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Abstract
Background: Edwards's method is a widely used approach for fitting a sine curve to a time-series
of monthly frequencies. From this fitted curve, estimates of the seasonal intensity of occurrence
(i.e., peak-to-low ratio of the fitted curve) can be generated.

Methods: We discuss various approaches to the estimation of seasonal intensity assuming
Edwards's periodic model, including maximum likelihood estimation (MLE), least squares, weighted
least squares, and a new closed-form estimator based on a second-order moment statistic and non-
transformed data. Through an extensive Monte Carlo simulation study, we compare the finite
sample performance characteristics of the estimators discussed in this paper. Finally, all estimators
and confidence interval procedures discussed are compared in a re-analysis of data on the
seasonality of monocytic leukemia.

Results: We find that Edwards's estimator is substantially biased, particularly for small numbers of
events and very large or small amounts of seasonality. For the common setting of rare events and
moderate seasonality, the new estimator proposed in this paper yields less finite sample bias and
better mean squared error than either the MLE or weighted least squares. For large studies and
strong seasonality, MLE or weighted least squares appears to be the optimal analytic method among
those considered.

Conclusion: Edwards's estimator of the seasonal relative risk can exhibit substantial finite sample
bias. The alternative estimators considered in this paper should be preferred.

Background
In a classic paper, Edwards [1] describes a geometrically
motivated, moment-based method to fit a sine curve to a
time series of square-root transformed monthly frequen-
cies. From this basic framework, he derived both a test of
the null hypothesis of no seasonality and an estimator of
the intensity of seasonal occurrence (i.e., the peak-to-low
ratio of the fitted sine curve). Owing to its intuitive appeal
and computational simplicity, Edwards's and related

methods have been widely used in epidemiology in stud-
ies of seasonality, e.g., [2-7].

Although there has been considerable discussion of the
hypothesis testing procedure described by Edwards and a
variety of alternative tests have been proposed [8-12],
there has been relatively little discussion of the properties
of Edwards's estimator of the intensity of seasonal occur-
rence. St. Leger discusses some computational difficulties
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involved with maximum likelihood estimation of the
parameters in Edwards's model [13]. Nam compared the
performance of the MLE with a moment-based "locally
reasonable" estimator, similar to Edwards's estimator,
and concluded that the MLE was preferable when the sea-
sonal trend was strong [14].

In this paper, we review various approaches to the estima-
tion of the intensity of seasonal occurrence, including
Edwards's methods, least squares, weighted least squares,
and the MLE. We then propose a new closed-form
moment estimator of the peak-to-low ratio based on non-
transformed data and a second-order moment statistic.
Through an extensive Monte-Carlo simulation study, we
compare the finite sample performance of the estimators
discussed in this paper across a variety of data generating
distributions, including some that involve overdispersion
and autocorrelation of the outcome and thus depart from
the assumed model. All estimators and confidence inter-
val procedures discussed in this paper are applied in a rea-
nalysis of data on the seasonal incidence of monocytic
leukemia.

Methods
Data and Probability Model
Edwards's approach is used to study the seasonality of rare
events that arise from an underlying non-homogeneous
Poisson process with a rate given by the periodic function

λ(t) = μ{1 + αcos(2πt + θ)},

where μ is the total number of expected events in the year,
t is the time in years, θ is the phase angle, and α is the
hemi-amplitude of the periodic process.

We consider the situation in which the year is divided into
k equally-sized intervals and aggregate data are available
on the frequency of events occurring in each interval
across T years. We denote the observed frequencies with
Ni, i = 1, ..., k.

Edwards's probability model for these data is a discrete
approximation to the non-homogeneous Poisson process
and models the observed counts as independent Poisson
random variables with mean given by the periodic func-
tion

where i is the interval (e.g., quarter, month, week), and φ
+ 0.5 is the time of peak incidence. The parameter n is the
total expected number of events across all years, i.e., n =
μT.

In this paper, we focus on the estimation of the peak-to-
low ratio of the process, also termed the intensity of sea-
sonal occurrence or seasonal relative risk, and is given by

Edwards's Method

Edwards derives an estimator for α by first computing the
distance from the origin to a re-scaled center of gravity of

k point masses of weight  placed on the rim of a unit

circle at angles θi = 2πi/k, i = 1, ..., k. Using a first-order Tay-

lor series expansion he derives an expected value for this

quantity that depends on the true α. Setting the distance
from the origin to the center of gravity equal to its

expected distance and solving for α, Edwards derives a
moment-based estimator for a given by

Using the fact that the variance of  is approximately

, he shows that the approximate variance for E is 2/N

where N = ΣNi. Edwards estimates R by replacing α with

E, i.e.,

In the subsequent sections, we borrow this geometric
framework todevelop alternative estimators of α and R.

