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Abstract
Background: Cross-sectional studies with binary outcomes analyzed by logistic regression are frequent
in the epidemiological literature. However, the odds ratio can importantly overestimate the prevalence
ratio, the measure of choice in these studies. Also, controlling for confounding is not equivalent for the
two measures. In this paper we explore alternatives for modeling data of such studies with techniques that
directly estimate the prevalence ratio.

Methods: We compared Cox regression with constant time at risk, Poisson regression and log-binomial
regression against the standard Mantel-Haenszel estimators. Models with robust variance estimators in
Cox and Poisson regressions and variance corrected by the scale parameter in Poisson regression were
also evaluated.

Results: Three outcomes, from a cross-sectional study carried out in Pelotas, Brazil, with different levels
of prevalence were explored: weight-for-age deficit (4%), asthma (31%) and mother in a paid job (52%).
Unadjusted Cox/Poisson regression and Poisson regression with scale parameter adjusted by deviance
performed worst in terms of interval estimates. Poisson regression with scale parameter adjusted by χ2

showed variable performance depending on the outcome prevalence. Cox/Poisson regression with robust
variance, and log-binomial regression performed equally well when the model was correctly specified.

Conclusions: Cox or Poisson regression with robust variance and log-binomial regression provide
correct estimates and are a better alternative for the analysis of cross-sectional studies with binary
outcomes than logistic regression, since the prevalence ratio is more interpretable and easier to
communicate to non-specialists than the odds ratio. However, precautions are needed to avoid estimation
problems in specific situations.

Background
Epidemiologic studies found in the literature are fre-
quently cross-sectional, as this is a simple, fast and inex-
pensive design alternative. Often the outcomes are binary,

and logistic regression is used for the analysis. This results
in the odds ratio being frequently reported in situations
where incidence or prevalence ratios are estimable,
despite the fact that it is "biologically interpretable only
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insofar as it estimates the incidence-proportion or inci-
dence-density ratio" [1].

From a survey done by the authors in the International
Journal of Epidemiology and in the Revista de Saúde
Pública (São Paulo, Brazil) published in 1998, 221 origi-
nal articles were found. Among these, 110 (50%) were
based on cross-sectional studies, and 45 (20%) on longi-
tudinal studies. Logistic regression was used for the analy-
sis of 37 (34%) and 10 (22%) of these studies,
respectively. We have, therefore, that an important pro-
portion of such studies end up reporting odds ratios, the
effect measure yielded by logistic regression, rather than
prevalence or incidence ratios.

The use of odds ratios is absolutely correct. There is noth-
ing intrinsically wrong with them. But, when working
with frequent outcomes, what is common in cross-sec-
tional studies, the odds ratio can strongly overestimate the
prevalence ratio. Here resides the most common mistake
associated with odds ratios in our experience: the authors
"forget" what their measure of association is and make
interpretations such as "the exposed group has a risk of
illness four times greater than the non-exposed group".
The relative risk interpretation given to the odds ratio can
be misleading, in theoretical and practical terms, espe-
cially if used for definition of policy priorities in conjunc-
tion with other true relative risks [1–4].

Additionally, logistic regression is often used for the sake
of control of confounding and adjustment of interactions.
But confounding and interaction are dependent on the
measure of effect, so that controlling for confounding for
the odds ratio is not the same thing as doing so for the
prevalence ratio [5,6]. Therefore, interpreting the odds
ratio as if it were a prevalence ratio is inadequate not only
in terms of the possible overestimation, but also because
confounding may not be appropriately controlled.

Several alternatives have been discussed in the literature
for the analysis of binary outcomes in cross-sectional (or
longitudinal) studies using the prevalence ratio rather
than the odds ratio. The simplest way is to transform the
odds ratios obtained by logistic regression into prevalence
ratios [7–9]. Another possibility is to use a statistical
model that estimates directly the prevalence ratio and its
confidence interval. Alternatives explored in the epidemi-
ological literature are Cox regression with equal times of
follow-up assigned to all individuals [10], log-binomial
regression (a generalized linear model with a logarithmic
link function and binomial distribution for the residual)
[7,11–13], Poisson regression [13] and complementary
log-log model, where the link function is log(- log(1 - π))
and the distribution is binomial [13,14].

