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Abstract

Background: Models of hepatitis C virus (HCV) kinetics are increasingly used to estimate and to compare in vivo
drug’s antiviral effectiveness of new potent anti-HCV agents. Viral kinetic parameters can be estimated using
non-linear mixed effect models (NLMEM). Here we aimed to evaluate the performance of this approach to precisely
estimate the parameters and to evaluate the type I errors and the power of the Wald test to compare the antiviral
effectiveness between two treatment groups when data are sparse and/or a large proportion of viral load (VL) are
below the limit of detection (BLD).

Methods: We performed a clinical trial simulation assuming two treatment groups with different levels of antiviral
effectiveness. We evaluated the precision and the accuracy of parameter estimates obtained on 500 replication of
this trial using the stochastic approximation expectation-approximation algorithm which appropriately handles BLD
data. Next we evaluated the type I error and the power of the Wald test to assess a difference of antiviral
effectiveness between the two groups. Standard error of the parameters and Wald test property were evaluated
according to the number of patients, the number of samples per patient and the expected difference in antiviral
effectiveness.

Results: NLMEM provided precise and accurate estimates for both the fixed effects and the inter-individual variance
parameters even with sparse data and large proportion of BLD data. However Wald test with small number of
patients and lack of information due to BLD resulted in an inflation of the type I error as compared to the results
obtained when no limit of detection of VL was considered. The corrected power of the test was very high and
largely outperformed what can be obtained with empirical comparison of the mean VL decline using Wilcoxon test.

Conclusion: This simulation study shows the benefit of viral kinetic models analyzed with NLMEM over empirical
approaches used in most clinical studies. When designing a viral kinetic study, our results indicate that the
enrollment of a large number of patients is to be preferred to small population sample with frequent assessments
of VL.
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Background
Chronic infection with Hepatitis C Virus (HCV) affects
130–200 million people worldwide [1]. It is the leading
cause of cirrhosis, liver cancer and liver transplants which
result in 350,000 deaths worldwide [2]. HCV is divided
into 6 genotypes, with genotype 1 being the hardest to
treat and the most prevalent in Western countries. The
goal of treatment is to achieve a sustained virologic re-
sponse (SVR), marker of viral eradication, assessed by a
viral load HCV RNA (VL) below the limit of detection
(LOD) six months after cessation of therapy. Until 2011,
the only available treatment was based on weekly injec-
tions of pegylated interferon (peg-IFN) and daily oral riba-
virin (RBV) during 48 weeks, with SVR rate lower than
50% in treatment-naïve HCV genotype 1 patients [3].
In 2011, the approval of two protease inhibitors (PI),

telaprevir and boceprevir, in combination with peg-IFN/
RBV (triple therapy), marked a milestone for anti-HCV
therapy with SVR rates larger than 70% in treatment-naïve
HCV genotype 1 patients [4,5]. Dozens of compounds
targeting different viral proteins are currently in different
stages of clinical trials, raising the expectation that several
IFN-free regimens might be available in the coming years.
Viral kinetic modeling aims at characterizing the main

mechanisms that govern the virologic response to treat-
ment using mathematical models. Following the recom-
mendations of the Food and Drug Administration [6],
this approach has been increasingly used in phase 1/2 of
clinical development to estimate viral kinetic parameters
and to evaluate drug antiviral effectiveness in vivo [7,8].
Parameter estimation is often achieved using non-linear
mixed effect models (NLMEM) [9]. The popularity of
this approach is due to the fact that it optimizes the infor-
mation available by borrowing strength from the whole
sample to provide precise estimation of the parameters,
including covariate effects [10-12]. Moreover it naturally
accounts for the information brought by VL data below
the limit of detection (BLD) and reduces the bias in pa-
rameter estimation as compared to empirical approaches
where BLD data are ignored or assigned to half the LOD
[10,13,14].
So far, viral kinetic models and NLMEM have mostly

