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Abstract

Background: It is often desirable to account for centre-effects in the analysis of multicentre randomised trials,
however it is unclear which analysis methods are best in trials with a binary outcome.

Methods: We compared the performance of four methods of analysis (fixed-effects models, random-effects models,
generalised estimating equations (GEE), and Mantel-Haenszel) using a re-analysis of a previously reported randomised
trial (MIST2) and a large simulation study.

Results: The re-analysis of MIST2 found that fixed-effects and Mantel-Haenszel led to many patients being
dropped from the analysis due to over-stratification (up to 69% dropped for Mantel-Haenszel, and up to 33%
dropped for fixed-effects). Conversely, random-effects and GEE included all patients in the analysis, however GEE
did not reach convergence. Estimated treatment effects and p-values were highly variable across different analysis
methods.
The simulation study found that most methods of analysis performed well with a small number of centres. With a
large number of centres, fixed-effects led to biased estimates and inflated type I error rates in many situations,
and Mantel-Haenszel lost power compared to other analysis methods in some situations. Conversely, both
random-effects and GEE gave nominal type I error rates and good power across all scenarios, and were usually
as good as or better than either fixed-effects or Mantel-Haenszel. However, this was only true for GEEs with non-
robust standard errors (SEs); using a robust ‘sandwich’ estimator led to inflated type I error rates across most
scenarios.

Conclusions: With a small number of centres, we recommend the use of fixed-effects, random-effects, or GEE
with non-robust SEs. Random-effects and GEE with non-robust SEs should be used with a moderate or large
number of centres.

Keywords: Binary outcomes, Randomised controlled trial, Multicentre trials, Fixed-effects, Random effects,
Generalised estimating equations, Mantel-Haenszel
Background
In randomised controlled trials (RCTs) with multiple
centres, we sometimes expect patient outcomes to differ
according to centre. This could be due to differences be-
tween patients who present to different centres, or be-
cause of differences between the centres themselves.
Because of this, many RCTs attempt to minimise the im-
pact of any between-centre differences on the trial re-
sults, either during the design stage (by stratifying on
centre in the randomisation process, ensuring an equal
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reproduction in any medium, provided the or
number of patients assigned to both treatment groups
within each centre), or during the analysis stage (by ac-
counting for centre-effects in the analysis model).
Recent research has shown that when randomisation is

stratified by centre, it is necessary to account for the
centre-effects in the analysis as well. This is because strati-
fied randomisation leads to correlation between treatment
arms, making it necessary to adjust for the stratification
factors in the analysis to obtain correct confidence inter-
vals and p-values, maintain the type I error rate at its
nominal level (usually set at 5%), and avoid a reduction in
power [1-5]. Therefore, any attempt to minimise between-
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centre differences will necessarily lead to an analysis that
accounts for centre-effects.
However, adjustment for centre-effects in the analysis

can often be problematic, particularly when there are a
large number of centres compared to the overall sample
size. This can cause problems with binary or time-to-
event outcomes, where too few patients or events per
centre can lead to biased estimates [6] or inflated type I
error rates [1] with some methods of analysis.
The goals of this paper are to clarify (a) under what

circumstances it is beneficial to account for centre-
effects in the analysis, and (b) the best method of adjust-
ment for centre in RCTs with a binary outcome. The
case of multicentre trials with continuous [3,7-10] or
time-to-event [11] outcomes has been discussed previ-
ously. We restrict our attention to analysis methods
which calculate an odds ratio, and do not consider the
issue of treatment-by-centre interaction.

Methods
When should we adjust for centre-effects?
Whether it will be beneficial to account for centre-
effects in the analysis depends on (a) the size of the
intraclass correlation coefficient (ICC), and (b) the extra
complexity added to the analysis through adjustment.
We discuss these issues in the two sections below.

ICC considerations
The ICC measures to what extent the proportion of the
total variability is explained by the variability between
the different centres. For a binary outcome analysed
using an odds ratio (OR), the ICC can be defined as σ2/
(σ2 + π2/3), where σ2 is the between-centre variance [12].
When centre is not accounted for in the analysis, the

standard error for treatment effect is increased by a fac-
tor of (1-ICC)-1/2, leading to a reduction in power [4].
For example, in a trial designed to give 80% power, ICCs
of 0.01, 0.10, and 0.25 would lead to reductions in power
of 0.4, 4.3, and 12.1% respectively if centre was ignored
in the analysis.
ICC estimates based on previous data may be helpful