The authors that contributed to the discussion have not
reached a conclusion on which would be the best
approach, and only three publications make some com-
parison among available alternatives [4,13,15]. Possible
fixes for the problems related to confidence intervals in
some of the techniques proposed were dealt with to some
extent by one of the papers [13], where the conclusion is
that "there are no valid reasons for the systematic choice
of odds ratio and of the logistic regression model to esti-
mate prevalence rate ratios unless the type of study imper-
atively requires their use."

We have applied, in the context of a cross-sectional study,
log-binomial regression, Cox regression, and Poisson
regression. Corrections for the standard errors were
included for Cox and Poisson regressions. Also, to
increase the applicability of the results, a confounder was
always included in the scenarios studied, which involved
outcomes of varying prevalences. The point and interval
estimates obtained with each approach were compared to
the standard Mantel-Haenszel-like prevalence ratios and
confidence interval estimators.

Methods
Using Cox regression to analyze a binary outcome in a
cross-sectional study was suggested by Lee & Chia [10],
and assessed by others [4,15]. Usually, Cox regression is
used to analyze time-to-event data, that is, the response is
the time an individual takes to present the outcome of
interest. Individuals that never get ill are assigned the total
length of time of the follow-up, and are treated as censored,
meaning that it is not known when they will get ill, but at
least until the time of the end of the follow-up they are
well. Individuals lost to follow-up are treated in a similar
way. Cox regression estimates the hazard rate function
that expresses how the hazard rate depends upon a set of
covariates. The model formulation is

h(t) = h0(t) exp(β1z1 + ... + βkzk )(1)

where h0(t) is the base hazard function of time, zi are cov-
ariates and βi, the coefficients for the k covariates. The Cox
model treats h0(t) as a nuisance function and actually does
not estimate it [16].

When a constant risk period is assigned to everyone in the
cohort, the hazard rate ratio estimated by Cox regression
equals the cumulative incidence ratio in longitudinal
studies, or the prevalence ratio in cross-sectional studies
[17,18]. Although this model can produce correct point
estimates, the underlying distribution of the response is
Poisson. As prevalence data in a cross-sectional study
follow a binomial distribution, the variance of the coeffi-
cients tends to be overestimated, resulting in wider
confidence intervals compared to those based on the
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binomial distribution. This is easily explained by compar-
ing the binomial variance, p(1-p), with a maximum of
0,25 when p = 0,5 with Poisson variance, λ, that grows
steadily with the intensity of the process. That is, the vari-
ance estimated by the Poisson model will be very close to
the binomial variance when the outcome is rare, but will
be increasingly greater as the outcome becomes more fre-
quent. In such a situation we have underdispersion, the
opposite to the more commonly observed overdispersion,
where the data is more dispersed than the model predicts.

It is possible to improve the situation using the robust var-
iance estimates proposed by Lin & Wei [19], similar to
other robust sandwich estimators proposed for parametric
models, such as Huber's sandwich estimator [20]. In this
paper, Cox regression with equal follow-up times was
assessed, with standard and robust variance estimates.

Poisson regression is commonly used in epidemiology to
analyze longitudinal studies where the outcome is a count
of episodes of an illness occurring over time (e.g. episodes
of diarrhea). The model formulation is

where n is the count of events for a given individual, t the
time it was followed-up, and Xi the covariates. The model
parameters (βi) are log relative risks. In this context, Pois-
son regression is equivalent to Cox regression [21], and
the parameters estimated are the same.

As described for Cox regression, the prevalence ratio is
directly estimated by the model, and the confidence inter-
vals are wider than those provided by a binomial model.
A simple remedy is to multiply the estimated Poisson var-
iance by some estimate of underdispersion (or overdisper-
sion). These estimates can be based on the deviance or the
chi-square of the model, dividing these quantities by the
residual degrees of freedom [22,23]. In practice, this ratio
is used as a scale parameter, replacing the original Poisson
value of 1. A robust variance estimate is also available for
the Poisson model, based on the Huber sandwich esti-
mate [20] (which again yields results that are equal to Cox
regression with robust variance). This alternative is known
to underestimate the true variability with moderately
sized samples, while adjusting the scale parameter tends
to overestimate it. Other alternatives would be jackknife
and bootstrap variance estimates [23]. We decided not to
use the latter alternatives as they are not directly available
in standard statistical software. Thus, Poisson regression
was used in this paper with unadjusted variances, with
scale parameter adjustment for both deviance and chi-
square statistics, and with robust variance estimates.

