithm for simulation studies in compet-
ing risks has been discussed in [13]. It is important to
note, however, that the algorithm goes beyond the com-
putational question of how to implement simulations.
Rather, the algorithm reflects the probabilistic question
of how to build a probability measure based on the
CSHs. This aspect is discussed in detail by [12] in the
more general context of multistate models which are
realized as a nested series of competing risks
experiments.
The algorithmic perspective of this paper then implies

that the task of statistical inference is to detect the
ingredients of the above algorithm. We illustrate this
approach in the data example below. To this end, we
note that the analysis of a combined endpoint is
restricted to step 1 of the above algorithm. Here, the
effect of a treatment, say, on both CSHs determines
whether the occurrence of an event (of any type) is
delayed or accelerated. In step 2, the type of an event
again depends on the treatment effect on both CSHs.
We illustrate below that interpretation is straightforward
if the treatment effects on the CSHs work in opposite
directions or if one CSHs remains unaffected. However,
interpretation will become more challenging if there are
unidirectional effects on both CSHs. We will find that,
in general, it is also mandatory to consider cause-speci-
fic baseline hazards in the interpretation.

The 4D study
The background of the 4D study was that statins are
known to be protective with respect to cardiovascular
events for persons with type 2 diabetes mellitus without
kidney disease, but that a potential benefit of statins in
patients receiving hemodialysis had until then not been
assessed. Patients undergoing hemodialysis are at high
risk for cardiovascular events. The 4D study was a pro-
spective randomised controlled trial evaluating the effect
of lipid lowering with atorvastatin in 1255 diabetic
patients receiving hemodialysis. Patients with type 2 dia-
betes mellitus, age 18-80 years, and on hemodialysis for
less than 2 years were enrolled between March 1998
and October 2002. Patients were randomly assigned to
double-blinded treatment with either atorvastatin (619
patients) or placebo (636 patients) and were followed
until death, loss to follow-up, or end of the study in
March 2004.
The 4D study was planned [21] and analysed [14] for

an event of interest in the presence of competing risks.
The event of interest was defined as a composite of
death from cardiac causes, stroke and non-fatal myocar-
dial infarction, whichever occurred first. The other
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competing event was death from other causes. Wanner
et al. reported a CSH ratio of 0.92 (95%-confidence
interval [0.77, 1.10]) for the event of interest. There was
essentially no effect on the competing CSH.
The simulation study below will use the data of the

placebo group. In this group, 243 (38.2% of 636) events
of interest and 129 (20.3%) competing events were
observed. There were 264 (41.5%) censored patients.
The Nelson-Aalen estimators Â01(t) for the event of

interest and Â02(t) for the competing event are dis-
played in Figure 2.

’Empirical simulation’
Simulations were based on the empirical probabilities
defined by (̂A01(t), Â02(t)). To avoid the issue of model
misspecification, which is outside the scope of the pre-
sent investigations, ‘ideal’ Cox models were used for
generating data in the treatment group as explained
below. Event times and event types were generated fol-
lowing the two-step algorithm described earlier.
To be specific, event times in the placebo group were

drawn from the distribution defined by the Kaplan-
Meier estimator derived from (Â01(t), Â02(t)). Here, a

practical complication arose in that the Kaplan-Meier
estimator only spent about 76% of the probability mass.
I.e., the Kaplan-Meier curve did not drop down to 0
because of right-censoring, which is a common phe-
nomenon in clinical trials. This was handled by putting
point mass beyond the largest observed time; corre-
sponding realisations were always censored. In other
words, on average about 100% - 76% = 24% of the simu-
lated event times equalled some time that was larger
than the largest observed time in the original data set.
The corresponding observations were always censored
with censoring times generated as explained below.
Event types were generated by the binomial experiment
of the two-step algorithm, substituting the CSHs by the
increments of the cumulative CSHs. The algorithm was
analogously applied, when transformed cumulative
CSHs were used for the placebo group.
Data in the treatment group were generated based on