Moment-based Estimation of a Using Non-transformed 
Data
We consider two new estimators of α. Instead of basing
these on square-root transformed data, we use the data in
their original scale. The first estimator of α that we con-
sider depends on the distance from the origin to the center
of gravity of k masses of weight Ni each placed on the rim
of a unit circle in direction θi = 2πi/k, i.e.,

Let Dy =  sin(θi) be the vertical component and

Dx =  cos(θi) be the horizontal component of

the distance from origin to the center of gravity of the k
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masses. Let N = ΣNi. From the exact expressions for

E[Dx|N] and E[Dy|N] (see Additional file 1), a first-order

approximation for E[D|N] is given by:

Setting D equal to E[D|N] and solving for α yields the fol-
lowing moment-based estimator for α:

This estimator is the same as Nam's locally reasonable
estimator [14]. It can also be derived from least-squares
estimation of the parameters of the periodic model:

Ni = β0 + β1 sin(θi) + β2 cos(θi) + εi,

from which R is estimated as:

This relation also suggests a two-step weighted least-
squares estimator of R. In the first step, least squares is
used to estimate the parameters in (3) and then predicted

values of each  are generated. In the second step, the

parameters of (3) are estimated using weighted least

squares with weights given by wi = 1/ . The optimality

of these weights assumes that the variance of Ni is equal to

the expected value of Ni. This procedure could be iterated

until the estimates and weights converge.

The second estimator of α that we consider is based on the
second-order moment statistic D2. This statistic is appeal-
ing because we can express the expected value of E[D2|N]
exactly, whereas E[D|N] is only available to a first-order

approximation. Using the exact expressions for 

and  (see Additional file 1), we see that

Solving this expression for α yields the estimator

When D2 is less than N/k2 (the expected value of E[D2|N]
at α = 0), this estimator results in invalid (imaginary) esti-
mates of α. To remedy this, we propose the following
modified estimator

where

This modification insures that the quantity inside the
square root is always greater than or equal to zero. For

small values of D2, . As D2 increases, f converges

to 1 and D2 corresponds to the estimator using the exact

expression for E[D2|N].

Given an estimate of α, R can be estimated by substituting

 into the formula that relates R to α:

Ratio estimators such as  are known to be biased
upwards, particularly with sparse data. Later we discuss a
bias-correction term for this estimate of R.

Confidence Intervals for R
Constructing confidence intervals for R is problematic
because the null value lies on the boundary of the points
of support for R. Frangakis and Varadhan recently pro-
posed an approach for computing exact confidence limits
for the seasonal relative risk derived from simulation and
maximum likelihood estimation of parameters in a circu-
lar normal probability model.[19] Their approach can be
adapted to estimate confidence intervals for any of the
moment estimators proposed in this paper.

The approach involves finding the roots of the function

h(R) = |  - R| - q(R; α), where q(R; α) is the 1 - α quantile

of |  - R|. Note that q(R; α) depends on a particular esti-
mator, although we do not make this explicit in the nota-
tion. The lower confidence limit is either zero or the value
of the smaller root, whichever is larger. The upper confi-
dence limit is the value of the larger root. Since q cannot
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be expressed in closed form, it is estimated via simulation.
For a given value of R, data are simulated from the proba-

bility model and |  - R| is computed for each simulated

data set. In the simulation, the parameter φ can be held

fixed at its estimated value. The value of q(R; α) is then

estimated by taking the empirical 1 - α quantile of the
simulated values of q. The roots of h can be found by using
an iterative algorithm.

For the estimators considered in this paper, it is possible
that the function h will have only one root. This situation
occurs when the number of events is small and/or the sea-
sonality is strong enough so that no upper bound can be
placed on the strength of seasonality (the fitted trough of
the sine curve is close to zero). When only a single root is
found, we set the upper confidence limit to infinity.

While this approach yields confidence intervals that are
correct under the assumed probability model, it is compu-
tationally intensive and requires specialized software. We
also consider a simple ad hoc approach for the estimation
of approximate confidence limits for R. This approach is
based on a normal approximation to the sampling distri-

bution of log( ). We enforce the boundary constraint by
truncating the lower confidence limit at one. This proce-
dure yields a lower limit given by:

The upper limit is unbounded and given by

A first-order Taylor series approximation for the standard

error for the sampling distribution of log( ) is given by

For all estimators, .