The last model assessed was the log-binomial model [15]
– a generalized linear model where the link function is the
logarithm of the proportion under study and the distribu-
tion of the error is binomial [4,7,11,12,15]. The measure
of effect in this model is also the relative risk.

For k covariates the model is written as

log(π) = β0 +β1X1 + ... + βkXk (3)

where π is the probability of success (e. g., the proportion
of sick persons in a group), and Xi the covariates. The rel-
ative risk estimate of a given covariate is eβ.

Since log(π) must be in the interval -∞ to 0, restrictions in
the estimation process have to be used to avoid predicting
probabilities out of the [0,1] interval. When estimates are
on the boundaries of the valid parameter space, the esti-
mates of the Newton-Raphson method will not converge
to the maximum likelihood estimates [24]. Convergence
problems in the estimation process are most likely to hap-
pen when the model contains a continuous covariate or
multiple politomic covariates, or the outcome prevalence
is high [12,24]. When the estimates are not on the bound-
ary of the parameter space, convergence problems may
still happen, and better starting values for the estimation
process than the default used by the software will help.
Most log-binomial models fitted in this paper used the
default Stata estimation options, without convergence
problems. In one case, when the model failed to converge,
the "search" option, which makes the procedure search
for a better starting value, was used [25].

The results obtained from the various models were com-
pared to the pooled Mantel-Haenszel-like prevalence
ratios (MHPR) and corresponding confidence intervals,
used here as the reference results. Mantel-Haenszel esti-
mates are easy to obtain in simple situations such as the
ones dealt with in this work (one exposure and one con-
founder). However, for more complex situations, their
estimation is more complicated and the use of statistical
models is more efficient.

All the analyses were performed with Stata 7.0 [25], and
the actual command lines used are listed below. Each out-
come-exposure-confounder combination was represented
by one row in the dataset and its frequency given by the
variable freq.

*** M-H relative risk

cs ill exposed [fweight = freq], by(confounder)

*** Poisson regression unadjusted

log
n

t
X Xk k







= + + + ( )β β β0 1 1 2
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poisson ill exposed confounder [fweight = freq], irr

*** Poisson regression adjusted by chi-squared

glm ill exposed confounder [fweight = freq], family(poisson)
scale(x2) eform

*** Poisson regression adjusted by deviance

glm ill exposed confounder [fweight = freq], family(poisson)
scale(dev) eform irls

*** Poisson regression with robust variance

poisson ill exposed confounder [fweight = freq], irr r

*** Log-binomial regression

glm ill exposed confounder [fweight = freq], family(binomial)
link(log) eform

*** Odds ratio from logistic regression

logistic ill exposed confounder [fweight = freq]

For the comparison of the above techniques, real data
from a population-based survey were used. A birth cohort
was initiated in 1993, including all births happening in
Pelotas, Southern Brazil [26]. These children were seen at
birth, and their mothers interviewed. At 1 and 3 months
of age, a sub-sample of 655 were sought for follow-up
information. At 6 and 12 months, a larger sub-sample
(including the 655 seen at 1 and 3 months) was sought,
that comprised all children born with low birthweight
and 20% of the remaining children. At these points, 1363
children were sought. The data used in this work came
from another visit done between November 1997 and
April 1998, when the children were 4–5 years-old. The
children sought were the same as those in the 12-month
revisit, and 1273 (93%) were actually interviewed. From
the 90 children lost to follow-up, 61 (68%) had moved to
other towns, 18 (20%) could not be found, 6 (7%) had
died, and 5 (6%) refused to participate. The children were
submitted to a nutritional assessment (weight and height)
and their mothers answered a standardized pre-coded
questionnaire including information on socioeconomic,
demographic, reproductive, and health characteristics.

Three outcomes with different prevalences were used in
the analyses, each in conjunction with a risk factor and a
confounding factor, in a way to form 3 distinct situations.
The three sets of variables used respectively as outcome,
risk factor and confounder were: situation 1 – under-
weight (weight for age Z-score < -2), previous hospitaliza-
tion and birth weight; situation 2 – asthma (asthma or

bronchitis reported by the person responsible for the
child in study), whether mother smoked and social class;
situation 3 – status of maternal employment (whether or
not in a paid job), father living with the family and social
class. All variables were made dichotomous in order to
simplify the comparisons and understanding of the
models.