‘ideal’ Cox models. That is, CSH ratios exp(b1) for the
event of interest and exp(b2) for the competing event
were specified. If the original empirical baseline hazards
were used, data were drawn based on the probabilities

defined by (exp(β1)̂A01(t), exp(β2)̂A02(t)). If
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transformations of (Â01(t), Â02(t)) were used for gener-
ating placebo data, the CSH ratios acted on the trans-
formed cause-specific baseline hazards. This reflects the
situation that the true underlying baseline CSHs are a01

(t) and a02(t) (or transformations thereof) in the control
group, while the CSHs of the treatment group are exp
(b1)a01(t) and exp(b2)a02(t) for the case of untrans-
formed baseline hazards. Random censoring times were
generated for all individuals based on the Kaplan-Meier
estimator of the censoring survival function in the pla-
cebo group. Note that this estimator did spend 100% of
the probability mass.

Overview of simulation scenarios
The scenarios investigated in the next Section differed
both with respect to the choice of b1 and b2 and in
terms of the cumulative baseline hazards, i.e., the cumu-
lative CSHs in the placebo group. The choice of the b’s
broadly falls into three categories.
One category is characterised by b2 = 0, i.e., there is

no effect on the competing CSH. A prime example are
implantable cardioverter defibrillators [11], which dis-
play a beneficial effect on the CSH of sudden cardiac
death but no effect on the CSH for death from other
causes. The assumption of b2 = 0 straightforwardly
implies the direction of the treatment effect on the CIF:
If b1 < 0, the CIF of interest in the treatment group is
always less than the one in placebo group. The relation-
ship is reversed, if b1 > 0. This is intuitively understood
thinking of the CSHs as momentary forces of transition,
and it is reflected in step 2 of the simulation algorithm.
E.g., if b1 < 0 and b2 = 0, the binomial event type 1
probabilities are reduced for the treatment group.
A second category is characterised by opposite treat-

ment effects on the CSHs. This category straightfor-
wardly implies the direction of the treatment effect on
the CIF, too: The constellation b1 < 0 and b2 > 0 implies
a smaller CIF of interest in the treatment group but also
a larger competing CIF. These relations are reversed for
b1 > 0 and b2 < 0. This is again intuitively implied by
thinking of the CSHs as momentary forces of transition,
and it is also reflected in step 2 of the simulation algo-
rithm. E.g., if b1 < 0 and b2 > 0, the binomial event type
1 probabilities are reduced for the treatment group.
Finally, unidirectional treatment effects on the CSHs

constitute the third category. Interestingly, the interpre-
tation of unidirectional effects is straightforward when
both competing events are fatal in the sense that a treat-
ment with b1 < 0 and b2 < 0, say, is beneficial. But uni-
directional effects also present the most challenging
scenario in terms of understanding the resulting course
of the CIFs. The interpretation for step 1 of the simula-
tion algorithm is straightforward. If, e.g., b1 < 0 and b2
< 0, events of any type will happen later. The

interpretational challenge becomes apparent in the sec-
ond step of the algorithm: If, e.g., b2 <b1 < 0, the relative
magnitude of the CSHs changes such that the binomial
event of interest probabilities are increased. The inter-
pretational difficulty is the increase of this probability,
although b1 is negative. This constellation may result in
an (eventually) increased CIF of interest.
All three categories are encountered in practice.

Examples from clinical trials in hospital epidemiology
are given in [22].