been used in phase 1/2 clinical trials with large number
of patients and/or frequent assessment of VL data within
each patient. However in most clinical trials, in particu-
lar when they are not sponsored by the industry, it is
not possible to hospitalize patients and to get frequent
viral load samples. In this challenging context, the ca-
pacity of NLMEM to precisely estimate viral kinetic pa-
rameters is not known. In particular the performance of
tests used to assess the effect of a covariate which have
good asymptotic properties (Wald test, likelihood ratio
test or score test) is not warranted when one is far from
the asymptotic conditions. For instance an inflation of
the type I error has been reported in another clinical
context where data were sparse [15]. With the new po-
tent triple therapies against HCV the amount of infor-
mation available may also be limited by the fact that a
large proportion of VL data are below LOD.
Here our goal was to evaluate the capacity of NLMEM

to precisely estimate the parameters of viral kinetic models
when there is a large proportion of BLD data and a limited
number of data per patient. In particular we aimed to
evaluate by simulation the type I errors and the power of
the Wald test to compare the antiviral effectiveness of two
groups receiving different triple therapies (noted PI-A and
PI-B in the following). Parameter estimation and Wald test
property were evaluated according to the number of pa-
tients, the number of samples per patient and the expected
difference in antiviral effectiveness between the two treat-
ment groups.

Methods
Viral kinetic model
We used the standard biphasic model of HCV kinetics
defined by the following set of differential equations [16]:

dI
dt

¼ bVT−δI

dV
dt

¼ p 1−εð ÞI−cV

8><
>: ð1Þ

where T represents the density of target cells that can be
infected by virus measured as HCV RNA (V), with rate
constant b. In the model, infected cells (I) die or lose their
infected state with rate constant δ and produce virions at
constant rate p per cell. Virions are assumed to be cleared
with rate constant c. As it is done usually when consider-
ing short term VL data we assumed that the target cell
level is constant throughout the study period and remains
at its pre-treatment steady state value T0 = cδ/pb [17,18].
Treatment is assumed to reduce the average rate of viral

production per cell from p to p(1–ε), where ε represents
the constant drug effectiveness, i.e., ε = 0.990 implying
the drug is 99% effective in blocking viral production. If all
parameters including treatment effectiveness are constant
over time this model predicts that VL will fall in a biphasic
manner [16], with a rapid first phase of viral decline with
rate approximately equal to c lasting for a couple of days
and with the magnitude viral decline depending on ε, and a
second slower but persistent second phase of viral decline
with rate εδ. Hence, for potent therapies for which ε is close
to 1, the second-phase slope will be approximately δ.
Lastly mathematical analysis shows that if ε is con-

stant, p and b do not intervene in the VL equation and
thus where ignored in the following without loss of gen-
erality [19].
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Statistical model
We assumed an additive error (σ) on the log10 of the VL
observations, i.e., the observed data yij for patient i at
time tij is given by:

yij ¼ f ϕi; tij
� �þ eij; ð2Þ

ei∼N 0; σ2
� �

; ð3Þ
h ϕið Þ ¼ μþ βTi þ ηi with ηi∼N 0; Ωð Þ; ð4Þ

where:

– f is the non-linear model,
– Φi is the vector of individual parameters of length p

where p is the number of parameters,
– eij is the residual error assumed to follow a normal

distribution with mean 0 and variance σ2,
– h is the transformation of the vector of parameters

that make them normally distributed,
– μ is the vector of fixed effects,
– β is the vector of coefficient of the only covariate

studied i.e. the difference of effectiveness between
PI-A and PI-B (with Ti = 0 if treatment is PI-A and
Ti = 1 if treatment is PI-B),

– ηi is the vector of random effects independent of ei,
and are supposed to be independent, with diagonal
variance-covariance matrix Ω ¼ diag ω2

1;…;ω2
p

� �
.

It is assumed that h is the logarithm transformation
for V0, δ and c and the logit transformation for ε.

