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Abstract

Background: In systematic reviews and meta-analysis, researchers often pool the results of the sample mean and
standard deviation from a set of similar clinical trials. A number of the trials, however, reported the study using the
median, the minimum and maximum values, and/or the first and third quartiles. Hence, in order to combine results,
one may have to estimate the sample mean and standard deviation for such trials.

Methods: In this paper, we propose to improve the existing literature in several directions. First, we show that the
sample standard deviation estimation in Hozo et al.’s method (BMC Med Res Methodol 5:13, 2005) has some serious
limitations and is always less satisfactory in practice. Inspired by this, we propose a new estimation method by
incorporating the sample size. Second, we systematically study the sample mean and standard deviation estimation
problem under several other interesting settings where the interquartile range is also available for the trials.

Results: We demonstrate the performance of the proposed methods through simulation studies for the three
frequently encountered scenarios, respectively. For the first two scenarios, our method greatly improves existing
methods and provides a nearly unbiased estimate of the true sample standard deviation for normal data and a slightly
biased estimate for skewed data. For the third scenario, our method still performs very well for both normal data and
skewed data. Furthermore, we compare the estimators of the sample mean and standard deviation under all three
scenarios and present some suggestions on which scenario is preferred in real-world applications.

Conclusions: In this paper, we discuss different approximation methods in the estimation of the sample mean and
standard deviation and propose some new estimation methods to improve the existing literature. We conclude our
work with a summary table (an Excel spread sheet including all formulas) that serves as a comprehensive guidance for
performing meta-analysis in different situations.
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Background
In medical research, it is common to find that several
similar trials are conducted to verify the clinical effec-
tiveness of a certain treatment. While individual trial
study could fail to show a statistically significant treatment
effect, systematic reviews and meta-analysis of combined
results might reveal the potential benefits of treatment.
For instance, Antman et al. [1] pointed out that systematic
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reviews and meta-analysis of randomized control trials
would have led to earlier recognition of the benefits of
thrombolytic therapy for myocardial infarction and may
save a large number of patients.
Prior to the 1990s, the traditional approach to com-

bining results from multiple trials is to conduct narrative
(unsystematic) reviews, which are mainly based on the
experience and subjectivity of experts in the area [2].
However, this approach suffers from many critical flaws.
The major one is due to inconsistent criteria of different
reviewers. To claim a treatment effect, different reviewers
may use different thresholds, which often lead to opposite
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conclusions from the same study. Hence, from the mid-
1980s, systematic reviews and meta-analysis have become
an imperative tool in medical effectiveness measurement.
Systematic reviews use specific and explicit criteria to
identify and assemble related studies and usually pro-
vide a quantitative (statistic) estimate of aggregate effect
over all the included studies. The methodology in system-
atic reviews is usually referred to as meta-analysis. With
the combination of several studies and more data taken
into consideration in systematic reviews, the accuracy of
estimations will get improved and more precise interpre-
tations towards the treatment effect can be achieved via
meta-analysis.
In meta-analysis of continuous outcomes, the sample

size, mean, and standard deviation are required from
included studies. This, however, can be difficult because
results from different studies are often presented in dif-
ferent and non-consistent forms. Specifically in medi-
cal research, instead of reporting the sample mean and
standard deviation of the trials, some trial studies only
report the median, the minimum and maximum val-
ues, and/or the first and third quartiles. Therefore, we
need to estimate the sample mean and standard devia-
tion from these quantities so that we can pool results
in a consistent format. Hozo et al. [3] were the first to
address this estimation problem. They proposed a simple
method for estimating the sample mean and the sample
variance (or equivalently the sample standard deviation)
from the median, range, and the size of the sample. Their
method is now widely accepted in the literature of sys-
tematic reviews and meta-analysis. For instance, a search
of Google Scholar on November 12, 2014 showed that
the article of Hozo et al.’s method has been cited 722
times where 426 citations are made recently in 2013 and
2014.
In this paper, we will show that the estimation of the

sample standard deviation in Hozo et al.’s method has
some serious limitations. In particular, their estimator did
not incorporate the information of the sample size and
so consequently, it is always less satisfactory in practice.
Inspired by this, we propose a new estimation method
that will greatly improve their method. In addition, we will
investigate the estimation problem under several other
interesting settings where the first and third quartiles are
also available for the trials.
Throughout the paper, we define the following summary

statistics:

a = the minimum value,
q1 = the first quartile,
m = the median,
q3 = the third quartile,
b = the maximum value,
n = the sample size.

The {a, q1,m, q3, b} is often referred to as the 5-number
summary [4]. Note that the 5-number summary may not
always be given in full. The three frequently encountered
scenarios are:

C1 = {a,m, b; n},
C2 = {a, q1,m, q3, b; n},
C3 = {q1,m, q3; n}.