in determining whether adjustment will be beneficial.
For example, Adams et al. [13] reviewed ICCs from
1039 variables across 31 primary care studies and found
the median ICC was 0.01 (IQR 0 to 0.03), indicating that
adjustment for centre-effects in these scenarios may not
materially increase power. Conversely, Cook et al. [14]
reviewed ICCs from 198 outcomes across 10 surgical tri-
als, and found 44% of ICCs were greater than 0.05, indi-
cating that adjustment may be more beneficial in these
trials.
However, previous data may not be available in many

cases. It may then be useful to consider two issues. The
first issue is whether centres are likely to influence
patient outcomes. For example, in a surgical intervention
trial, surgeons may be more skilled in some centres than
in others, leading to improved patient outcomes in those
centres. Alternatively, some outcomes may be influenced
by centre policy; for example, an outcome such as length
of hospital stay may have a large ICC because some hos-
pitals have a policy of early discharge whereas others do
not. Conversely, in a drug intervention trial where the
primary function of centre is to dispense the treatment
to patients, it is unlikely that centre would have any ma-
terial influence on patient outcomes.
The second issue to consider is whether baseline risk

is likely to vary substantially across centres. For example,
in an international trial assessing an intervention to re-
duce neonatal mortality, patient risk levels are likely to
differ between centres in different countries, leading to a
high ICC. However, if the trial was taking place in a sin-
gle country the ICC would likely be much lower.

Added complexity through adjustment for centre
In some situations adjustment for centre can lead to an
extremely complex analysis model which may not work
well in practice. Consider a multicentre trial where sur-
geons treat patients in one treatment group only, and
patients are followed up at several time points. It is ne-
cessary in this scenario to account for patients being
clustered within surgeon, and for the multiple follow-up
measurements, as these are both forms of non-ignorable
clustering, and could lead to inflated type I error rates if
ignored [5]. Accounting for centre in the analysis would
lead to a complicated four-level model (observations
nested within patients nested within surgeons nested
within centres) which may not converge, or may give
unstable estimates. Therefore, unless the ICC is expected
to be very large, it may be counterproductive to adjust
for centre-effects in this scenario.

Implications of stratified vs unstratified randomisation
The implications of adjusting (or not adjusting) for
centre-effects depend on whether centre has been used
as a stratification factor in the randomisation process.
If centre has been used as a stratification factor, we

recommend that centre-effects be accounted for as a de-
fault position (regardless of the expected ICC) to ensure
that p-values and confidence intervals are unbiased
[1-4]. The exception to this is when it is expected that
adjusting for centre-effects could lead to convergence is-
sues, or unstable estimates; in this case, we recommend
centre be ignored in the analysis, as non-convergence or
unstable estimates are a larger danger than a type I error
rate that is too low.
When centre has not been used as a stratification fac-

tor, adjusted and unadjusted analyses will both give un-
biased p-values and confidence intervals; however, an



Kahan BMC Medical Research Methodology 2014, 14:20 Page 3 of 11
http://www.biomedcentral.com/1471-2288/14/20
adjusted analysis will lead to increased power when the
ICC is large. Consequently, it is somewhat less import-
ant to adjust for centre-effects than after stratified ran-
domisation, as results will be valid regardless. Therefore,
we recommend that centre be accounted for in the ana-
lysis if (a) the ICC is expected to be large enough to ma-
terially increase power; and (b) it is not anticipated that
adjustment for centre-effects will impact convergence
rates or stability of treatment effect estimates.

Marginal vs conditional models
Centre-effects can be accounted for in the analysis using
either a marginal (or population averaged) approach, or
a conditional (or centre specific) approach. For binary
outcomes, these two approaches lead to different odds
ratio and different interpretations.
A conditional approach compares the change in the

odds for a treated patient vs. a control patient from the
same centre. In contrast, the marginal approach com-
pares the change in odds for a treated patient vs. a con-
trol patient who has been randomly selected from any
centre in the trial. Because these two approaches are
comparing different things, the actual treatment effect
estimates will differ (provided there is a treatment effect;
when the treatment is not effective, both methods will
give similar estimates) [15,16]. In general, odds ratios
from a marginal model tend to be smaller (i.e. closer to
the null) than estimates from a conditional model. The
size of the discrepancy between the two approaches is
influenced by the ICC; the larger the ICC, the larger the
difference of the two estimates. For an ICC of 0, the size
of the treatment effect is the same for both approaches
(as in this case, there is no difference between patients
in different centres, and so both approaches are answer-
ing the same question).