Parameter values
Mean parameter values, inter-individual standard devia-
tions (ω) and standard deviation of residual error, σ, for
patients treated with PI-A were assumed to be similar to
those found in phase 1 of clinical trials with telaprevir at
steady state [7] (Table 1). We assumed that PI-A imme-
diately reached its steady state level of effectiveness, with
mean εA = 0.999. Similar parameter distribution was as-
sumed in patients treated with PI-B, except for the mean
antiviral effectiveness of PI-B, εB. We considered several
values for εB equal to 0.999, 0.998, 0.995 and 0.990, cor-
responding to a similar, 2-fold, 5-fold and 10-fold lower
levels in the blocking of viral production than PI-A, re-
spectively. The LOD was fixed to 12 IU/mL [20].
Table 1 Value, distribution and inter-individual standard dev
treated by monotherapy of PI-A [7]

V0 (IU/mL) c (day-

Fixed effect 2.68 106 13.4

Transformation lognormal lognorm

Inter-individual standard deviation (ω) 1.09 0.25
Clinical trial simulation
We considered different designs in real-life setting, i.e.,
with a limited number of VL measurements per patient.
Two schedules for the VL assessments were considered,
called “7 VL” and “5 VL” in the following. “7 VL” had
seven VL measurements at days 0, 0.33, 1, 2, 3, 7 and 14
whereas “5 VL” was sparser and did not have the early
measurements at days 0.33 and 1 that are often difficult
to obtain in clinical practice. Then different scenarios
were considered according to the number of VL mea-
surements (n) and the number of patients per group of
treatment (N). In order to have designs that could be
easily compared, we considered different designs with
5 VL or 7 VL but constant total numbers of observations
per group ntot = N×n. We considered small sample size
with: ntot = 50 (N = 10 and n = 5) and ntot = 70 (N = 10
and n = 7 or N = 14 and n = 5), middle sample size with:
ntot = 100 (N = 20 and n = 5) and ntot = 140 (N = 20 and
n = 7 or N = 28 and n = 5) and larger sample size with:
ntot = 150 (N = 30 and n = 5) and ntot = 210 (N = 30 and
n = 7 or N = 42 and n = 5). For each scenario, K = 500
dataset were generated using R software version 2.15.0
(R foundation for Statistical Computing, Vienna, Austria).
Examples of simulated dataset with the design N = 30
and n = 7 and the different levels of antiviral effectiveness
considered with the percentage of patients below the LOD
at day 3, 7 and 14 is shown in Figure 1.
Parameter estimation
Data of each simulated trial were analyzed using MONO
LIX version 4.2 (http://www.lixoft.eu/monolix/product-
monolix-overview/) [21], a software devoted to maximum
likelihood estimation of parameters in NLMEM using an
extension of the stochastic approximation expectation-
approximation (SAEM) algorithm [22,23]. Of note one ad-
vantage of maximum likelihood estimation (noted “ML”
in the following) is that it takes into account the informa-
tion brought by BLD data [10]. We compared accuracy
and precision of parameter estimations obtained with
those that would be obtained if all data were observed
with no BLD data at all (referred as “all data”).

For each scenario, relative estimation errors REE θ̂k

� �
;

k ¼ 1;…;K were computed as shown in equation (5),
iation of population parameters from data with patients

1) δ (day-1) ε σ (log10 IU/mL)

0.58 0.999 0.19

al lognormal logistic-normal -

0.25 0.61 -

http://www.lixoft.eu/monolix/product-monolix-overview/
http://www.lixoft.eu/monolix/product-monolix-overview/


Figure 1 Time course of log10 HCV RNA after treatment initiation for one simulated dataset with one design (N = 30 patients per PI
and n = 7 viral load measurements). A: assuming ε = 0.999; B1: assuming ε = 0.998; B2: assuming ε = 0.995; B3: assuming ε = 0.990. In bold,
the mean curves predicted by the mean parameters of the model. LOD: limit of detection = log10(12) ≈ 1.08 log10 UI/mL; % < LOD: percentage
of patients bellow the LOD at day 3, 7 and 14 estimated from 500 simulated datasets. The mean 14 days log drop were 6.56 log10 IU/mL with
ε = 0.999, 6.25 log10 IU/mL with ε = 0.998, 5.85 log10 IU/mL with ε = 0.995 and 5.52 log10 IU/mL with ε = 0.990.
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where θ̂k is the parameter estimated for the kth replicate
and θ* the true parameter value used to generate the data.

REE θ̂k

� �
¼ θ̂k−θ

�

θ�
� 100 ð5Þ

Each REEk was expressed in percent. We plotted the
boxplot of the REE with the 10% and 90% percentiles.
Then, from the REE, the relative bias (RB) and the rela-
tive root mean square error (RRMSE) were computed as
shown in equation (6) and (7).