Hozo et al.’smethod only addressed the estimation of the
sample mean and variance under Scenario C1 while Sce-
narios C2 and C3 are also common in systematic review
and meta-analysis. In Sections ‘Methods’ and ‘Results’, we
study the estimation problem under these three scenar-
ios, respectively. Simulation studies are conducted in each
scenario to demonstrate the superiority of the proposed
methods. We conclude the paper in Section ‘Discussion’
with some discussions and a summary table to provide a
comprehensive guidance for performing meta-analysis in
different situations.

Methods
Estimating X̄ and S from C1

Scenario C1 assumes that the median, the minimum, the
maximum and the sample size are given for a clinical trial
study. This is the same assumption as made in Hozo et al.’s
method. To estimate the sample mean and standard devia-
tion, we first review the Hozo et al.’s method and point out
some limitations of their method in estimating the sam-
ple standard deviation. We then propose to improve their
estimation by incorporating the information of the sample
size.
Throughout the paper, we let X1,X2, . . . ,Xn be a ran-

dom sample of size n from the normal distribution
N

(
μ, σ 2), and X(1) ≤ X(2) ≤ · · · ≤ X(n) be the ordered

statistics of X1,X2, · · · ,Xn. Also for the sake of simplic-
ity, we assume that n = 4Q + 1 with Q being a positive
integer. Then

a = X(1) ≤ X(2) ≤ · · · ≤ X(Q+1) = q1
≤ X(Q+2) ≤ · · · ≤ X(2Q+1) = m

≤ X(2Q+2) ≤ · · · ≤ X(3Q+1) = q3
≤ X(3Q+2) ≤ · · · ≤ X(4Q+1) = X(n) = b.

(1)

In this section, we are interested in estimating the sam-
ple mean X̄ = ∑n

i=1 Xi and the sample standard deviation
S = [∑n

i=1(Xi − X̄)2/(n − 1)
]1/2, given that a,m, b, and n

of the data are known.
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Hozo et al.’s method
For ease of notation, let M = 2Q + 1. Then, M = (n +
1)/2. To estimate the mean value, Hozo et al. applied the
following inequalities:

a ≤ X(1) ≤ a
a ≤ X(i) ≤ m (i = 2, . . . ,M − 1)
m ≤ X(M) ≤ m
m ≤ X(i) ≤ b (i = M + 1, . . . , n − 1)
b ≤ X(n) ≤ b.

Adding up all above inequalities and dividing by n, we
have LB1 ≤ X̄ ≤ UB1, where the lower and upper bounds
are

LB1 = a + m
2

+ 2b − a − m
2n

,

UB1 = m + b
2

+ 2a − m − b
2n

.

Hozo et al. then estimated the sample mean by

LB1 + UB1
2

= a + 2m + b
4

+ a − 2m + b
4n

. (2)

Note that the second term in (2) is negligible when the
sample size is large. A simplified mean estimation is given
as

X̄ ≈ a + 2m + b
4

. (3)

For estimating the sample standard deviation, by assum-
ing that the data are non-negative, Hozo et al. applied the
following inequalities:

aX(1) ≤ X2
(1) ≤ aX(1)

aX(i) ≤ X2
(i) ≤ mX(i) (i = 2, . . . ,M − 1)

mX(M) ≤ X2
(M) ≤ mX(M) (4)

mX(i) ≤ X2
(i) ≤ bX(i) (i = M + 1, . . . , n− 1)

bX(n) ≤ X2
(n) ≤ bX(n).

With some simple algebra and approximations on the
formula (4), we have LSB1 ≤ ∑n

i=1 X2
i ≤ USB1, where the

lower and upper bounds are

LSB1 = a2 + m2 + b2 + (M − 2)
a2 + am + m2 + mb

2
,

USB1 = a2 + m2 + b2 + (M − 2)
am + m2 + mb + b2

2
.

Then by (3) and the approximation
∑n

i=1 X2
i ≈ (LSB1 +

USB1)/2, the sample standard deviation is estimated by
S = √

S2, where

S2 = 1
n − 1

( n∑
i=1

X2
i − nX̄2

)

≈ 1
n − 1

(
a2 + m2 + b2 + (n − 3)

2
(a + m)2 + (m + b)2

4

− n(a + 2m + b)2

16

)
.

When n is large, it results in the following well-known
range rule of thumb:

S ≈ b − a
4

. (5)

Note that the range rule of thumb (5) is independent of
the sample size. It may not work well in practice, espe-
cially when n is extremely small or large. To overcome
this problem,Hozo et al. proposed the following improved
range rule of thumb with respect to the different size of
the sample:

S≈

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1√
12

[
(b − a)2 + (a − 2m + b)2

4

]1/2

n ≤ 15

b − a
4

15 < n ≤ 70

b − a
6

n > 70,

(6)

where the formula for n ≤ 15 is derived under the equidis-
tantly spaced data assumption, and the formula for n > 70
is suggested by the Chebyshev’s inequality [5]. Note also
that when the data are symmetric, we have a + b ≈ 2m
and so

1√
12

[
(b − a)2 + (a − 2m + b)2

4

]1/2
≈ b − a√

12
.