Difference to the latent failure time model
Some readers may be more familiar with competing risks
as arising from risk-specific latent times, say, T(1) and T(2).
The connection to our multistate framework is T = min(T
(1), T(2)) with event type XT = 1, if T(1) <T(2), and XT = 2
otherwise. The latent failure time model imposes an addi-
tional structure, which has been heavily criticised mainly
for three reasons. The dependence structure of T(1) and T
(2) is, in general, not identifiable [23]. Since the latent times
are unobservable, there is something hypothetical about
them, which questions their plausibility [24]. Perhaps most
importantly, it has been disputed whether the latent failure
time point of view constitutes a fruitful approach to answer
questions of the original subject matter [25].
Despite of this critique, latent times are the predomi-

nant approach for simulating competing risks data [13].
Assuming, for tractability, T(1) and T(2) to be indepen-
dent with hazards equal to the cause-specific hazards
a01(t) and a02(t), respectively, is computationally correct
in that simulation based on this model yields the right
data structure.
However, nothing is gained from assuming the addi-

tional latent structure, either. As a consequence, we will
emphasise simulation and interpretation along the lines
of the Algorithmic interpretation of the cause-specific
hazards outlined earlier. This avoids the concerns on
identifiability, plausibility and usefulness.
E.g., in the 4D study, the typical interpretation of the

latent times would be that T(1) is the time until death from
cardiac causes, stroke or non-fatal myocardial infarction,
while T(2) is the time until death from other causes. Such
an interpretation has given rise to debating whether, say, a
patient may conceptually still die from other causes after
having died because of a cardiac event. In contrast to this,
our approach only assumes that a patient is conceptually
at risk of experiencing any of these events, provided that
none of these events has happened so far.

Results
General
We studied ten different scenarios, which are tabulated
in Table 1 and cover all effect categories discussed ear-
lier. Scenarios 1-5 have b1 similar to the actual study
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result [14], and scenarios 6-10 have b1 similar to the
planning figures [21]. Table 1 also displays the use of
different baseline hazards. For each of the scenarios,
1000 simulation runs were considered with 500 indivi-
duals in the placebo group and 500 individuals in the
treatment group.
Table 2 presents, for each scenario and based on Cox

analyses of the CSHs, the mean log CSH ratios ¯̂
β1

and
¯̂
β2
, empirical 95% confidence intervals, the coverage

probabilities of the Wald-type confidence intervals for
the estimated regression coefficients, and the empirical
power.
For Scenarios 1-5, we also plotted the true CIFs (solid

black lines), the average of the Aalen-Johansen estima-
tors (dashed black lines) and 300 randomly selected
Aalen-Johansen estimators (grey lines). The reason to
only plot a random subsample was to maintain a grey
shading in the plots.
We collect some general observations. In the Figures,

the true CIFs are visually hardly distinguishable from

the average of the Aalen-Johansen estimators from each
simulation study. This entails that the algorithmic point
of view is appropriate: Simulation along this line yields
data that are consistent with the original quantities.
Similar statements hold for the average of the estimated
regression coefficients and the coverage probability of
their confidence intervals. The Figures also show that
both regression coefficients and baseline hazards matter.
E.g., keeping both regression coefficients, but changing
baseline hazards alters the CIFs. Similarly, keeping both
the CSH ratio of interest and the baseline hazards, but
changing the competing CSH ratio alters the CIFs.
We also note that recovering the true CIFs implies

that we would have also recovered the original cumula-
tive hazards of Figure 2. This is so, because knowledge
of all CIFs allows to derive all CSHs and vice versa.

Scenarios 1 and 2: no effect on the competing CSH
Scenarios 1 and 2 are chosen with regression coeffi-
cients similar to the 4D study. Scenario 1 used the origi-
nal cumulative baseline hazards (̂A01(t), Â02(t)) and
scenario 2 used the transformed tuple

((̂A01(t))1/4, Â02(t)). This transformation amplifies the

hazard for the event of interest, because Â01(t) < 1
except for the right tail of the time interval displayed in
Figure 2.
Figures 3 and 4 illustrate that the CIF of interest is

lower in the treatment group, as implied by b1 < 0
under the side condition b2 = 0. However, the difference
is small, because the effect mirrored by b1 = -0.1 is
rather moderate. The effect is somewhat amplified for
the CIFs of interest when using (̂A01(t))1/4 as a baseline
CSH, because the transformation amplifies this hazard.
The effect of a ‘more important’ baseline CSH for the
event of interest is also reflected in the smaller empirical
95% confidence interval for the estimation of b1 and an