RB θ̂k

� �
¼ 1

k
∑K
k¼1REE θ̂k

� �
ð6Þ

RRMSE θ̂k

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
k
∑K
k¼1REE θ̂k

� �2
r

ð7Þ

The accuracy and the precision of parameter estimates
were evaluated using RB and RRMSE, respectively.

Detection of a difference in antiviral effectiveness
We analyzed for each scenario the ability to detect a dif-
ference of antiviral effectiveness between the two PIs.
Given that treatment antiviral effectiveness was estimated
on a logistic scale we defined accordingly the difference of
effectiveness between the two PIs, β, as β = logit(εA) − logit

(εB). For each simulated dataset, the estimated value of β;

β̂ , was obtained along with its (estimated) standard error,

SEβ̂ . Then the Wald test statistics given by β̂
SEβ̂

was calcu-

lated and the null hypothesis “H0: β = 0” was rejected at

the level of 5% if β̂
SEβ̂

��� ��� > 1:96 . Thus in scenarios where

εA = εB = 0.999 and therefore β = 0, the type I error was
given by the proportion of dataset among the 500 simu-
lated that led to reject H0. Similarly the power to detect a
difference in treatment antiviral effectiveness was calcu-
lated in scenarios where β ≠ 0 and was given by the pro-
portion of datasets among the 500 simulated that led to
reject H0. With εA = 0.999 and with values of εB equal to
0.998, 0.995 and 0.990, β were equal to 0.7, 1.6 and 2.3,
respectively. Type I error and power were evaluated with
all designs describe above and consistent with previous
analysis [15,24], we expect an inflation of the type I error
with the Wald test. To ensure a type I error of 5%, we de-
fine for each design a correction threshold as the 5th per-
centile of the distribution of the p-values of the test under
H0 for the 500 simulated dataset. Then we used that
corrected threshold as a limit of significance in the evalu-
ation of the tests under H1 to compute the corrected
power [15,25]. Furthermore we evaluated type I error with
2 larger sample size to approach asymptotic conditions
with: ntot = 350 (N = 50 and n = 7) and ntot = 700 (N =
100 and n = 7). Lastly, the power to detect a difference in
treatment effectiveness between the two PIs was
compared with the one obtained by standard empirical ap-
proaches where the difference in viral decline at day 14
between two treatments is tested by a non parametric
two-sided Wilcoxon test.

Results
Parameter estimation
First we evaluated the impact of having a large propor-
tion of BLD data on the precision of parameter esti-
mates. Proportions of BLD data were equal to 19.3% and
88.3% at days 7 and 14 with ε = 0.999, 10.2% and 80.7%
with ε = 0.998, 3.9% and 66.7% with ε = 0.995, 1.5% and
54.3% with ε = 0.990, respectively (Figure 1). For that
purpose we compared the parameters estimation with
all data or ML with the design N = 30 and n = 7 and
assuming a lower effectiveness for PI-B than PI-A (εA =
0.999 vs εB = 0.990).
Assuming all data, i.e., all data can be observed and

there is no LOD, all the parameter estimates had a very
small RB lower than 1% and 11% for the fixed effects
and the inter-individual variance parameters, respectively.
Similarly, the RRMSE were lower than 10% and 33% for
the fixed effects and the inter-individual variance parame-
ters, respectively (Table 2). Yet, the precision of both the
fixed effect and inter-individual variance parameters were
very close to those found with the ML uncensored data
(Table 2), showing the relevance of maximum likelihood
in the handling of censored data. Similar results were
obtained when comparing the distribution of the REE from
the 500 simulated datasets (Figure 2). Equally good per-
formance was obtained when considering sparser sampling
design with n = 5 VL measurements per patient except for
the viral clearance rate, c (Table 2 and Figure 2) [11].