Hozo et al. showed that the adaptive formula (6) per-
forms better than the original formula (5) in most settings.

Improved estimation of S
We think, however, that the adaptive formula (6) may still
be less accurate for practical use. First, the threshold val-
ues 15 and 70 are suggested somewhat arbitrarily. Second,
given the normal data N(μ, σ 2) with σ > 0 being a finite
value, we know that σ ≈ (b − a)/6 → ∞ as n → ∞.
This contradicts to the assumption that σ is a finite value.
Third, the non-negative data assumption in Hozo et al.’s
method is also quite restrictive.
In this section, we propose a new estimator to further

improve (6) and, in addition, we remove the non-negative
assumption on the data. Let Z1, . . . ,Zn be independent
and identically distributed (i.i.d.) random variables from
the standard normal distributionN(0, 1), and Z(1) ≤ · · · ≤
Z(n) be the ordered statistics of Z1, . . . ,Zn. Then Xi =
μ+σZi and X(i) = μ+σZ(i) for i = 1, . . . , n. In particular,
we have a = μ + σZ(1) and b = μ + σZ(n). Since E(Z(1))
= −E(Z(n)), we have E(b − a) = 2σE(Z(n)). Hence, by
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letting ξ(n) = 2E(Z(n)), we choose the following estima-
tion for the sample standard deviation:

S ≈ b − a
ξ(n)

. (7)

Note that ξ(n) plays an important role in the sample
standard deviation estimation. If we let ξ(n) ≡ 4, then
(7) reduces to the original rule of thumb in (5). If we let
ξ(n) = √

12 for n ≤ 15, 4 for 15 < n ≤ 70, or 6 for n > 70,
then (7) reduces to the improved rule of thumb (6).
Next, we present a method to approximate ξ(n) and

establish an adaptive rule of thumb for standard devia-
tion estimation. By David and Nagaraja’s method [6], the
expected value of Z(n) is

E(Z(n)) = n
∫ ∞

−∞
z[�(z)]n−1 φ(z)dz,

where φ(z) = 1√
2π

e−z2/2 is the probability density func-
tion and�(z) = ∫ z

−∞ φ(t)dt is the cumulative distribution
function of the standard normal distribution. For ease of
reference, we have computed the values of ξ(n) by numer-
ical integration using the computer in Table 1 for n up to
50. From Table 1, it is evident that the adaptive formula
(6) in Hozo et al.’s method is less accurate and also less
flexible.
When n is large (say n > 50), we can apply Blom’s

method [7] to approximate E(Z(n)). Specifically, Blom
suggested the following approximation for the expected
values of the order statistics:

E
(
Z(r)

) ≈ �−1
(

r − α

n − 2α + 1

)
, r = 1, . . . , n, (8)

where �−1(z) is the inverse function of �(z), or equiv-
alently, the upper zth percentile of the standard normal
distribution. Blom observed that the value of α increases
as n increases, with the lowest value being 0.330 for n = 2.
Overall, Blom suggested α = 0.375 as a compromise value
for practical use. Further discussion on the choice of α

can be seen, for example, in [8] and [9]. Finally, by (7) and
(8) with r = n and α = 0.375, we estimate the sample
standard deviation by

S ≈ b − a

2�−1
(
n−0.375
n+0.25

) . (9)

In the statistical software R, the upper zth percentile
�−1(z) can be computed by the command “qnorm(z)”.

Estimating X̄ and S from C2

Scenario C2 assumes that the first quartile, q1, and the
third quartile, q3, are also available in addition to C1. In
this setting, Bland’s method [10] extended Hozo et al.’s
results by incorporating the additional information of the
interquartile range (IQR). He further claimed that the new
estimators for the samplemean and standard deviation are
superior to those in Hozo et al.’s method. In this section,
we first review the Bland’s method and point out some
limitations of this method. We then, accordingly, propose
to improve this method by incorporating the size of a
sample.

Bland’s method
Noting that n = 4Q + 1, we have Q = (n − 1)/4. To
estimate the sample mean, Bland’s method considered the
following inequalities:

a ≤ X(1) ≤ a
a ≤ X(i) ≤ q1 (i = 2, . . . ,Q)

q1 ≤ X(Q+1) ≤ q1
q1 ≤ X(i) ≤ m (i = Q + 2, . . . , 2Q)

m ≤ X(2Q+1) ≤ m
m ≤ X(i) ≤ q3 (i = 2Q + 2, . . . , 3Q)

q3 ≤ X(3Q+1) ≤ q3
q3 ≤ X(i) ≤ b (i = 3Q + 2, . . . , n − 1)
b ≤ X(n) ≤ b.