Table 1 Scenarios in the simulation study

Transformation of

Scenario b1 b2 Â01(t) Â02(t)
1 -0.1 0 none none

2 -0.1 0 x ↦x1/4 none

3 -0.1 0.3 none none

4 -0.1 0.3 none x ↦x2

5 -0.1 -0.3 x ↦x2 x ↦x1/4

6 -0.3 0 none none

7 -0.3 0 x ↦x1/4 none

8 -0.3 0.3 none none

9 -0.3 0.3 none x ↦x2

10 -0.3 -0.3 x ↦x2 x ↦x1/4

Scenarios in the simulation study. Scenarios 1-5 have b1 similar to the actual
study result, scenarios 6-10 have b1 similar to the planning figures.

Table 2 Simulation results

Interest Competing

Scenario β̂1 95% CI Coverage probability Empirical power β̂2 95% CI Coverage probability Empirical power

1 -0.1 -0.32; 0.11 94.1 17.9 0 -0.27; 0.29 94.6 5.4

2 -0.11 -0.27; 0.06 95.9 24.3 0.01 -0.33; 0.35 95.1 4.9

3 -0.1 -0.31; 0.11 94.9 15.1 0.3 0.03; 0.56 94.5 64.5

4 -0.1 -0.3; 0.09 94.8 16.4 0.3 -0.09; 0.73 96.2 27

5 -0.1 -0.38; 0.21 96.1 11.1 -0.31 -0.5; -0.12 93.7 91.4

6 -0.3 -0.53; -0.09 94.1 78.8 0 -0.26; 0.27 95 5

7 -0.32 -0.5; -0.15 94.5 95.1 0 -0.32; 0.34 95.4 4.6

8 -0.29 -0.51; -0.09 95.7 75.9 0.29 0.04; 0.56 94.9 59.2

9 -0.3 -0.48; -0.09 95.5 81.4 0.31 -0.11; 0.78 94.5 26.9

10 -0.3 -0.61; 0.03 94.4 46.9 -0.32 -0.49; -0.14 95.5 92.1

Simulation results. For each scenario and for each competing risk are presented the averaged log hazard-ratios, empirical confidence intervals (CI), coverage
probabilities and empirical power.
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average of the Aalen-Johansen estimators is drawn as dashed black lines. Dotted lines in the left plots are the corresponding untreated CIFs.

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

C
um

ul
at

iv
e 

In
ci

de
nc

e 
F

un
ct

io
n

Interest − Treated Interest − Untreated

0 1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Time

C
um

ul
at

iv
e 

In
ci

de
nc

e 
F

un
ct

io
n

Competing − Treated

0 1 2 3 4 5 6

Time

Competing − Untreated

Figure 3 Scenario 1 of Table 1. Solid black lines are the true CIFs, solid grey lines are 300 randomly selected Aalen-Johansen estimators. The
average of the Aalen-Johansen estimators is drawn as dashed black lines. Dotted lines in the left plots are the corresponding untreated CIFs.

Allignol et al. BMC Medical Research Methodology 2011, 11:86
http://www.biomedcentral.com/1471-2288/11/86

Page 7 of 13



increased empirical power. This is so, because increasing
the baseline CSH of interest while not changing the
competing baseline CSH will lead to more events of
interest. In both scenarios, we find a slight increase of
the competing CIF in the treatment group. Comparing
both scenarios, one also finds that the overall magnitude
of the competing CIF is reduced by amplifying the base-
line CSH of interest. Finally, we note that the empirical
power for the competing event approximately keeps the
nominal level of 0.05.