Conditional models
Mantel-Haenszel
Mantel-Haenszel (MH) is a within-centre comparison,
where the treatment effect is calculated within each
centre and then combined for an overall effect [6]. MH
can be calculated as:

ORMH ¼

X

j

ajdj

nj
X

j

bjcj
nj

where j denotes the centre, aj and bj indicate the number
of patients with and without an event in the intervention
group respectively, cj, and dj indicate the number of pa-
tients with and without an event in the control group
respectively, and nj is the total number of patients in
that centre.
One of the drawbacks of MH is that centres for which

a treatment effect cannot be calculated are excluded
from the analysis. This occurs when all patients in a
centre experience the same outcome (e.g. all successes
or all failures), or when all patients in a centre are ran-
domised to the same treatment group. These scenarios
are most likely to occur with a small number of patients
in a centre. Therefore, in trials where many centres have
relatively few patients, MH may exclude a large propor-
tion of patients from the analysis, leading to a reduction
in both power and precision.
MH can account for other covariates in the analysis;

this is done by forming strata from all combinations of
covariates (including centre), then estimating the treat-
ment effect within each stratum. This implies that covar-
iates must be categorical in order to be included in a
MH analysis, meaning that continuous covariates must
be categorised. However, categorisation of continuous
covariates may reduce power. Furthermore, this can eas-
ily lead to a large number of strata (e.g. 10 centres, and
three binary covariates would lead to 10×2×2×2 = 80
strata), which increases the chances of some strata being
dropped from the analysis.
MH assumes a large sample size, however it does not

assume that the sample size is large compared to the
number of centres; therefore, when there is a small
number of patients in each centre, MH should still give
unbiased estimates of treatment effect, and correct type
I error rates.

Fixed-effects
A fixed-effects analysis fits a logistic regression model
which includes an indicator variable for all centres but
one. The model can be written as:

log it πij
� � ¼ αþ βtreatXij þ βC1

þ βC2
þ…þ βCj−1

where πij is the probability of an event for the ith patient
in the jth centre, βtreat indicates the log odds ratio for
treatment, Xij indicates whether the patient received the
treatment or control, and the βC’s indicate the effect of
the jth centre.
A fixed-effects analysis has similar drawbacks to

Mantel-Haenszel in that it excludes centres where all pa-
tients experience the same outcome, or where all pa-
tients are randomised to the same treatment group.
However, unlike MH, fixed-effects can include continu-
ous covariates in the analysis without the need for
categorisation, and so may lead to increased power com-
pared to MH when adjusting for other covariates besides
centre.
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A fixed-effects analysis assumes the overall sample size
is large; however, unlike Mantel-Haenszel, fixed-effects
assumes that the sample size compared to the number
of centres is also large [6]. When this assumption is not
met (i.e. when there is a small number of patients per
centre) fixed-effects can give biased estimates of treat-
ment effect [6] or inflated type I error rates [1].

Random effects
A random-effects analysis involves fitting a mixed-
effects logistic regression model:

log it πij
� � ¼ αþ βtreatXij þ uj

where uj is the effect of the jth centre, and is generally
assumed to follow a normal distribution with mean 0
and variance σ2.
A random-effects analysis is able to include all centres

in the analysis, even when all patients in that centre are
randomised to the same treatment group, or experience
the same outcome. Random-effects can also account for
continuous covariates in the analysis, without the need
for categorisation. Random-effects assumes a large sam-
ple size, but like Mantel-Haenszel, does not assume a
large sample size compared to the number of centres,
and should therefore give valid results even when there
is a small number of patients in each centre.
Random-effects models generally make the assump-

tion that the centre-effects follow a normal distribution
(although other distributions could be used). This may
not be known in advance, and may be an unrealistic as-
sumption; however, research has shown that inference
for the fixed effects (i.e. the treatment effect) are quite
robust to the assumption that the centre-effects follow a
normal distribution, and so a mixed-effects logistic re-
gression model is likely to give valid inference for the
treatment effect even when the centre-effects are not
normally distributed [3,17,18].