Table 1 Values of ξ(n) in the formula (7) and the formula (12) for n ≤ 50

n ξ(n) n ξ(n) n ξ(n) n ξ(n) n ξ(n)

1 0 11 3.173 21 3.778 31 4.113 41 4.341

2 1.128 12 3.259 22 3.819 32 4.139 42 4.361

3 1.693 13 3.336 23 3.858 33 4.165 43 4.379

4 2.059 14 3.407 24 3.895 34 4.189 44 4.398

5 2.326 15 3.472 25 3.931 35 4.213 45 4.415

6 2.534 16 3.532 26 3.964 36 4.236 46 4.433

7 2.704 17 3.588 27 3.997 37 4.259 47 4.450

8 2.847 18 3.640 28 4.027 38 4.280 48 4.466

9 2.970 19 3.689 29 4.057 39 4.301 49 4.482

10 3.078 20 3.735 30 4.086 40 4.322 50 4.498
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Adding up all above inequalities and dividing by n, it
results in LB2 ≤ X̄ ≤ UB2, where the lower and upper
bounds are

LB2 = a + q1 + m + q3
4

+ 4b − a − q1 − m − q3
4n

,

UB2 = q1 + m + q3 + b
4

+ 4a − q1 − m − q3 − b
4n

.

Bland then estimated the sample mean by (LB2 +
UB2)/2. When the sample size is large, by ignoring the
negligible second terms in LB2 andUB2, a simplifiedmean
estimation is given as

X̄ ≈ a + 2q1 + 2m + 2q3 + b
8

. (10)

For the sample standard deviation, Bland considered
some similar inequalities as in (4). Then with some sim-
ple algebra and approximation, it results in LSB2 ≤∑n

i=1 X2
i ≤ USB2, where the lower and upper bounds are

LSB2 = 1
8
[
(n + 3)

(
a2 + q21 + m2 + q23

) + 8b2
]

+ (n − 5)(aq1 + q1m + mq3 + q3b)
]
,

USB2 = 1
8
[
8a2 + (n + 3)

(
q21 + m2 + q23 + b2

)]
+ (n − 5)(aq1 + q1m + mq3 + q3b)

]
.

Next, by the approximation
∑n

i=1 X2
i ≈ (LSB2 +

USB2)/2,

S2 ≈ 1
16

(
a2 + 2q21 + 2m2 + 2q23 + b2

)
+ 1

8
(aq1 + q1m+mq3 + q3b) − 1

64
(a + 2q1 + 2m

+ 2q3 + b)2.
(11)

Bland’s method then took the square root
√
S2 to esti-

mate the sample standard deviation. Note that the estima-
tor (11) is independent of the sample size n. Hence, it may
not be sufficient for general use, especially when n is small

or large. In the next section, we propose an improved esti-
mation for the sample standard deviation by incorporating
the additional information of the sample size.

Improved estimation of S
Recall that the range b−awas used to estimate the sample
standard deviation in Scenario C1. Now for Scenario C2,
since the IQR q3−q1 is also known, another approach is to
estimate the sample standard deviation by (q3 − q1)/η(n),
where η(n) is a function of n. Taking both methods into
account, we propose the following combined estimator for
the sample standard deviation:

S ≈ 1
2

(
b − a
ξ(n)

+ q3 − q1
η(n)

)
. (12)

Following Section ‘Improved estimation of S’, we have
ξ(n) = 2E(Z(n)). Now we look for an expression for η(n)
so that (q3 − q1)/η(n) also provides a good estimate of S.
By (1), we have q1 = μ+σZ(Q+1) and q3 = μ+σZ(3Q+1).
Then, q3 − q1 = σ

(
Z(3Q+1) − Z(Q+1)

)
. Further, by noting

that E
(
Z(Q+1)

) = −E
(
Z(3Q+1)

)
, we have E(q3 − q1) =

2σE
(
Z(3Q+1)

)
. This suggests that

η(n) = 2E
(
Z(3Q+1)

)
.

In what follows, we propose a method to compute the
value of η(n). By [6], the expected value of Z(3Q+1) is

E
(
Z(3Q+1)

)= (4Q +1)!
(Q)! (3Q)!

∫ ∞

−∞
z[�(z)]3Q[1−�(z)]Qφ(z)dz.