Scenarios 3 and 4: opposite treatment effects on the
CSHs
Scenarios 3 and 4 are chosen with b1 similar to the 4D
study, but b2 > 0 having an opposite effect. We deliberately
chose |b2| > |b1| and, in scenario 4, transformed cumula-
tive baseline hazards (Â01(t), (Â02(t))2) to illustrate that
the magnitude of a regression coefficient must be seen in
connection with the magnitude of the corresponding base-
line hazard. The transformation x ↦ x2 reduces the magni-
tude of the competing hazard, because Â02(t) < 1. Figures
5 and 6 confirm a decreasing treatment effect on the CIF
of interest and an increasing effect on the competing CIF.
These effects are, however, diminished when using

(Â02(t))2 as a baseline CSH, because the transformation
reduces the magnitude of this hazard. This is, e.g.,

reflected in the empirical 95% confidence interval for the
estimation of b2, which excludes 0 only in the case of
untransformed baseline CSHs. In analogy to this, the
empirical power is considerably reduced for the competing
event in the transformed case.

Scenario 5: unidirectional treatment effects on the CSHs
We chose b1 = -0.1 as before and b2 = -0.3. Figure 7
displays the true CIFs with transformed cumulative
baseline hazards ((̂A01(t))2, (̂A02(t))1/4). Because the
transformation amplifies the competing CSH, but has an
opposite effect on the CSH of interest, we see a slowed
down increase of the CIF of interest in the control
group as compared to the first two scenarios. There is a
visible treatment effect on the competing CIF, which is
reduced as compared to the control group. In contrast,
the CIF of interest evolves at a comparable and low
magnitude in both groups before eventually displaying
larger probabilities for the treated. In fact, the CIFs of
interest cross, i.e., the curve for the treated first runs
below the one for the control group and then crosses.
However, the early difference is hardly visible due to the
overall low magnitude of the CIF of interest.
The eventual difference between the CIFs of interest

appears to contradict b1 < 0, but can well be understood
from a simulation perspective as outlined in the
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Overview of simulation scenarios. This is illustrated in
Figure 8. We discuss the left part of the Figure first. It
corresponds to the first step of the simulation algorithm
and illustrates that events of any type happen later in
the treatment group, because both b1 and b2 are
negative.
The plot shows the point masses of the empirical

event time distribution for both treatment groups. The
Figure has been restricted to [0.07, 5.4] in order to
avoid the steep increases of the survival function
towards the corners of the observed time interval. Black
bars indicate larger point mass as compared to their
corresponding bars in the other group. The correspond-
ing bars indicating smaller point mass are grey. We also
note that black bars do not really superimpose grey bars
and vice versa in the Figure, although this impression is
occasionally conveyed by the high density of bars. Figure
8 (left) clearly shows that probability mass is moved
towards later event times in the treatment group. This
is also reflected by the CIFs, which start to increase

later for the treatment group, although this is hardly
visible for the CIF of interest.
However, the left plot does not illustrate why the CIFs

of interest cross. This is explained in the right plot. It
corresponds to the second step of the simulation algo-
rithm and illustrates that treatment shifts probability
mass towards type 1 events in general and, more specifi-
cally, to later type 1 events as a consequence of b2 <b1 <
0, see the Overview of simulation scenarios.
To this end, note that in an actual data situation the

empirical counterpart of step 2 of the simulation algo-
rithm will often equal either 0 or 1, if there are no type
1 and type 2 events being observed at the same time. In
our data example, both type 1 and type 2 events hap-
pened at only 18 out of 322 time points considered in
Figure 8. Figure 8 (right) profits from the fact that the
binomial probabilities are often degenerated and only
shows those times with an observed type 1 event. If
such a time is drawn, the event type is almost always
determined to be of type 1.