Marginal models
Generalised estimating equations
Generalised estimating equations (GEEs) [19] are the
most popular method of analysing correlated binary data
using a marginal model. A GEE analysis fits the model:

log it πið Þ ¼ αþ βtreatXi

where πi is the probability of an event for the ith patient,
βtreat indicates the log odds ratio for treatment, and Xi

indicates whether the patient received the treatment or
control.
GEEs allow the user to specify the correlation struc-

ture between observations. The most intuitive structure
for a multicentre trial is an exchangeable correlation
structure, which assumes outcomes are correlated for
patients in the same centre, but are independent for pa-
tients in different centres. There are two primary
methods of calculating standard errors (SEs) for GEEs.
The first method relies on the specified correlation
structure being correct (non-robust SEs). The second
method uses a robust sandwich estimator to estimate
the standard error (robust SEs). This method is robust
to misspecification of the correlation structure, and will
give valid type I error rates even if the chosen correl-
ation structure is incorrect [19]. However, it may lose ef-
ficiency compared to non-robust SEs.
Robust SEs can be extremely useful when analysing

longitudinal data (where patients are followed-up at
multiple time points), as this type of data leads to many
possible correlation structures, and it may be difficult or
impossible to know which is correct. However, in multi-
centre trials, correlation structures other than exchange-
able are unlikely; therefore, we focus mainly on non-
robust SEs in this article.
Similarly to random-effects, GEEs are able to include

all centres in the analysis, even centres where all patients
experience the same outcome, or are randomised to the
same treatment arm.

Application to the MIST2 trial
We now compare different methods of analysis using
data from a previously published RCT. The MIST2 trial
was a four arm trial which compared tPA, DNase, and
tPA plus DNase to placebo in patients with a pleural in-
fection [20]. We consider the number of patients under-
going surgical intervention up to 90 days. Of 190
patients included in the analysis, 23 (12%) experienced
an event.
Patients were recruited from 11 centres, with a median

of 12 patients per centre (range 1 to 87). Two centres re-
cruited patients to only one arm, and one centre re-
cruited patients to only two arms (all other centres
recruited patients to each of the four arms). In four cen-
tres all recruited patients experienced the same outcome
(no surgery), whereas in all other centres patients expe-
rienced both outcomes.
Centre was not used as a stratification factor in the

randomisation process in this trial, and so it is not
strictly necessary to account for centre in the analysis to
obtain valid results (p-values and confidence intervals
will be correct regardless). Therefore, we compared five
different analysis methods; a logistic regression model that
was unadjusted for centre-effects, fixed-effects, random-
effects, GEE, and Mantel-Haenszel. We also accounted for
the minimisation variables in each analysis [1-3,5], which
were the amount of pleural fluid in the hemithorax at
baseline as a continuous variable, whether the infection
was hospital acquired or not, and whether there was evi-
dence of locuation. For Mantel-Haenszel we dichotomised



Table 1 Analysis results from the MIST2 dataset

tPA vs placebo (n = 98) DNase vs placebo (n = 94) tPA+DNase vs placebo (n = 98)

Unadjusted for centre-effects

Patients included – no. (%) 98 (100) 94 (100) 98 (100)

Odds ratio (95% CI) 0.42 (0.09 to 1.87) 2.72 (0.88 to 8.42) 0.23 (0.04 to 1.29)

P-value 0.25 0.08 0.10

Fixed-effects

Patients included – no. (%) 66 (67) 80 (85) 81 (83)

Odds ratio (95% CI) 0.54 (0.12 to 2.56) 3.34 (1.01 to 11.00) 0.24 (0.04 to 1.36)

P-value 0.44 0.048 0.11

Random-effects

Patients included – no. (%) 98 (100) 94 (100) 98 (100)

Odds ratio (95% CI) 0.42 (0.09 to 1.87) 2.72 (0.88 to 8.42) 0.23 (0.04 to 1.29)

P-value 0.25 0.08 0.10

GEE*

Patients included – no. (%) 98 (100) 94 (100) 98 (100)

Odds ratio (95% CI) 0.33 (0.06 to 1.75) 2.57 (0.76 to 8.66) 0.18 (0.03 to 1.19)

P-value 0.19 0.13 0.08

Mantel-Haenszel

Patients included – no. (%) 30 (31) 45 (48) 35 (36)

Odds ratio (95% CI) 0.34 (0.05 to 2.15) 3.59 (0.99 to 13.03) 0.21 (0.02 to 1.98)

P-value 0.27 0.04 0.13

*Convergence was not achieved.
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the amount of pleural fluid at less or greater than 30%.
This led to 42 strata (as some combinations of covariates
had no patients).
Results are shown in Table 1. Using random-effects,