In Table 2, we provide the numerical values of η(n) =
2E(Z(3Q+1)) for Q ≤ 50 using the statistical software R.
When n is large, we suggest to apply the formula (8) to
approximate η(n). Specifically, noting thatQ = (n− 1)/4,
we have η(n) ≈ 2�−1 ((0.75n − 0.125)/(n + 0.25)) for
r = 3Q + 1 with α = 0.375. Then consequently, for the
scenario C2 we estimate the sample standard deviation by

S ≈ b − a

4�−1
(
n−0.375
n+0.25

) + q3 − q1
4�−1

(
0.75n−0.125

n+0.25

) . (13)

Table 2 Values of η(n) in the formula (12) and the formula (15) forQ ≤ 50, where n = 4Q + 1

Q η(n) Q η(n) Q η(n) Q η(n) Q η(n)

1 0.990 11 1.307 21 1.327 31 1.334 41 1.338

2 1.144 12 1.311 22 1.328 32 1.334 42 1.338

3 1.206 13 1.313 23 1.329 33 1.335 43 1.338

4 1.239 14 1.316 24 1.330 34 1.335 44 1.338

5 1.260 15 1.318 25 1.330 35 1.336 45 1.339

6 1.274 16 1.320 26 1.331 36 1.336 46 1.339

7 1.284 17 1.322 27 1.332 37 1.336 47 1.339

8 1.292 18 1.323 28 1.332 38 1.337 48 1.339

9 1.298 19 1.324 29 1.333 39 1.337 49 1.339

10 1.303 20 1.326 30 1.333 40 1.337 50 1.340
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We note that the formula (13) is more concise than the
formula (11). The numerical comparison between the two
formulas will be given in the section of simulation study.

Estimating X̄ and S from C3

Scenario C3 is an alternative way to report the study other
than Scenarios C1 and C2. It reports the first and third
quartiles instead of the minimum and maximum values.
One main reason to report C3 is because the IQR is
usually less sensitive to outliers compared to the range.
For the new scenario, we note that Hozo et al.’s method
and Bland’s method will no longer be applicable. Partic-
ularly, if their ideas are followed, we have the following
inequalities:

− ∞ ≤ X(i) ≤ q1 (i = 1, . . . ,Q)

q1 ≤ X(Q+1) ≤ q1
q1 ≤ X(i) ≤ m (i = Q + 2, . . . , 2Q)

m ≤ X(2Q+1) ≤ m
m ≤ X(i) ≤ q3 (i = 2Q + 2, . . . , 3Q)

q3 ≤ X(3Q+1) ≤ q3
q3 ≤ X(i) ≤ ∞, (i = 3Q + 2, . . . , n)

where the firstQ inequalities are unbounded for the lower
limit, and the last Q inequalities are unbounded for the
upper limit. Now adding up all above inequalities and
dividing by n, we have −∞ ≤ X̄ ≤ ∞. This shows that
the approaches based on the inequalities do not apply to
Scenario C3.
In contrast, the following procedure is commonly

adopted in the recent literature including [11,12]: “If the
study provided medians and IQR, we imputed the means
and standard deviations as described by Hozo et al. [3].
We calculated the lower and upper ends of the range by
multiplying the difference between the median and upper
and lower ends of the IQR by 2 and adding or subtracting
the product from the median, respectively”. This proce-
dure, however, performs very poorly in our simulations
(not shown).

A quantile method for estimating X̄ and S
In this section, we propose a quantile method for esti-
mating the sample mean and the sample standard devia-
tion, respectively. In detail, we first revisit the estimation
method in Scenario C2. By (10), we have

X̄ ≈ a + 2q1 + 2m + 2q3 + b
8

= a + b
8

+ q1 + m + q3
4

.

Now for Scenario C3, a and b are not given. Hence, a
reasonable solution is to remove a and b from the esti-
mation and keep the second term. By doing so, we have
the estimation form as X̄ ≈ (q1 + m + q3)/C, where

C is a constant. Finally, noting that E(q1 + m + q3) =
3μ + σE

(
Z(Q+1) + Z2Q+1 + Z(3Q+1)

) = 3μ, we let C = 3
and define the estimator of the sample mean as follows:

X̄ ≈ q1 + m + q3
3

. (14)

For the sample standard deviation, following the idea in
constructing (12) we propose the following estimation:

S ≈ q3 − q1
η(n)

, (15)

where η(n) = 2E
(
Z(3Q+1)

)
. As mentioned above that

E(q3 − q1) = 2σE
(
Z(3Q+1)

) = ση(n), therefore, the
estimator (15) provides a good estimate for the sample
standard deviation. The numerical values of η(n) are given
in Table 2 for Q ≤ 50. When n is large, by the approxima-
tion E(Z(3Q+1)) ≈ �−1 ((0.75n− 0.125)/(n + 0.25)), we
can also estimate the sample standard deviation by

S ≈ q3 − q1
2�−1

(
0.75n−0.125

n+0.25

) . (16)

A similar estimator for estimating the standard devi-
ation from IQR is provided in the Cochrane Handbook
[13], which is defined as

S ≈ q3 − q1
1.35

. (17)

Note that the estimator (17) is also independent of the
sample size n and thus may not be sufficient for general
use. As we can see from Table 2, the value of η(n) in the
formula (15) converges to about 1.35 when n is large. Note
also that the denominator in formula (16) converges to
2∗�−1(0.75)which is 1.34898 as n tends to infinity.When
the sample size is small, our method will provide more
accurate estimates than the formula (17) for the standard
deviation estimation.