Simulation Study
We compared the various estimators discussed in this
paper in a comprehensive Monte Carlo simulation study.
Initially, we set k = 12 (corresponding to monthly obser-
vations) with n = 150, n = 500, and n = 2500. For each set-
ting of k and n, we simulated data for values of R ranging
from 1.05 to 3.05 in increments of 0.25.

For each simulated data set, we evaluate the following five
estimators of R:

1. E: an estimate of  using Edwards's estimator of α,

2. LS: an estimate of R using least squares,

3. D2: an estimate of R using D2,

4. WLS: an estimate of R using weighted least squares,

5. MLE: an estimate of R using the maximum likelihood

estimate of α.

We consider various perturbations of these baseline
parameters in sensitivity analyses. First, we set k = 52 (cor-
responding to weekly observations) with n = 1000, n =
5000 and n = 10000. We also simulated data under two
different probability models that departed from the
assumed model: 1) a negative binomial model with the
mean given by Edwards's model (1), but in which the
counts were overdispersed with variance given by VAR[Ni]
= 1.5E[Ni]; and 2) a model that generated data with a mar-
ginal mean given by Edwards's model, but in which the
counts were strongly autocorrelated and overdispersed.
We created autocorrelation and overdispersion among the
observations by simulating N1 using Edwards's model,
and then generating each Ni, i = 2, ..., k by simulating Qi
from Edwards model and then letting Ni = Qi + 0.1{E[Ni-

1] - Ni-1}.

Additionally, we use the simulation results to evaluate the
adequacy of the ad hoc confidence interval procedure sug-
gested in section 2.4. For each simulated data set, we com-

pute a 95% confidence interval for D2, WLS, and MLE

and record the relative frequency of estimated confidence
intervals that contain the true parameter.

Computation
All simulations were performed in SAS V9.1 running on a
Windows XP platform using software created by the
authors. The maximum likelihood estimates were found
using PROC NLMIXED in which the likelihood function
(conditional on N) is maximized using a Newton-Raph-
son algorithm with a line search and boundary constraint
(see Additional file 2 for example program). For the
Monte Carlo simulation study, the true parameter value
was used as the starting point for the maximization rou-
tine. The weighted least-squares estimates were obtained
in a two-step procedure using PROC GENMOD.

Results

In table 1, we report the bias and MSE from the baseline
simulation. For all values of n and R, the new estimator
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D2 had the smallest bias of all those considered. For n =

150, D2 also had the smallest MSE for all values of R. For

n = 500 and n = 2500, D2 had minimal or close to min-

imal MSE for smaller values of R (R < 1.85); however, for

large values of R, WLS and MLE were better from the

MSE perspective. The MSE of the estimator LS was simi-

lar, but sometimes slightly larger, than that of WLS.

Edwards's estimator was the most biased and had the larg-
est MSE for all values of n and R. All estimators evaluated
were biased upwards for values of R close to unity, a con-

sequence of the behavior of the estimators near the
boundary.

In the sensitivity analyses in which we generated overdis-
persed and auto-correlated data, the same essential pat-

terns prevailed. The bias of D2 was minimal for all

values of R in each scenario. Edwards's estimator was the
most biased and had the largest MSE for all values of n
and R. In these simulations that depart from the assumed

model, the MSE of WLS was better than MLE for certain

values of R and n. This result is likely due to the fact that
the MLE is not based on the probability model used to

R̂

R̂

R̂

R̂ R̂

R̂

R̂

R̂

R̂ R̂

Table 1: Estimated bias and MSE for each estimator from the baseline simuala-tion for n = 150, 500, and 2500 based on 1,000 simulated 
datasets

n = 150
BIAS × 10 MSE × 10

True R
D2 LS WLS MLE E D2 LS WLS MLE E

1.05 1.93 3.07 3.07 3.12 3.17 0.85 1.51 1.51 1.55 1.63
1.30 0.63 1.87 1.86 2.05 2.04 0.90 1.32 1.30 1.38 1.51
1.55 0.23 1.59 1.57 1.65 1.94 1.51 1.90 1.84 1.83 2.32
1.80 0.16 1.63 1.60 1.62 2.28 2.35 2.82 2.66 2.63 3.86
2.05 0.18 1.75 1.68 1.72 2.84 3.31 3.94 3.65 3.71 6.29
2.30 0.37 2.06 1.99 1.99 3.85 4.68 5.62 5.04 5.01 10.06
2.55 0.60 2.44 2.33 2.34 5.18 6.30 7.67 6.72 6.85 17.16
2.80 0.83 2.84 2.66 2.69 7.35 8.53 10.51 8.94 9.22 46.54
3.05 1.10 3.30 3.03 3.06 10.27 11.34 14.20 11.67 12.29 193.5