GEEs, or a logistic regression model that ignored centre-
effects allowed all patients to be included in the analysis.
In comparison, fixed-effects dropped between 19-33% of
patients from the analysis (depending on the treatment
comparison), and Mantel-Haenszel dropped between 52-
69% of patients. Convergence was not achieved for GEE,
although Stata still provided results. All other analysis
methods achieved convergence.
The different analysis methods led to different treat-

ment effect estimates. Estimated odds ratios varied be-
tween 0.33-0.54 for the tPa vs placebo comparison, and
between 2.57-3.59 for the DNase vs placebo comparison.
Different analysis methods also led to different p-values
in some instances. P-values ranged from 0.04 to 0.13 for
the DNase vs placebo comparison, demonstrating that
the choice of analysis method can substantially affect
trial results and interpretations. Results from random-
effects and a logistic regression model that ignored
centre gave nearly identical results; this was because the
estimated ICC was nearly 0.
It should be noted that the p-value and confidence

interval from Mantel-Haenszel was inconsistent for the
DNase vs placebo comparison. The p-value indicated a
statistically significant result (p = 0.04), whereas the con-
fidence interval did not (95% CI 0.99 to 13.03). This is
likely a result of the Mantel-Haenszel procedure in Stata
using different information to calculate the p-value and
confidence interval.

Simulation study
We performed a simulation study to compare fixed-
effects, random-effects, GEEs with an exchangeable cor-
relation structure and non-robust SEs, and Mantel-
Haenszel in terms of the estimated treatment effect, type
I error rate, power, and convergence rates. The first set
of simulations was based on the MIST2 trial. In the sec-
ond set of simulations we varied a number of different
parameters (e.g. number of centres, number of patients
per centre, ICC, etc.) to compare the methods of analysis
across a wide range of plausible scenarios.
For each analysis method we calculated the mean treat-

ment effect estimate, the type I error rate (proportion of
false-positives), power (proportion of true-positives), and
the convergence rate. The mean treatment effect was cal-
culated as the exponential of the mean of the log odds ra-
tios for treatment. The type I error rate was calculated as
the proportion of replications which gave a statistically
significant result (P < 0.05), when the true odds ratio for
treatment was 1. Power was calculated as the proportion
of replications which gave a statistically significant result,
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when the true odds ratio for treatment was not 1. We
set convergence as having failed when either (i) STATA
gave an error message indicating the analysis did not
converge; (ii) the absolute value of either the log odds
ratio for treatment or its standard error was greater
than 1000; or (iii) the estimates of the log odds ratio for
treatment or its standard error SE was set to exactly 0
(as this indicates STATA dropped treatment from the
model). We only assessed the mean treatment effect, type
I error rate, and power when convergence was achieved.
We used 5000 replications for each scenario to give a

standard error of about 0.3% when estimating the type I
error rate, assuming a true type I error rate of 5%. We
performed all simulations using STATA 12.1 (StataCorp,
College Station, TX, USA).

Simulations based on MIST2
For simplicity, we considered only two treatment groups,
rather than four. Data were generated from the following
model:

Y �
ij ¼ αþ βtreatXij þ βpleuralfluidZ1ij þ βpurulenceZ2ij

þ βhospital infectionZ3ij þ uj þ εij

where Yij
* is a latent outcome for ith patient in the jth

centre, βtreat is the log odds ratio for treatment effect, Xij

indicates whether the patient received the treatment or
control, βpleural_fluid, βpurulence, and βhospital_infection are co-
variate effects, and Z1ij, Z2ij, and Z3ij are the covariate
values. uj is the centre effect for jth centre and follows a
normal distribution with mean 0 and standard deviation
σ, and εij is a random error term that follows a logistic
distribution with mean 0 and variance π2/3. Binary re-
sponses were generated as Yij = 1 if Yij

* > 0, and 0 other-
wise. We generated μj and εij independently.
All parameters were based on estimates from the

MIST2 dataset. We set the odds ratio for treatment (exp
(βtreat)) to 1 (indicating no effect) to evaluate the type I
error rate, and to 0.23 to evaluate power (this was simi-
lar to the OR for the tPA+DNase comparison). The ICC
was set to 0 (equivalent to setting σ = 0). The log odds
ratios for βpleural_fluid, βpurulence, and βhospital_infection were
0.03, -0.2, and 0.4 respectively, and the log odds for α
was −3.3.
We generated the covariates (Z1ij, Z2ij, and Z3ij), and

centre by sampling with replacement from the MIST2
dataset, to ensure the correlation structure between co-
variates was preserved. Patients were assigned to one of
the two treatment groups using simple randomisation.
Because centre was not used as a stratification factor, we
also analysed data using a logistic regression model
which did not account for centre-effects (although did
adjust for the other covariates).
Simulations based on varied parameters
Data were generated from the following model:

Y �
ij ¼ αþ βtreatXij þ uj þ εij

where Yij
* , βtreat, Xij, uj and εij are the same as the previous

section.
We varied the following parameters:

� Number of centres: we used 5, 50, and 100 centres
� Number of patients: we used overall sample sizes of

200, 500, 1000, and 2000 patients
� ICC: we used ICC values of 0.025 and 0.075 (we set

σj to give the desired ICC)
� Patient distribution across centres: we used two

patient distributions across centres. In the first, each
centre had an equal number of patients (even
patient distribution). In the second, most patients
were concentrated in a small number of centres, and
the remaining centres had relatively few patients
(skewed patient distribution). The exact number of
patients in each centre in the skewed patient
distribution can be found in Additional file 1.