Results
Simulation study for C1

In this section, we conduct simulation studies to com-
pare the performance of Hozo et al.’s method and our new
method for estimating the sample standard deviation. Fol-
lowing Hozo et al.’s settings, we consider five different
distributions: the normal distribution with mean μ = 50
and standard deviation σ = 17, the log-normal distribu-
tion with location parameter μ = 4 and scale parameter
σ = 0.3, the beta distribution with shape parameters
α = 9 and β = 4, the exponential distribution with
rate parameter λ = 10, and the Weibull distribution with
shape parameter k = 2 and scale parameter λ = 35.
The graph of each of these distributions with the speci-
fied parameters is provided in Additional file 1. In each
simulation, we first randomly sample n observations and
compute the true sample standard deviation using the
whole sample. We then use the median, the minimum and
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Figure 1 Relative errors of the sample standard deviation estimation for normal data, where the red lines with solid circles represent
Hozo et al.’s method, and the green lines with empty circles represent the new method.

maximum values of the sample to estimate the sample
standard deviation by the formulas (6) and (9), respec-
tively. To assess the accuracy of the two estimates, we
define the relative error of each method as

relative error of S = the estimated S − the true S
the true S

. (18)

With 1000 simulations, we report the average relative
errors in Figure 1 for the normal distribution with the
sample size ranging from 5 to 1001, and in Figure 2 for
the four non-normal distributions with the sample size
ranging from 5 to 101. For normal data which are most
commonly assumed in meta-analysis, our new method
provides a nearly unbiased estimate of the true sample
standard deviation. Whereas for Hozo et al.’s method, we
do observe that the best cutoff value is about n = 15 for
switching between the estimates (b − a)/

√
12 and (b −

a)/4, and is about n = 70 for switching between (b−a)/4
and (b − a)/6. However, its overall performance is not
satisfactory by noting that the estimate always fluctuates
from -20% to 20% of the true sample standard deviation.
In addition, we note that ξ(27) ≈ 4 from Table 1 and
ξ(n) ≈ 6 when �−1 ((n − 0.375)/(n + 0.25)) = 3, that
is, n = (0.375 + 0.25 ∗ �(3))/(1 − �(3)) ≈ 463. This
coincides with the simulation results in Figure 1 where
the method (b − a)/4 crosses the x-axis between n = 20
and n = 30, and the method (b − a)/6 crosses the x-axis
between n = 400 and n = 500.
From Figure 2 with the skewed data, our proposed

method (9) makes a slightly biased estimate with the rela-
tive errors about 5% of the true sample standard deviation.
Nevertheless, it is still obvious that the new method is
much better compared to Hozo et al.’s method. We also
note that, for the beta and Weibull distributions, the best
cutoff values of n should be larger than 70 for switching
between (b−a)/4 and (b−a)/6. This again coincides with

Table one in Hozo et al. [3] where the suggested cutoff
value is n = 100 for Beta and n = 110 for Weibull.

Simulation study for C2

In this section, we evaluate the performance of the pro-
posedmethod (13) and compare it to Bland’s method (11).
Following Bland’s settings, we consider (i) the normal dis-
tribution with mean μ = 5 and standard deviation σ = 1,
and (ii) the log-normal distribution with location param-
eter μ = 5 and scale parameter σ = 0.25, 0.5, and 1,
respectively. For simplicity, we consider the sample size
being n = 4Q + 1, where Q takes values from 1 to 50. As
in Section ‘Simulation study for C1’, we assess the accu-
racy of the two estimates by the relative error defined in
(18).
In each simulation, we draw a total of n observations

randomly from the given distribution and compute the
true sample standard deviation of the sample. We then
use and only use the minimum value, the first quartile,
the median, the third quartile, and the maximum value
to estimate the sample standard deviation by the formu-
las (11) and (13), respectively. With 1000 simulations, we
report the average relative errors in Figure 3 for the four
specified distributions. From Figure 3, we observe that the
new method provides a nearly unbiased estimate of the
true sample standard deviation. Even for the very highly
skewed log-normal data with σ = 1, the relative error
of the new method is also less than 10% for most sample
sizes. On the contrary, Bland’s method is less satisfactory.
As reported in [10], the formula (11) only works for a
small range of sample sizes (In our simulations, the range
is about from 20 to 40). When the sample size gets larger
or the distribution is highly skewed, the sample standard
deviations will be highly overestimated. Additionally, we
note that the sample standard deviations will be seriously
underestimated if n is very small. Overall, it is evident that
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the new method is better than Bland’s method in most
settings.