Type I error of the Wald test
Next we evaluated the type I error of the Wald test
according to different designs and assuming εA = εB = 0.999
(Figure 3). A type I error of 14.4% was found with ML
data, n = 5 VL and N = 10 showing that the asymptotic
conditions under which the Wald test is valid were not
met with this design. In fact a minimal number of obser-
vations per group ntot = 140 was necessary in order
to achieve a type I error less than 10% and ntot = 700
(N = 100 and n = 7) were needed for type I error to be
in the 95% prediction interval around 5% [3.1%; 6.9%]
with ML data. Of note, for a given value of N, the num-
ber of VL measurements did not substantially change the
type I error (Figure 3) and increasing the number of pa-
tients N was more beneficial than having more frequent
VL assessments within each patient. For instance the type I
error was lower with the design N = 14 and n = 5 than with
the design N = 10 and n = 7 (Figure 3) although the total
number of observation per patient ntot was the same and
equal to 70. In addition to the influence of the number of



Table 2 Relative bias (RB) (%) and relative root mean square error (RRMSE) (%) of the estimated parameters evaluated
from 500 simulated datasets

All data (n = 7 VL) ML (n = 7 VL) ML (n = 5 VL)

RB (%) RRMSE (%) RB (%) RRMSE (%) RB (%) RRMSE (%)

log10(V0) (IU/mL) 0.1 1.0 0.2 1.0 0.1 1.0

c (day-1) 1.0 4.3 0.6 4.1 34.1 78.8

δ (day-1) 0.2 3.2 0.8 3.7 0.6 3.7

-log10(1-ε) 0.1 3.2 0.4 3.1 0.3 3.6

β 0.4 8.5 −0.5 8.5 0.4 9.9

ω
2
vo −0.4 18.9 −1.0 19.0 −0.5 19.3

ω
2
c −4.6 31.5 −10.9 32.9 236.6 358.3

ω
2
δ −3.0 19.8 −2.3 24.5 −2.4 24.9

ω
2
ε −2.6 32.2 −4.5 32.0 −9.9 36.3

σ −0.03 5.3 −0.7 6.2 −1.3 8.0

Parameters were simulated with N = 30 patients per group assuming εA = 0.999 and εB = 0.990, no limit of detection (“All data”) or a limit of detection at 12 IU/mL (“ML”),
and with n = 7 or 5 viral load (VL) measurements per patient.
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patients, the type I error was also deteriorated by the pres-
ence of a large proportion of BLD data, even if they were
taken into account appropriately. Indeed type I errors were
consistently smaller when assuming that there was no LOD
(“all data”). As shown in Figure 3, the type I error was equal
to 10.4% with all data, N = 10 and n = 5 compared to
14.4% with ML data.

Power to detect a difference in antiviral effectiveness
Next, we evaluated the power to detect a difference of
effectiveness between the two PIs assuming εA = 0.999
Figure 2 Boxplot of the relative estimation errors (REE) of the estimate
were simulated assuming εA = 0.999, a limit of detection (“ML data”) and εB =
measurements (in white) or n = 5 VL (sparse initial design in gray). On the left
error (σ).
and lower values of εB equal to 0.998, 0.995 and 0.990
with different designs. Except when both effectiveness
were close (i.e., εB = 0.998), the power of the Wald test,
corrected or not (see methods), was larger than 95%, re-
gardless of the number of sampling VL measurements
and the number of patients per PI (Table 3). As found
for the type I error, increasing the number of patients
N was more beneficial than having more frequent VL as-
sessments within each patient. For instance power was
higher with the design N = 28 and n = 5 than with the
design N = 20 and n = 7 (Table 3) although the total
d parameters evaluated from 500 simulated datasets. Parameters
0.990 (β = 2.3), with N = 30 patients per PI and with n = 7 viral load (VL)
: fixed effects and on the right: inter-individual variances (ω²) and residual



Figure 3 Evolution of the type I error of the Wald test according to the study design. Assuming εA = εB = 0.999, no limit of detection (“All data”,
red line) or a limit of detection at 12 IU/mL (“ML”, blue line). N: number of patients per group of treatment; n: number of viral load measurements per
patient; ntot: total numbers of observations per group of treatment.
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number of observation per patient ntot was the same and
equal to 140.
Lastly, we compared these results with the power

achieved by comparing the mean viral decline at day 14
between both groups using a Wilcoxon test. The power
of Wilcoxon test was on average lower of 44% as com-
pared to the one achieved with viral kinetic model and
NLMEM with εB = 0.995 or 0.998 (Table 3). Even when
Table 3 Power (%) to detect a difference of effectiveness betw
effectiveness of PI-B (εB), assuming εA = 0.999 and a limit of d