n = 500
BIAS × 10 MSE × 10

True R
D2 LS WLS MLE E D2 LS WLS MLE E

1.05 0.75 1.29 1.29 1.33 1.30 0.16 0.28 0.28 0.30 0.29
1.30 -0.07 0.49 0.49 0.52 0.53 0.26 0.28 0.28 0.28 0.29
1.55 -0.13 0.40 0.40 0.41 0.52 0.43 0.44 0.43 0.42 0.48
1.80 -0.10 0.41 0.41 0.41 0.66 0.62 0.63 0.61 0.61 0.73
2.05 -0.07 0.45 0.44 0.44 0.93 0.85 0.88 0.85 0.84 1.12
2.30 -0.05 0.49 0.47 0.47 1.29 1.14 1.19 1.12 1.12 1.66
2.55 -0.02 0.55 0.52 0.52 1.80 1.51 1.58 1.47 1.47 2.48
2.80 0.03 0.63 0.59 0.60 2.47 1.97 2.08 1.90 1.90 3.70
3.05 0.08 0.72 0.67 0.67 3.31 2.52 2.67 2.40 2.40 5.45

n = 2500
BIAS × 10 MSE × 10

True R
D2 LS WLS MLE E D2 LS WLS MLE E

1.05 1.53 3.81 3.81 4.07 3.84 0.22 0.35 0.34 0.37 0.35
1.30 -0.64 0.89 0.87 0.86 1.02 0.58 0.55 0.55 0.55 0.57
1.55 -0.44 0.74 0.71 0.71 1.35 0.84 0.83 0.81 0.81 0.88
1.80 -0.32 0.76 0.70 0.69 2.40 1.19 1.20 1.14 1.15 1.35
2.05 -0.23 0.84 0.75 0.75 4.23 1.65 1.66 1.56 1.56 2.06
2.30 -0.13 0.97 0.85 0.82 6.98 2.22 2.24 2.07 2.07 3.18
2.55 0.00 1.15 0.97 0.92 10.77 2.93 2.96 2.69 2.70 4.94
2.80 0.16 1.37 1.15 1.11 15.76 3.79 3.83 3.43 3.44 7.73
3.05 0.28 1.58 1.28 1.24 21.98 4.80 4.86 4.27 4.29 11.99

R̂ R̂ R̂ R̂ R̂ R̂ R̂ R̂ R̂ R̂

R̂ R̂ R̂ R̂ R̂ R̂ R̂ R̂ R̂ R̂

R̂ R̂ R̂ R̂ R̂ R̂ R̂ R̂ R̂ R̂
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generate the data. In table 2, we report the MSE of D2 rel-

ative to WLS for the overdispersed and auto correlated

data-generating distributions, respectively. In these fig-

ures, relative MSEs below 1 indicate that D2 is preferable

from the MSE perspective. Both figures reveal that the rel-
ative MSE increases with R. For small values of R and n,

D2 is preferable. For larger values of R, WLS was prefer-

able. These results were the most pronounced in the set-

ting of autocorrelated data. The MSE of D2 was never

more than 13% greater than WLS; however, it was nearly

half as much for small values of R. For the simulations in

which k = 52, the estimator D2 continued to be the least

biased, but there was little difference in MSE between

D2, WLS, and MLE in terms of MSE across all values of

R.

In table 3, we report the estimated coverage probabilities
for the ad hoc confidence intervals computed for the esti-

mators D2, LS, and WLS. The actual coverage proba-

bilities are close to correct, usually within one to two

percentage points of the nominal 95%. The coverage
probabilities for these confidence intervals in the setting
of autocorrelation and overdispersion was substantially
lower, with actual coverage probabilities ranging from
87% to 96%.

As a side note, the algorithm that we used to find the MLE
experienced convergence problems close to R = 1. For R =
1.05, the MLE failed to converge in roughly 20% of the
simulated data sets. This problem diminished as R
increased. For R = 1.5 the MLE was located for 95% of the
simulated data sets. This is likely to be a result of near
non-identifiability of φ when the seasonality is weak.
More computationally-intensive approaches, such as a
grid search, might alleviate this problem; however, in the
context of a simulation study, we required an approach
that could converge rapidly. For all results discussed
below, we excluded simulated data sets for which the MLE
was not found. We found that the simulation results for
the non-missing estimators were largely unaffected by the
inclusion/exclusion of the simulations for which the MLE
was not located.