� Event rate: we used event rates in the control group
of 20% and 50%

� Randomisation method: we used permuted blocks,
stratified by centre. We used block sizes of 4 and 20.

In total, we evaluated 192 different scenarios. The par-
ameter values above were selected to give a wide range
of plausible trial scenarios.
We set the log odds ratio for treatment to 0 to evalu-

ate the type I error rate. In order to evaluate power, we
set the log odds ratio for treatment to give 80% power
based on the sample size and the event rate. Power was
calculated based on reducing (rather than increasing)
the number of events.

Sensitivity analysis – large ICC
We performed a sensitivity analysis using an ICC of
0.25. We set the event rate to 50%, and used an even
patient distribution. We varied the number of centres
(5, 50, and 100), the number of patients per centre
(200, 500, 1000, and 2000), and the block size (4 or 20).
This led to 24 scenarios in total. We used the same
methods of analysis as above (fixed-effects, random-
effects, GEE, and Mantel-Haenszel).

Sensitivity analysis – GEE with a robust variance estimator
We performed another sensitivity analysis assessing the
use of GEE with a robust variance estimator (robust
SEs). We used an ICC of 0.025, set the event rate to
50%, used an even patient distribution, and used strati-
fied permuted blocks with a block size of four. We



Table 3 Results from simulations based on MIST2 dataset
(OR = 0.23)

Mean
treatment effect

Power (%) Convergence (%)

Unadjusted for
centre-effects

0.20 66.5 97.1

Fixed-effects 0.19 65.0 96.3

Random-effects 0.19 66.0 96.1

GEE 0.20 66.5 98.0

Mantel-Haenszel 0.22 50.3 95.9
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varied the number of centres (5, 50, and 100), the num-
ber of patients per centre (200, 500, 1000, and 2000).
This led to 12 scenarios in total.

Results
Simulations based on MIST2
Results are shown in Tables 2 and 3. When the OR for
treatment effect was set to 1, all analysis methods had
convergence rates near 100%. Estimated treatment ef-
fects were unbiased for each analysis method, and all
methods gave close to nominal type I error rates. The
lone exception was Mantel-Haenszel, which gave a type
I error rate of 4.0%.
When the OR for treatment was set to 0.23, all

methods had very small amounts of bias in the esti-
mated treatment effect. Convergence rates were similar
for all methods. All methods had similar power, apart
from Mantel-Haenszel which led to a reduction in power
of approximately 16% compared to other techniques.

Simulations based on varied parameters
5 centres
Results can be seen in Additional file 1. All methods of
analysis gave unbiased estimates of treatment, except
when the OR was extremely low (OR = 0.25); in this case,
all techniques were slightly biased. Type I error rates were
close to the nominal value of 5% for each analysis method,
except for Mantel-Haenszel which gave error rates which
were too low in some scenarios with a sample size of 200
(range across 16 scenarios 3.8 to 5.2%). Power was com-
parable between different analysis methods across all sce-
narios. Convergence rates were 99.6% or greater across all
analysis methods and scenarios.

50 centres
Results can be seen in Figures 1 and 2 and in
Additional file 1. Fixed-effects gave severely biased es-
timates with only 200 patients, and gave slightly biased
estimates with 500 patients. Other methods of analysis
were all unbiased, except when the OR was extreme
(OR = 0.25), when they all gave slightly biased
estimates.
Table 2 Results from simulations based on MIST2 dataset
(OR = 1)

Mean
treatment
effect

Type I error
rate (%)

Convergence (%)