Figure 8 Scenario 5, point masses of the empirical event time distribution. Point masses in [0.07, 5.4] of the empirical event time
distribution. The left plot shows all event times. The right plot is restricted to times with an event of interest. Bottom of the plots are for the
control group with ordinate indicated on the left, top of the plots for the treatment group with ordinate indicated on the right. Black bars are
larger than their corresponding bars in the other group, which then are grey.
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The right plot illustrates two things: Firstly, black
colour dominates the upper part of the plot, indicating
that the event of interest is more likely to happen in
the treatment group. Secondly, the colouring moves
from grey to black for the treatment group and from
black to grey in the control group. The interpretation
is that, initially, event type 1 times are drawn with
higher probability in the control group. The picture is
being reversed as time proceeds, which leads to cross-
ing CIFs, and eventually the cumulative proportion of
type 1 events is larger in the treatment group. Note,
however, that there is overall low probability mass on
early type 1 event times, which implies that the CIFs
of interest initially are hardly distinguishable and
rather small.
An analogous plot of Figure 8 (right) for type 2 events

shows that probability mass is almost uniformly reduced
for type 2 event times by the treatment effect (figure
not shown).

Scenarios 6-10
Scenarios 6-10 repeated the previous investigations with
a more pronounced treatment effect of b1 = -0.3. Results
are reported in Table 2. The most striking difference to
the results from scenarios 1-5 is an increased empirical
power for events of type 1. The increased empirical
power, however, does not only depend on b1 = -0.3, but
on all aspects discussed above. E.g., both scenarios 6
and 7 have (b1, b2) = (-0.3, 0), but the cause-specific
baseline hazard for type 1 events is amplified in scenario
7. This leads to scenario 7 having better empirical
power than scenario 6. In contrast, power is substan-
tially decreased for the situation studied in scenario 10.

Discussion
This paper envisaged the CSHs as momentary forces of
transition, which suggests an algorithmic perspective
towards competing risks. ‘Empirical simulations’ worked
as a proof of concept. The algorithmic perspective was
used on the interplay between CSHs and CIFs.
The involved relationship between CSHs and CIFs has

inspired a boost in methodological research on testing
and direct modelling of the CIFs, e.g., [26-29]. Similar to
our paper, a number of recent references have used
simulation of competing risks data to investigate these
methods. In particular, Gray’s [26] test [5,30,31] and the
Fine-Gray [27] model [22,32] have attracted attention.
Both these exemplary references and the present paper
found a subtle interplay between different CSH constel-
lations and subsequent impact on the CIFs.
The difference to the present paper is that a typical

simulation study will put the simulation algorithm aside
as only a computational tool, once the data have been
generated. Thus, one will typically specify the CSHs, use

some simulation algorithm [13] for data generation and
analyse the data with the methodology at hand. Then,
the CSH specifications and the results of the data ana-
lyses will be compared. In contrast to this, we have
advocated to use the simulation algorithm itself as an
operational tool for interpretation. In this context, it is
worthwhile to note that the algorithm of our paper does
not experience a number of problems which come with
the common latent failure time model. E.g., the problem
of dependence of the latent times has motivated to
include different dependence structures in some simula-
tion studies. There is no such problem in our set-up,
which therefore facilitates interpretation.
We discuss practical consequences next. To begin, it

is interesting to revisit the results of the 4D study in the
light of the simulation algorithm. As stated earlier, the
original study finding was a CSH ratio of 0.92 for the
event of interest and essentially no effect on the com-
peting CSH. The competing CSH ratio was, of course,
not exactly equal to 1.00, but it displayed a slight reduc-
tion. Because the treatment effect on the CSH of inter-
est was moderate, and because the Nelson-Aalen
estimators of the cumulative CSHs were not exactly pro-
portional between treatment groups, the Aalen-Johansen
estimators of the CIFs of interest display a somewhat
subtle relationship in the original report. (Figure three
in [14], not reproduced here.) E.g., the CIFs cross before
displaying a moderate benefit for the treatment group.
However, the difference between the CIFs is slight
before crossing and must therefore not be overinter-
preted. As a consequence, we believe that interpretation
of the competing risks situation at hand is well guided
by the idealised situation of the simulation scenario 1.
Next, we reiterate that it is crucial that all CSHs are