In order to widen the scenarios available, each set of vari-
ables was manipulated to increase the level of confound-
ing. This was achieved by arbitrary changes in the
prevalences of the risk and confounding factors, re-
weighting the relevant strata in the data in a way to keep
the sample size constant. The original and manipulated
data are fully presented in the results section.

Confounding was measured by the proportional change
from the crude prevalence ratio to the adjusted (Mantel-
Haenszel) prevalence ratio using the expression

, so that
whenever the adjusted prevalence ratio was smaller than
the crude, confounding was negative.

Results
Underweight was the least common outcome studied,
with a prevalence of 4.1%. Asthma (prevalence = 31.2%),
was intermediate and mother in a paid job was the com-
monest (prevalence = 51.4%). In the modified situation 1,
underweight prevalence was increased in the low birth
weight group from 7.8% to 10.4%, changing confounding
from -14 to -18%. The overall prevalence of underweight
changed to 4.9% (Tables 1 and 2). In situation 2, the prev-
alence of asthma was reduced from 22.7% to 12.7% in the
upper class and increased from 38.1% to 52.1% in the
lower class. Confounding changed from -8% to -17%.
Overall asthma prevalence changed from 31.2% to 34.3%
(Tables 3 and 4). In situation 3, confounding was
increased by changing both the prevalences of the expo-
sure and the outcome, achieving an increase from 4% to
25%. This was the only situation where the test for heter-
ogeneity of prevalence ratios across strata was significant,
indicating an interaction (Tables 5 and 6).

Comparing the results of the different models in situation
1 (Table 7), we see that the point estimates obtained with
Cox, Poisson and log-binomial models are very close to
the Mantel-Haenszel prevalence ratio (MHPR) for the
original and modified data. In terms of the confidence
intervals, the differences between Cox, Poisson and log-
binomial models and the reference were less than 5%,
except for Poisson scaled by deviance, where the CIs were
approximately 50% narrower.

confounding
PR M H PR crude

PR crude
=

−( ) − ( )
( ) ×100
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Table 1: Absolute frequencies, outcome prevalences, exposure prevalences, crude and pooled prevalence ratio (PR) estimates, and 
relative confounding for the analysis of the original data using underweight (weight for age Z-score < -2) as the outcome, previous 
hospitalization as the risk factor and low birth weight as confounder (situation 1 original).

First stratum: Normal birth weight 

Underweight Normal All 

N Prev. N N Exp. prev. = 19.2%

Ever in hospital 8 4.7% 163 171 PR = 2.40
Never 14 1.9% 704 718 M-H weight = 2.69
All 22 2.5% 867 889

Second stratum: Low birth weight 

Underweight Normal All 

N Prev. N N Exp. prev. = 31.1%

Ever in hospital 16 13.4% 103 119 PR = 2.54
Never 14 5.3% 250 264 M-H weight = 4.35
All 30 7.8% 353 383

Combined strata: Normal and low birth weight 
Underweight Normal All Exp. prev. = 22.8%

N Prev. N N PR (crude) = 2.90

Ever in hospital 24 8.3% 266 290 PR (M-H) = 2.48
Never 28 2.9% 954 982 Confounding = -14.4%
All 52 4.1% 1220 1272 P-value(het)*= 0.9

* P-value for testing heterogeneity of the prevalence ratios across strata.

Table 2: Absolute frequencies, outcome prevalences, exposure prevalences, crude and pooled prevalence ratio (PR) estimates, and 
relative confounding for the analysis of the modified data using underweight (weight for age Z-score < - 2) as the outcome, previous 
hospitalization as the risk factor and low birth weight as confounder (situation 1 modified).

First stratum: Normal birth weight 

Underweight Normal All 

N Prev. N N Exp. prev. = 19.2%

Ever in hospital 8 4.7% 163 171 PR = 2.40
Never 14 1.9% 704 718 M-H weight = 2.69
All 22 2.5% 867 889

Second stratum: Low birth weight 

Underweight Normal All 

N Prev. N N Exp. prev. = 31.1%

Ever in hospital 22 18.5% 97 119 PR = 2.71
Never 18 6.8% 246 264 M-H weight = 5.59
All 40 10.4% 343 383
Page 5 of 13
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Combined strata: Normal and low birth weight 
Underweight Normal All Exp. prev. = 22.8%

N Prev. N N PR (crude) = 3.17

Ever in hospital 30 10.3% 260 290 PR (M-H) = 2.61
Never 32 3.3% 950 982 Confounding = -17.8%
All 62 4.9% 1210 1272 P-value(het)*= 0.8

* P-value for testing heterogeneity of the prevalence ratios across strata.