εB 0.998 0.995 0

Small sample size
Design*

N = 10 and n = 7

ntot = 70

Wald test (uncorrected) 62.2 99.8

Wald test (corrected) 44.2 98.4

Wilcoxon test 6.6 11.2

Design*
N = 20 and n = 7

ntot = 140

Middle sample size Wald test (uncorrected) 83.4 100

Wald test (corrected) 69.0 100

Wilcoxon test 7.0 23.0

Large sample size
Design*

N = 30 and n = 7

ntot = 210

Wald test (uncorrected) 94.0 100

Wald test (corrected) 89.2 100

Wilcoxon test 7.4 31.0

* N: number of patients per group of treatment; n: number of viral load measureme
PI-B’s and PI-A’s antiviral effectivenesses were assumed
to be 0.990 and 0.999, respectively, corresponding to a
10-fold difference in the viral production under treat-
ment, the power of the Wilcoxon test was only equal to
67% with N = 30, compare to 100% with the Wald test
(Table 3). It should be noted that the type I error of the
Wilcoxon test, which is a non parametric test, was not
inflated (5.2% with the design N = 10 for example).
een PI-A and PI-B according to the study design and the
etection (“ML data”)

.990 0.998 0.995 0.990 0.998 0.995 0.990

N = 14 and n = 5 N = 10 and n = 5

ntot = 70 ntot =50

100 61.8 100 100 55.2 98.8 100

100 50.4 100 100 35.8 95.8 100

26.8 4.4 15.6 39.0 6.6 11.2 26.8

N = 28 and n = 5 N = 20 and n = 5

ntot = 140 ntot = 100

100 86.8 100 100 77.8 100 100

100 78.0 100 100 58.8 100 100

50.4 6.8 30.4 64.6 7.0 23.0 50.4

N = 42 and n = 5 N = 30 and n = 5

ntot = 210 ntot = 150

100 86.8 100 100 89.4 100 100

100 82.6 100 100 82.6 100 100

67.0 9.2 43.8 85.0 7.4 31.0 67.0

nts per patient; ntot: total numbers of observations per group of treatment.
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Discussion
The goal of this study was to evaluate the capacity of
NLMEM to provide precise and accurate estimates of viral
kinetic parameters when only sparse data with a large pro-
portion of BLD data are available. In particular we aimed
to evaluate the ability of this approach to correctly reject
or not the null hypothesis of equal treatment effectiveness
when two groups with different antiviral strategies are
compared.
Our results showed that NLMEM provide very precise

and accurate estimates for both the fixed effects and the
inter-individual variance parameters, even when only 5 data
points (at days 0, 2, 3, 7 and 14) were available within each
patient. This allowed circumventing the need for intensive
VL sampling measurements at treatment initiation, which
are difficult to obtain in current clinical practice. Of note
the viral clearance rate, c and its associated variability ωc,
were poorly estimated in this sparse initial sampling.
However this parameter is mostly involved in the initial rate
of viral decline and thus a poor estimation of c did not sub-
stantially deteriorate the estimation of the other parameters
(Table 2).
By comparing the results obtained with and without a

LOD for VL, we demonstrated that maximum likelihood
appropriately handle BLD, consistent with results found
previously [10]. The conclusion was somewhat different
when considering the outcome of Wald test for compar-
ing antiviral effectiveness. In this case the lack of informa-
tion due to BLD contributed to an inflation of the type I
error as compared to the results obtained with no LOD of
VL, suggesting that the development of real-time PCR as-
says with lower LOD may improve the estimation of viral
kinetic parameters. Interestingly, even when there was no
LOD of VL, we still found that the type I error was in-
flated when the number of observations ntot was lower
than 140. This suggests that the outcome of Wald test
should be taken with caution when the number of patients
is low and in that case we suggested to use a threshold
correction for the Wald test to limit the impact of this in-
flation. Here we used an empirical threshold correction
but other corrections exist such as the Galland correction
or the permutation test [15]. On the other hand the power
of the Wald test (corrected or not) was found to be very
high, especially when compared with that obtained using a
Wilcoxon test on the mean viral decline at day 14. This
result clearly shows the benefit of viral kinetic analyzed
with NLMEM over empirical approaches done in most
clinical studies. Although better results may be obtained
by comparing the viral decline at earlier time points (such
as day 2 or 7) the power of the Wilcoxon test remained
lower than those achieved by modeling approach (not
shown). Consistent with results found elsewhere, the
power increases when the number of observations per pa-
tient increases and was much less sensitive to the number
of measurements within each patient [26]. From a clinical
standpoint this finding indicates that the enrollment of a
large population of study is to be preferred to small
population sample with frequent assessments of VL.
We focused here on the properties of the Wald test