Unadjusted for
centre-effects

1.00 4.7 100

Fixed-effects 1.01 5.1 99.8

Random-effects 1.00 4.8 99.4

GEE 1.00 5.1 100

Mantel-Haenszel 1.01 4.0 100
Type I error rates were inflated for fixed-effects in
many (though not all) scenarios. This was most promin-
ent with smaller sample sizes (range 6.8 to 9.6% with
200 patients). Mantel-Haenszel gave error rates which
were too low in some scenarios with only 200 patients.
Random-effects and GEE had close to nominal type I
error rates in all scenarios.
Random-effects and GEE had comparable power

across all scenarios, and had either similar or higher
power than Mantel-Haenszel. The difference between
random-effects and GEE vs. Mantel-Haenszel was most
pronounced with a small number of patients, where MH
lost a median of 8% and 2% power compared with the
other methods for sample sizes of 200 and 500 respect-
ively. Fixed-effects had the highest power of any analysis
method in some scenarios, although this was likely a dir-
ect result of the inflated type I error rate. Conversely, it
also lost power compared to other methods in some
scenarios.
Convergence rates for random-effects, GEE, and Mantel-

Haenszel were high across all scenarios (99.4% or
higher for all methods). Fixed-effects had convergence
issues in some scenarios, although convergence rates
for all scenarios were above 94.5%.

100 centres
Results can be seen in Figures 3 and 4 and in
Additional file 1. Fixed-effects led to substantially
biased estimates with a small number of patients. As
above, all other methods of analysis gave unbiased re-
sults apart from when the odds ratio was 0.25.
Type I error rates were inflated for fixed-effects in most

scenarios (median 12.5, 7.0, 5.9, and 5.5% for sample sizes
of 200, 500, 1000, and 2000 patients respectively). Mantel-
Haenszel had type I error rates that were too low with a
sample size of 200 patients (range 3.6 to 5.0). Random-
effects and GEE had close to nominal type I error rates.
Random-effects and GEE had comparable power across

all scenarios, and generally had higher power than
Mantel-Haenszel (the median difference in power between
MH and random-effects or GEE was 26, 6, and 2% for
sample sizes of 200, 500, and 1000 respectively). Fixed-
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Figure 1 Type I error rates for 50 centres. This figure gives type I error rates from 16 different simulation scenarios for each sample size.
Simulated scenarios involve different ICCs, event rates, randomisation methods, and distribution of patients across centres.
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effects had either similar or lower power than random-
effects or GEE.
Convergence rates for random-effects, GEE, and

Mantel-Haenszel were high across all scenarios (99.4%
or higher for all methods). Convergence rates for fixed-
effects were above 91.4% for all scenarios.

Sensitivity analysis – large ICC
Results for simulations using an ICC of 0.25 were similar
to results from simulations using smaller ICCs. Random-
effects and GEE gave close to nominal type I error rates in
all scenarios, and had high power. The type I error rate
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Figure 2 Power rates for 50 centres. This figure gives power from 16 dif
involve different ICCs, event rates, randomisation methods, and distribution
for Mantel-Haenszel was too low when there were a small
number of patients compared to the number of centres,
and had lower power than other methods in these scenar-
ios. Fixed-effects led to inflated type I error rates in a
number of scenarios.

Sensitivity analysis – GEE with a robust variance estimator
GEEs with robust SEs gave 100% convergence and was
unbiased in all scenarios. With only 5 centres, the type I
error rates were too large (range across four scenarios
11.9 to 12.6%). The type I error rates for 50 and 100
centres were slightly larger than nominal (range across
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ferent simulation scenarios for each sample size. Simulated scenarios
of patients across centres.



3

4

5

6+

T
yp

e 
I e

rr
or

 r
at

e 
(%

)

n=
20

0

n=
50

0

n=
10

00

n=
20

00

FE RE GEE MH

Figure 3 Type I error rates for 100 centres. This figure gives type I error rates from 16 different simulation scenarios for each sample size.
Simulated scenarios involve different ICCs, event rates, randomisation methods, and distribution of patients across centres.
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four scenarios 5.0 to 5.8, and 4.9 to 5.9 for 50 and 100
centres respectively). Power was nominal across all sce-
narios (range across 12 scenarios 80.0 to 84.1%).
Discussion
When patient outcomes vary substantially across cen-
tres, it can be useful to account for centre-effects in the
analysis to increase power. We performed a large scale
simulation study to investigate which methods of ana-
lysis performed well across a wide range of scenarios.
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Figure 4 Power rates for 100 centres. This figure gives power from 16 d
involve different ICCs, event rates, randomisation methods, and distribution
Summary of results – MIST2
Based on re-analysis of the MIST2 trial, we found that
both fixed-effects and Mantel-Haenszel dropped a sub-
stantial number of patients from the analysis, whereas
random-effects and GEE allowed all patients to be in-
cluded in the analysis. A simulation study based on this
dataset showed that Mantel-Haenszel led to a large re-
duction in power; all other methods of analysis per-
formed well. Despite the fact that GEE did not converge
in the MIST2 re-analysis, convergence rates were high
in the simulation study.
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Summary of results – simulation study
We found that fixed-effects lead to inflated type I error
rates in most scenarios with either 50 or 100 centres.
However, it gave nominal error rates and good power
when there were only 5 centres. We therefore recom-
mend that fixed-effects only be used with a small num-
ber of centres, and a large number of patients in each
centre.
Mantel-Haenszel gave type I error rates that were too