Table 3: Absolute frequencies, outcome prevalences, exposure prevalences, crude and pooled prevalence ratio (PR) estimates, and 
relative confounding for the analysis of the original data using asthma as the outcome, maternal smoking as the risk factor and social 
class as confounder (situation 2 original).

First stratum: High social class 

Asthma No All 

N Prev. N N Exp. prev. = 26.6%

Mother smokes 37 25.7% 107 144 PR = 1.19
No 86 21.6% 312 398 M-H weight = 22.85
All 123 22.7% 419 542

Second stratum: Low social class 

Asthma No All 

N Prev. N N Exp. prev. = 43.3%

Mother smokes 122 42.8% 163 285 PR = 1.24
No 129 34.6% 244 373 M-H weight = 55.87
All 251 38.1% 407 658

Combined strata: High and low social class 

Asthma No All Exp. prev. = 35.8%

N Prev. N N PR (crude) = 1.33

Mother smokes 159 37.1% 270 429 PR (M-H) = 1.22
No 215 27.9% 556 771 Confounding = -7.9%
All 374 31.2% 826 1200 P-value(het)*= 0.8

* P-value for testing heterogeneity of the prevalence ratios across strata.

Table 2: Absolute frequencies, outcome prevalences, exposure prevalences, crude and pooled prevalence ratio (PR) estimates, and 
relative confounding for the analysis of the modified data using underweight (weight for age Z-score < - 2) as the outcome, previous 
hospitalization as the risk factor and low birth weight as confounder (situation 1 modified). (Continued)
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Situation 2 (Table 8) was similar to situation 1 in terms of
point estimates. Confidence intervals were strongly over-
estimated by unadjusted Cox/Poisson models. In the
modified data, the 95%CI was overestimated by 11% by
Poisson regression with scale parameter adjusted by χ2.

In situation 3 (Table 9), the outcome prevalence was high-
est, and there was a significant interaction between risk
factor and confounder. Ignoring the interaction (i. e.
using a misspecified model), the log-binomial model per-
formed slightly worse than the Cox and Poisson models
in relation to the point estimates. The latter presented a
maximum difference of 2% compared to the MHPR, while
the log-binomial estimates were up to 8.7% greater. In
terms of interval estimates, only the Cox/Poisson models
with robust variance presented differences less than 5%
for both the original and modified data. An interaction
term was included in the robust Poisson and log-binomial
regressions. In the original situation, identical results (up
to the third decimal place) were obtained from both mod-

els, matching the stratum-specific relative risks and confi-
dence intervals. However, in the modified situation, the
log-binomial model did not converge, while the robust
Poisson model again reproduced the stratum-specific esti-
mates. A common reason for non-convergence is inappro-
priate starting values for model parameters. Stata's option
"search", which specifies that the command "glm" should
search for good starting values, solved the problem and,
with this option, the results obtained from the log-bino-
mial model were again virtually identical to Poisson
regression.

A graphical summary of the results concerning the interval
estimates is shown in Figure 1. It is clear from the figure
that robust Poisson/Cox regression and log-binomial
regression are the best performers, consistently producing
the confidence intervals with amplitude closest to the ref-
erence. In third place, but with some confidence intervals
nearly 20% wider than the reference, ranked Poisson
regression with the scale parameter adjusted by χ2.

Table 4: Absolute frequencies, outcome prevalences, exposure prevalences, crude and pooled prevalence ratio (PR) estimates, and 
relative confounding for the analysis of the modified data using asthma as the outcome, maternal smoking as the risk factor and social 
class as confounder (situation 2 modified).