and further studies would be needed to study how these
results apply to other tests that require more computa-
tion time, such as likelihood ratio tests (LRT) or score
test. Interestingly previous simulation studies using the
SAEM algorithm in MONOLIX showed that the out-
comes of these tests were largely comparable [15]. Of
note this result may not hold when other estimation
methods are used and for instance the outcomes of
Wald test and LRT were found to be different when
using the FOCE-I algorithm in NONMEM version 7
[15]. Indeed the Wald test had a lower power than LRT
with FOCE-I, which was probably due to the poor esti-
mation of the standard error of the covariate effect [25].
The advantage of the Wald test is that results are immedi-
ately obtained and do not require to compute the likeli-
hood or its derivatives, as done for the LRT and the score
test. Computation time needed by simulations could be
largely reduced by using information theory and approxi-
mations to derive Fisher information matrix. For instance
the software PFIM uses a first order approximation of the
likelihood and, under this approximation, an analytical
form of the Fisher matrix can be obtained [27]. Thus the
expected variance of viral kinetic parameters could be
obtained without the intensive simulations done here. Al-
though such approximations worked well even with lim-
ited number of patients [11], it does not take into account
BLD data and hence could underestimate the standard
error when a large proportion of data are BLD. It should
be noted that optimal design theory predicts that an in-
crease of variances in random effect may deteriorate the
precision of parameter estimates and the power of the
Wald test. However this possibility was not investigated in
this study where the inter-individual variance parameters
were fixed.
Here we focused on the comparison of treatment anti-

viral effectiveness in the first two weeks of treatment. On
this short time scale the standard biphasic model of viral
kinetics has been shown to provide a good fit to the data
[7,16]. However more complex models may be needed to
fit long-term VL data, such as models that relax the as-
sumption of constant target cells and/or account for the
emergence of treatment resistant viruses [28,29]. Moreover
viral decline during PI therapy is faster than what is
observed with IFN-based therapy [30]. This feature is
captured in the standard biphasic model by assuming that
PIs lead to an enhancement of the treatment effectiveness,
ε, and of the clearance rate of infected cells, δ [7,29,31].
Consistent with this observation we set here large mean
values for both ε and δ, equal to 0.999 and 0.58 day-1 as
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compared to 0.92 and 0.14 day-1 with IFN-based therapy,
respectively [30]. However this dual mode of action of PIs
may be integrated in a more physiological way by using
new multiscale viral kinetic models that explicitly integrate
the effect of PIs on the intra-cellular viral dynamics [9].
Although the use of NLMEM has been shown to pro-

vide very precise and accurate estimates of the parameters
even in presence of sparse designs, it should be acknowl-
edged that these estimates are done on the population pa-
rameters, i.e., the mean and the variance of parameters in
the population. How NLMEM also allow precise and ac-
curate estimation of the individual parameters for individ-
ualized treatment duration remains to be evaluated.

Conclusion
Compared with standard approach (with Wilcoxon test),
modeling approach (with Wald test) provides very pre-
cise and accurate estimates of viral kinetic parameters
and a more powerful tool to detect a difference in early
viral kinetic profile of two PIs with different antiviral ef-
ficacy, even with sparse initial sampling or small number
of patients. When designing a viral kinetic study, our re-
sults indicate that the enrollment of a larger number of
patients is to be preferred to smaller sample size with
more frequent assessments of viral load. We showed
that a threshold correction is needed for the Wald test
with small samples especially if there are many BLD
data.
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