Simulation study for C3

In the third simulation study, we conduct a comparison
study that not only assesses the accuracy of the proposed
method under Scenario C3, but also addresses a more real-
istic question in meta-analysis, “For a clinical trial study,
which summary statistics should be preferred to report, C1,
C2 or C3? and why?"
For the sample mean estimation, we consider the for-

mulas (3), (10), and (14) under three different scenarios,
respectively. The accuracy of the mean estimation is also
assessed by the relative error, which is defined in the same
way as that for the sample standard deviation estimation.

Similarly, for the sample standard deviation estimation,
we consider the formulas (9), (13), and (15) under three
different scenarios, respectively. The distributionswe con-
sidered are the same as in Section ‘Simulation study for
C1’, i.e., the normal, log-normal, beta, exponential and
Weibull distributions with the same parameters as those
in previous two simulation studies.
In each simulation, we first draw a random sample of

size n from each distribution. The true sample mean and
the true sample standard deviation are computed using
the whole sample. The summary statistics are also com-
puted and categorized into Scenarios C1, C2 and C3. We
then use the aforementioned formulas to estimate the
sample mean and standard deviation, respectively. The
sample sizes are n = 4Q + 1, where Q takes values
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from 1 to 50. With 1000 simulations, we report the aver-
age relative errors in Figure 4 for both X̄ and S with the
normal distribution, in Figure 5 for the sample mean esti-
mation with the non-normal distributions, and in Figure 6
for the sample standard deviation estimation with the
non-normal distributions.
For normal data which meta-analysis would commonly

assume, all three methods provide a nearly unbiased esti-
mate of the true sample mean. The relative errors in the
sample standard deviation estimation are also very small
in most settings (within 1% in general). Among the three
methods, however, we recommend to estimate X̄ and S
using the summary statistics in Scenario C3. One main
reason is because the first and third quartiles are usually

less sensitive to outliers compared to the minimum and
maximum values. Consequently, C3 produces a more sta-
ble estimation than C1, and also C2 that is partially affected
by the minimum and maximum values.
For non-normal data from Figure 5, we note that the

mean estimation from C2 is always better than that from
C1. That is, if the additional information in the first and
third quartiles is available, we should always use such
information. On the other hand, the estimation from C2
may not be consistently better than that from C3 even
though C2 contains the additional information of mini-
mum and maximum values. The reason is that this addi-
tional information may contain extreme values whichmay
not be fully reliable and thus lead to worse estimation.
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Therefore,we need to be cautious whenmaking the choice
between C2 and C3. It is also noteworthy that (i) the mean
estimation from C3 is not sensitive to the sample size,
and (ii) C1 and C3 always lead to opposite estimations
(one underestimates and the other overestimates the true
value). While from Figure 6, we observe that (i) the stan-
dard deviation estimation from C3 is quite sensitive to the
skewness of the data, (ii) C1 and C3 would also lead to the
opposite estimations except for very small sample sizes,
and (iii) C2 turns out to be a good compromise for esti-
mating the sample standard deviation. Taking both into
account, we recommend to report Scenario C2 in clinical
trial studies. However, if we do not have all information
in the 5-number summary and have to make a decision
between C1 and C3, we recommend C1 for small sample
sizes (say n ≤ 30), and C3 for large sample sizes.

Discussion
Researchers often use the sample mean and standard devi-
ation to perform meta-analysis from clinical trials. How-
ever, sometimes, the reported results may only include the
sample size, median, range and/or IQR. To combine these
results in meta-analysis, we need to estimate the sample
mean and standard deviation from them. In this paper, we
first show the limitations of the existing works and then
propose some new estimation methods. Here we summa-
rize all discussed and proposed estimators under different
scenarios in Table 3.
We note that the proposed methods are established

under the assumption that the data are normally dis-
tributed. In meta-analysis, however, the medians and
quartiles are often reported when data do not follow a
normal distribution. A natural question arises: “To which
extent it makes sense to apply methods that are based on a
normal distribution assumption?” In practice, if the entire