First stratum: High social class 

Asthma No All 

N Prev. N N Exp. prev. = 26.6%

Mother smokes 21 14.6% 123 144 PR = 1.21
No 48 12.1% 350 398 M-H weight = 12.75
All 69 12.7% 473 542

Second stratum: Low social class 

Asthma No All 

N Prev. N N Exp. prev. = 43.3%

Mother smokes 194 68.1% 91 285 PR = 1.70
No 149 39.9% 224 373 M-H weight = 64.54
All 343 52.1% 315 658

Combined strata: High and low social class 

Asthma No All Exp. prev. = 35.8%

N Prev. N N PR (crude) = 1.96

Mother smokes 215 50.1% 214 429 PR (M-H) = 1.62
No 197 25.6% 574 771 Confounding = -17.3%
All 412 34.3% 788 1200 P-value(het)*= 0.2

* P-value for testing heterogeneity of the prevalence ratios across strata.
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Discussion
The literature on the different alternatives to analyze
cross-sectional or longitudinal data using prevalence (or
cumulative incidence) ratios instead of odd ratios has not
yet proposed a strategy that produces both point and
interval acceptable estimates. To our knowledge this is the
first paper to focus on different strategies and compare
them to a suitable reference in terms of the prevalence
ratios and confidence intervals obtained.

We have shown that there are several alternatives available
that will provide very good results in terms of point esti-
mates: Cox, Poisson and log-binomial regression. The
case of interval estimates is more complicated, as some
models will overestimate or underestimate them, in dif-
ferent situations. Even so, we are still left with three viable
alternatives: log-binomial regression, Cox/Poisson regres-

sion with robust variance, and Poisson regression with
scale parameter adjusted by χ2.

One limitation of this work is not having dealt with con-
tinuous covariates. The main reason was the reference
used. The Mantel-Haenszel techniques work for categori-
cal variables only. Furthermore, most epidemiological
analyses involve only categorical variables. The main
problem with this omission is that continuous variables
are a potential cause for model misbehavior, that is, the
log-binomial model not converging, and the Poisson
model producing estimates of individual probabilities
greater than 1. This situation happens when the estimates
are on the boundary of the parameter space, and is illus-
trated with the artificial data presented by Deddens in a
paper where a simple strategy, the COPY method, was
proposed to achieve convergence when fitting log-bino-
mial models in such a case [27].

Comparison of the relative differences between the 95% confidence intervals obtained by unadjusted Poisson/Cox regression, Poisson regression with scale factor adjusted by χ2 and deviance, Poisson/Cox regression with robust variances and log-bino-mial regression and the Cornfield 95% confidence interval for each of the six situations studiedFigure 1
Comparison of the relative differences between the 95% confidence intervals obtained by unadjusted Poisson/Cox regression, 
Poisson regression with scale factor adjusted by χ2 and deviance, Poisson/Cox regression with robust variances and log-bino-
mial regression and the Cornfield 95% confidence interval for each of the six situations studied. S1a (outcome prevalence / 
confounding): 4.1% / 14%; S1B: 4.9% / 18%; S2a: 31.2% / 8%; S2b: 34% / 17%; S3a: 51% / 4%; S3b: 54% / 25%.
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Table 5: Absolute frequencies, outcome prevalences, exposure prevalences, crude and pooled prevalence ratio (PR) estimates, and 
relative confounding for the analysis of the original data using mother in a paid job as the outcome, father living with the family as the 
risk factor and social class as confounder (situation 3 original).

First stratum: High social class 

Mother employed No All 

N Prev. N N Prev. exp. = 15.3%

Father Present 66 79.5% 17 83 PR = 1.46
No 250 54.5% 209 459 M-H weight = 38.28
All 316 58.3% 226 542

Second stratum: Low social class 

Mother employed No All 

N Prev. N N Prev. exp. = 24.0%

Father present 112 70.9% 46 158 PR = 1.88
No 189 37.8% 311 500 M-H weight = 45.38
All 301 45.7% 357 658

Combined strata: High and low social class 

Mother employed No All Prev. exp. = 20.1%

N Prev. N N PR (crude) = 1.61

Father present 178 73.9% 63 241 PR (M-H) = 1.69
No 439 45.8% 520 959 Confounding = 4.4%
All 617 51.4% 583 1200 P-value(het) *= 0.01

* P-value for testing heterogeneity of the prevalence ratios across strata.

Table 6: Absolute frequencies, outcome prevalences, exposure prevalences, crude and pooled prevalence ratio (PR) estimates, and 
relative confounding for the analysis of the modified data using mother in a paid job as the outcome, father living with the family as the 
risk factor and social class as confounder (situation 3 modified).