low in some scenarios with only 200 patients. It also led
to a reduction in power compared to random-effects or
GEE in many scenarios. In many cases the loss in power
was partially caused by some centres being dropped
from the MH analysis, either because all the patients in
the centre were assigned to one treatment arm, or be-
cause all patients in a centre had the same outcome
(either all successes or all failures). However, there was
still a reduction in power even in scenarios where no
centres would be dropped from the analysis.
Random-effects and GEE with non-robust SEs gave

close to nominal type I error rates across all scenarios.
They both gave similar power, and had either the same
or higher power compared to Mantel-Haenszel in all
scenarios. They also generally had the same or higher
power than fixed-effects, apart from the scenarios where
fixed-effects gained power due to the large inflation in
the type I error rates.
Our sensitivity analysis found that GEE with robust

SEs lead to severely inflated type I error rates with a
small number of centres, and slightly inflated error rates
even with 50 and 100 centres. Therefore, we do not rec-
ommend its use in the analysis of multicentre RCTs.

Recommendations
When and why to account for centre-effects
When to account for centre-effects in the analysis de-
pends on the trial design, specifically whether centre has
been used as a stratification factor in the randomisation
process. If centre has been stratified on, then we rec-
ommend it be included in the analysis to ensure correct
p-values and confidence intervals, and to avoid a loss in
power. If centre has not been stratified on, we recom-
mend it be included in the analysis if the ICC is ex-
pected to be large, as this will increase power.
However, in both of the above scenarios, centre should

only be included in the analysis if adjustment is unlikely
to lead to convergence problems or unstable estimates.

How to account for centre-effects
We do not recommend the use of either Mantel-
Haenszel or GEE with robust SEs, as both have been
shown to perform poorly in many scenarios.
Fixed-effects can be used with a small number of cen-

tres, though should be avoided with a moderate or large
number of centres. Random-effects and GEE with non-
robust SEs should be used with a moderate or large
number of centres. They can also be used with a small
number of centres; however, their use has not been
assessed with fewer than 5 centres, so fixed-effects may
be preferable with only 2–3 centres.

A warning against data-driven model selection
In some scenarios, it may be tempting to assess the
model assumptions, or to test model fit before deciding
on a final analysis model. For example, we could test
whether the ICC > 0 and remove the centre-effects from
the analysis if the result is non-significant. Likewise,
when using a mixed-effects logistic regression model we
could assess the normality of the random-effects, and
use a different analysis method if the normality assump-
tion is in doubt. Although both of these procedures may
seem sensible, a large amount of research has showing
that using trial data to choose the method of analysis
can lead to biased results and incorrect type I error rates
[21-24]. Furthermore, there is usually little to be lost by
accounting for centre-effects when the ICC truly is 0,
and most research has found that estimation and infer-
ence regarding the treatment effect in mixed-effects lo-
gistic regression models is robust to the misspecification
of the distribution of the centre-effects [18,25]. There-
fore, the method of analysis should be pre-specified in
the protocol or statistical analysis plan, and should not
be modified based assessment of the data.

Limitations
Our study had several limitations. There are some
methods of analysis that could potentially be used for
multicentre trials with a binary endpoint that we did not
consider, such as conditional logistic regression, propen-
sity scores [26], or a permutation test approach [27,28].
Secondly, we generated data for the simulation study
based on a random-effects model, which may have given
an unfair advantage to random-effects models in the
analysis. However, previous research has shown that,
with a continuous outcome, random-effects outper-
formed fixed-effects even when the data were generated
under a fixed-effects model [3]; therefore, it is unlikely
that this is the sole reason random-effects performed so
well. Finally, we have not considered the issue of
treatment-by-centre interaction. We agree with the ICH
E9 guidelines which state that treatment-by-centre inter-
actions should not be addressed as part of the primary
analysis [29], and have therefore focused on methods
which reflect the primary analysis.

Conclusion
Fixed-effects, random-effects, or GEE with non-robust
SEs should be used with a small number of centres.
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With a moderate or large number of centres, we recom-
mend the use of either random-effects or GEE with a
non-robust SE.

Additional file

Additional file 1: Additional methods and results.
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