analysed. In the Backgroung Section, we noted that this
is often not the case in clinical research. We also illu-
strated that a comprehensive analysis should not be
restricted to hazard ratios only, but that ideally the
cause-specific baseline hazards will be considered, too.
The bottom line is that the interpretation of the CSH
ratio of interest depends both on the baseline CSH of
interest, the competing CSH ratio and the competing
baseline CSH. In particular, a missing analysis of the
competing CSH may have seriously misleading
consequences.
An important issue in this context is that of graphi-

cally presenting results. A popular and adequate choice
are plots of the CIFs, which should, in particular, be
plotted for all event types, if all competing risks are
harmful. However, it was also illustrated that the con-
nection between these plots and CSH analyses is not
straightforward, such that further graphical tools would
be helpful. The most obvious choice is to also show the
estimated cumulative CSHs as in Figure 2. This should
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be done much more often. The reason is that the CSHs
regulate the stochastic behaviour of the competing risks
process as explained in the Methods Section and as illu-
strated in the Results Section.
In addition, plots such as Figure 8 which highlight the

simulation perspective can be useful. The interested
reader is also referred to ‘vertical modelling’ [33] and
multistate incidence rate graphics [34]. We also note that
‘vertical modelling’ aims at modelling the binomial prob-
abilities in step 2 of the simulation algorithm as a smooth
curve. This approach is appropriate when taking the
simulation algorithm as a starting point to model com-
peting risks data. We reiterate that our aim has been dif-
ferent in that we took the simulation perspective as an
operational tool to interpret the standard CSH analyses.
We return to the key fact that all CSHs should be

analysed in the presence of competing risks, and that
this is often not accounted for in clinical research.
These issues raise the question of planning competing
risks studies, see [35] for a recent review. If the aim is
to compare CSHs, a typical assumption made during the
planning phase of the study is that of constant or piece-
wise constant hazards, e.g., [21,36,37]. In addition, it is
often assumed that the treatment does not affect the
competing CSH, see [35]. In practice, it may be difficult
to find an adequate closed form for time-dependent
CSHs. Sample size calculations may become quite for-
midable, if the planned analysis is more complex than
testing the CSH of interest only. Whatever the planned
statistical experiment is, we note that our empirical
simulation approach provides for a general tool to study
empirical power and, hence, to decide on sample size, if
data of a control group - or of patients similar to the
anticipated control group - are available. This is also
illustrated in Table 2. Interestingly, Figure 2 suggests
that assuming constant CSHs might be a reasonable
assumption for the present control group, but it should
be pointed out that the simulation approach does not
rely on such an assumption. It could be applied without
further ado, if the CSHs show a pronounced time-
dependency. In particular, one would not need to spe-
cify a closed form for the time-dependent CSHs. In clos-
ing, we mention that, while we have focused on the Cox
model as the major tool to analyse CSHs, other models
such as Aalen’s additive model may be used for CSHs,
too; see [38] for a recent textbook treatment. The simu-
lation perspective of this paper may then applied to
results from other CSH models, too.

Conclusions
This paper suggests an algorithmic or simulation point
of view for the interpretation of competing risks ana-
lyses. This point of view follows the construction of
competing risks data based on the CSHs, envisaging the

hazards as momentary forces of transition. Concerns on
identifiability and plausibility that are common in the
latent failure time context do not arise.
Simulation studies based on the empirical probability

measure of a real data analysis served as a proof of con-
cept. The simulation point of view was found to be ade-
quate in that it recovered the original empirical law.
Manipulating baseline hazards and treatment effects
highlighted different aspects of a competing risks
analysis.
All CSHs should be analysed, including the cause-spe-

cific baseline hazards. ‘Empirical simulations’ also pro-
vide a flexible tool for study planning in the presence of
competing risks.
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