First stratum: High social class 

Mother employed No All 

N Prev. N N Prev. exp. = 15.0%

Father Present 73 90.1% 8 81 PR = 1.80
No 230 50.0% 230 460 M-H weight = 34.44
All 303 56.0% 238 541

Second stratum: Low social class 

Mother employed No All 

N Prev. N N Prev. exp.= 80.0%

Father Present 295 56.0% 232 527 PR = 1.39
No 53 40.2% 79 132 M-H weight = 42.38
All 348 52.8% 311 659
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The log-binomial regression, used without any correction
to the standard errors, presented results that were equiva-
lent to those yielded by robust Poisson/Cox regression in
situations 1 and 2. In situation 3, where an interaction
was ignored, the model tended to present confidence
intervals that were too narrow (up to 10.4%) compared to
the reference, and slightly different point estimates. This
situation was included in this exercise to present a sce-
nario with a misspecified model, situation that is bound
to happen in reported analyses, as failing to look for or
correctly identifying interactions is not infrequent. When
the correct model (including the interaction) was fitted,
the results were again equivalent to those yielded by the
reference and robust Poisson/Cox regression in the origi-
nal data. In the modified data the model failed to con-
verge, what was solved by using better starting values for
the estimation procedure. In situations where the esti-
mates are on the boundary of the parameter space the
model will not converge, unless a strategy such as the
COPY method is used [27].

Cox regression has been suggested as an alternative to
logistic regression but the problems with the variance esti-
mates were not dealt with [4,10,15]. As expected, we
showed that confidence intervals can be strongly overesti-
mated (up to 69% in our examples using real data). The
use of robust variance estimates [19], as we proposed,
improved variance estimation considerably, limiting the
difference relative to the reference confidence interval to
less than 3% in the studied examples. Poisson regression,
as mentioned before, works similarly, and has the advan-
tage over Cox regression of using a command syntax sim-
ilar to linear and logistic regressions in Stata.

The use of Poisson regression offers still other alternatives
by means of changing the scale parameter to correct the
standard errors when over or underdispersion is observed
[22]. In the set of situations we presented, correction by

the Pearson χ2 was superior to correction by the deviance,
and, although not as good as robust estimates, repre-
sented a considerable improvement in relation to the
uncorrected standard errors. The maximum observed
difference relative to the reference confidence intervals
was17%. Poisson regression, however, can also present
problems when the estimates are on the boundaries of the
parameter space, as mentioned above. It is strongly advis-
able that the individual probabilities are calculated
(Stata's "predict" command will do that) and examined.

We have used the robust Poisson model in the analysis of
several epidemiological studies, three of which have been
already published [28–30]. In all cases we have used the
same modeling strategy with logistic regression and
robust Poisson regression. In these real situations the final
sets of selected variables were the same, and the differ-
ences in model parameters within the expected between
odds ratios and prevalence ratios. Until more experience
is gathered, this may be a useful strategy to help identify
anomalous results with robust Poisson regression, along
with assessing the predicted individual probabilities.

The rapid and continuous evolution of statistical software
means that most packages will perform at least one of the
analyses that performed best in this exercise. Stata 7.0,
used here, and widely employed in epidemiology research
groups, can perform them all. It was not possible for us to
assess other packages in terms of what they can do, and
how to do it, as software like SPSS, SAS, S-Plus, among
others, were not available to us.

Conclusions
We have shown that the use of Cox or Poisson regression
without any adjustment for the analysis of cross-sectional
data, as suggested sometimes in the literature, may lead to
large errors in interval estimates. On the other hand, taken
the precautions discussed in the paper, the log-binomial

Combined strata: High and low social class 

Mother employed No All Prev. exp.= 50.7%

N Prev. N N PR (crude) = 1.27

Father Present 368 60.5% 240 608 PR (M-H) = 1.58
No 283 47.8% 309 592 Confounding = 24.6%
All 651 54.3% 549 1200 P-value(het) *= 0.01

* P-value for testing heterogeneity of the prevalence ratios across strata.

Table 6: Absolute frequencies, outcome prevalences, exposure prevalences, crude and pooled prevalence ratio (PR) estimates, and 
relative confounding for the analysis of the modified data using mother in a paid job as the outcome, father living with the family as the 
risk factor and social class as confounder (situation 3 modified). (Continued)
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Table 7: Comparison of prevalence ratios and respective confidence interval estimates (obtained by unadjusted Poisson/Cox regression, 
Poisson regression with scale factor adjusted by χ2 and deviance, Poisson/Cox regression with robust variances, log-binomial regression 
and logistic regression) and odds ratio with confidence interval estimate (obtained by logistic regression) with the Mantel-Haenszel 
prevalence ratio in the analysis of the original and modified data using underweight (weight for age Z-score < -2) as the outcome, 
previous hospitalization as the risk factor and low birth weight as confounder (situation1).