sample or a large part of the sample is known, standard
methods in statistics can be applied to estimate the skew-
ness or even the density of the population. For the current
study, however, the information provided is very limited,
say for example, only a,m, b and n are given in Scenario 1.
Under such situations, it may not be feasible to obtain a
reliable estimate for the skewness unless we specify the
underlying distribution for the population. Note that the
underlying distribution is unlikely to be known in prac-
tice. Instead, if we arbitrarily choose a distribution (more
likely to be misspecified), then the estimates from the
wrong model can be even worse than that from the nor-
mal distribution assumption. As a compromise, we expect
that the proposed formulas under the normal distribution
assumption are among the best we can achieve.
Secondly, we note that even if the means and stan-

dard deviations can be satisfyingly estimated from the
proposed formulas, it still remains a question to which
extent it makes sense to use them in a meta-analysis, if the
underlying distribution is very asymmetric and one must
assume that they don’t represent location and dispersion
adequately. Overall, this is a very practical yet challeng-
ing question and may warrant more research. In our
future research, we propose to develop some test statis-
tics (likelihood ratio test, score test, etc) for pre-testing
the hypothesis that the distribution is symmetric (or nor-
mal) under the scenarios we considered in this article. The
result of the pre-test will then suggest us whether or not
we should still include the (very) asymmetric data in the
meta-analysis. Other proposals that address this issue will
also be considered in our future study.
Finally, to promote the usability, we have provided an

Excel spread sheet to include all formulas in Table 3 in
Additional file 2. Specifically, in the Excel spread sheet,
our proposed methods for estimating the sample mean
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and standard deviation can be applied by simply inputting
the sample size, the median, the minimum and maxi-
mum values, and/or the first and third quartiles for the
appropriate scenario. Furthermore, for ease of compari-
son, we have also includedHozo et al.’smethod and Bland’s
method in the Excel spread sheet.

Conclusions
In this paper, we discuss different approximation meth-
ods in the estimation of the sample mean and standard
deviation and propose some new estimation methods to
improve the existing literature. Through simulation stud-
ies, we demonstrate that the proposed methods greatly
improve the existing methods and enrich the literature.

Specifically, we point out that the widely accepted esti-
mator of standard deviation proposed by Hozo et al. has
some serious limitations and is always less satisfactory
in practice because the estimator does not fully incorpo-
rate the sample size. As we explained in Section ‘Estimat-
ing X̄ and S from C1’, using (b − a)/6 for n > 70
in Hozo et al.’s adaptive estimation is untenable because
the range b − a tends to be infinity as n approaches
infinity if the distribution is not bounded, such as the nor-
mal and log-normal distributions. Our estimator replaces
the adaptively selected thresholds (

√
12, 4, 6) with a uni-

fied quantity 2�−1 ((n − 0.375)/(n + 0.25)), which can be
quickly computed and obviously is more stable and adap-
tive. In addition, our method removes the non-negative
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Table 3 Summary table for estimating X̄ and S under
different scenarios

Scenario C1 Scenario C2 Scenario C3

Hozo et al. (2005) X̄ : Eq. (3) – –

S: Eq. (6) – –

Bland (2013) – X̄ : Eq. (10) –

– S: Eq. (11) –

New methods X̄ : Eq. (3) X̄ : Eq. (10) X̄ : Eq. (14)

S: Eq. (9) S: Eq. (13) S: Eq. (16)

data assumption in Hozo et al.’s method and so is more
applicable in practice.
Bland’s method extended Hozo et al.’s method by using

the additional information in the IQR. Since extra infor-
mation is included, it is expected that Bland’s estimators
are superior to those in Hozo et al.’s method. However,
the sample size is still not considered in Bland’s method
for the sample standard deviation, which again limits
its capability in real-world cases. Our simulation stud-
ies show that Bland’s estimator significantly overestimates
the sample standard deviation when the sample size is
large while seriously underestimating it when the sam-
ple size is small. Again, we incorporate the information
of the sample size in the estimation of standard deviation
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via two unified quantities, 4�−1 ((n − 0.375)/(n + 0.25))
and 4�−1 ((0.75n − 0.125)/(n + 0.25)). With some extra
but trivial computing costs, our method makes signifi-
cant improvement over Bland’s method when the IQR is
available.
Moreover, we pay special attention to an overlooked sce-

nario where the minimum and maximum values are not
available. We show that the methodology following the
ideas in Hozo et al.’s method and Bland’s method will lead
to unbounded estimators and is not feasible. On the con-
trary, we extend the ideas of our proposed methods in
the other two scenarios and again construct a simple but
still valid estimator. After that, we take a step forward
to compare the estimators of the sample mean and stan-
dard deviation under all three scenarios. For simplicity,
we have only considered three most commonly used sce-
narios, including C1, C2 and C3, in the current article. Our
method, however, can be readily generalized to other sce-
narios, e.g., when only {a, q1, q3, b; n} are known or when
additional quantile information is given.

Additional files

Additional file 1: The plot of each of those distributions in the
simulation studies.

Additional file 2: An Excel spread sheet including all formulas.
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