Original data Point estimate 95% Confidence interval

value % diff. lower upper width % diff.

PR Mantel-Haenszel 2.48 -- 1.46 4.23 2.78 --
PR Poisson/Cox (unadj) 2.48 -0.2% 1.43 4.31 2.88 3.6%
PR Poisson (χ2) 2.48 -0.2% 1.44 4.26 2.82 1.5%
PR Poisson (deviance) 2.48 -0.2% 1.89 3.25 1.36 -51.1%
PR Poisson/Cox (robust) 2.48 -0.2% 1.46 4.22 2.76 -0.6%
PR log-binomial 2.48 -0.1% 1.46 4.22 2.77 -0.4%
OR logistic regression 2.64 6.3% 1.49 4.68 3.18 14.6%

Modified data Point estimate 95% Confidence interval

value % diff. lower upper width % diff.

PR Mantel-Haenszel 2.61 -- 1.61 4.23 2.61 --
PR Poisson/Cox (unadj) 2.60 -0.4% 1.57 4.30 2.73 4.6%
PR Poisson (χ2) 2.60 -0.4% 1.59 4.26 2.67 2.4%
PR Poisson (deviance) 2.60 -0.4% 2.01 3.36 1.35 -48.3%
PR Poisson/Cox (robust) 2.60 -0.4% 1.61 4.19 2.58 -1.2%
PR log-binomial 2.61 -0.1% 1.61 4.21 2.60 -0.7%
OR logistic regression 2.85 9.3% 1.68 4.84 3.15 20.7%

Table 8: Comparison of prevalence ratios and respective confidence interval estimates (obtained by unadjusted Poisson/Cox regression, 
Poisson regression with scale factor adjusted by χ2 and deviance, Poisson/Cox regression with robust variances, log-binomial regression 
and logistic regression) and odds ratio with confidence interval estimate (obtained by logistic regression) with the Mantel-Haenszel 
prevalence ratio in the analysis of the original and modified data using asthma as the outcome, maternal smoking as the risk factor and 
social class as confounder (situation 2).

Original data Point estimate 95% Confidence interval

value % diff. lower upper width % diff.

PR Mantel-Haenszel 1.22 -- 1.03 1.45 0.41 --
PR Poisson/Cox (unadj) 1.22 0.0% 0.99 1.51 0.51 23.9%
PR Poisson (χ2) 1.22 0.0% 1.03 1.45 0.42 2.7%
PR Poisson (deviance) 1.22 0.0% 1.03 1.46 0.43 3.9%
PR Poisson/Cox (robust) 1.22 0.0% 1.03 1.45 0.41 -0.2%
PR log-binomial 1.23 0.1% 1.04 1.45 0.41 -0.4%
OR logistic regression 1.36 11.0% 1.05 1.76 0.71 70.9%

Modified data Point estimate 95% Confidence interval

value % diff. lower upper width % diff.

PR Mantel-Haenszel 1.62 -- 1.41 1.87 0.47 --
PR Poisson/Cox (unadj) 1.62 -0.4% 1.33 1.96 0.63 36.0%
PR Poisson (χ2) 1.62 -0.4% 1.38 1.90 0.52 10.9%
PR Poisson (deviance) 1.62 -0.4% 1.39 1.88 0.49 4.3%
PR Poisson/Cox (robust) 1.62 -0.4% 1.40 1.86 0.46 -2.0%
PR log-binomial 1.65 1.7% 1.44 1.90 0.46 -1.5%
OR logistic regression 2.49 53.5% 1.90 3.27 1.37 193.1%
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model and the Cox or Poisson models with adjusted vari-
ances provide correct point and interval estimates. It is,
therefore, not only possible, but actually easy to use other
models than logistic regression to analyze cross-sectional
(or longitudinal) data with binary outcomes, the advan-
tage being the prevalence (or cumulative incidence) ratio
as the measure of association, more interpretable and eas-
ier to communicate, especially to non-epidemiologists. It
is for the analyst to choose among these methods, based
on software availability and the analyst's training.
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