Example: Seasonality of Monocytic Leukemia
We compared the estimators proposed in this paper with
the MLE and the estimator of Edwards through a re-anal-

R̂

R̂

R̂

R̂ R̂

R̂

R̂

R̂

R̂ R̂ R̂

R̂ R̂ R̂

Table 2: Relative mean squared error of D2 to WLS

Overdispersed Autocorrelated
True R n = 150 n = 500 n = 2500 n = 150 n = 500 n = 2500

1.05 0.64 0.66 0.69 0.69 0.61 0.66
1.30 0.71 0.88 1.03 1.03 0.93 1.05
1.55 0.82 0.96 1.01 1.01 1.00 1.04
1.80 0.91 0.96 1.00 1.00 1.01 1.04
2.05 0.92 0.97 1.01 1.01 1.01 1.06
2.30 0.94 0.97 1.02 1.02 1.02 1.07
2.55 0.99 0.98 1.02 1.02 1.03 1.09
2.80 1.01 0.99 1.03 1.03 1.04 1.11
3.05 1.07 1.00 1.04 1.04 1.07 1.13

R̂ R̂

Table 3: Percentage of estimated ad hoc 95% confidence intervals that cover the true parameter

n = 150 n = 500 n = 2500
True R

D2 LS MLE D2 LS MLE D2 LS MLE

1.05 95.1 91.6 92.6 96.1 92.4 92.9 97.8 95.7 95.4
1.30 98.3 96.2 97.0 97.8 97.2 97.4 93.6 96.0 95.9
1.55 98.9 97.5 98.2 95.1 97.3 97.7 94.2 95.4 95.5
1.80 97.1 97.1 98.4 95.7 96.1 96.9 94.3 94.8 95.2
2.05 96.3 97.5 98.4 95.8 95.7 96.8 94.8 94.8 95.1
2.30 95.8 96.9 98.2 95.9 95.9 96.9 94.8 94.8 95.2
2.55 95.8 96.7 98.1 95.7 95.9 97.1 95.3 94.4 95.5
2.80 95.8 96.2 98.0 96.4 96.1 96.9 95.5 94.5 95.9
3.05 96.2 96.8 98.1 96.5 96.1 97.1 95.4 94.7 96.3

R̂ R̂ R̂ R̂ R̂ R̂ R̂ R̂ R̂
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ysis of data on the seasonal incidence of monocytic leuke-
mia in England and Wales from 1974–1998 (N = 2311, k
= 12) with monthly counts given as (203, 203, 197, 206,
204, 216, 165, 161, 177, 179, 200, 200). We used data
from the Office of National Statistics as reported by
Eatough [7]. In Table 4, we report the point estimate and
approximate 95% confidence limits corresponding to
each of the five estimators considered in the simulation
study. We also present the confidence limits computed
using the method of Frangakis and Varadhan [19]. These
confidence intervals could not be computed for the MLE
because the convergence problems experienced by the
maximization algorithm made the computation of q
infeasible.

The different estimators do not lead to substantively dif-
ferent interpretations of the data. Nevertheless, consistent

with the results of the simulation, the estimators D2 are

smaller than RLS and Edwards estimator. Given the large

number of events and the fact that the data exhibit only
moderate seasonality, the simulation study suggests that
Edwards estimator should be only moderately biased for
these data. The confidence intervals computed by the ad
hoc confidence interval procedure were nearly identical to
those of Frangakis and Varadhan.

Discussion
In this paper we have proposed a new estimator of the
peak-to-low ratio of a periodic process and compared it to
several alternative estimators, including Edwards's estima-
tor, the MLE, and weighted least squares. Studies employ-
ing Edwards's method often involve very rare events and
moderate seasonality. For these studies, the estimator pro-
posed in this paper appears to be optimal. It has less bias
and a smaller MSE than any of the estimators considered,
including the MLE and weighted least squares. Weighted
least squares was preferable from a MSE perspective in the
setting of frequent outcomes or strong seasonality. We
speculate that the simple estimator proposed in this paper

improves upon the estimator of Edwards and the other
moment-based estimator because it is based on an exact
rather than an approximate expression for the distance
from the origin to the center of gravity. We further specu-
late that the bias and inefficiency in the MLE is due to the
small event rates considered in this paper.

The ad hoc confidence interval procedure that we evalu-
ated performed reasonably well for data generated from
Edwards's probability model. If more precise confidence
intervals are needed, the computationally-intensive
approach proposed by Frangakis and Varadhan can be
employed [19]. Users should be aware that both of the
confidence intervals considered in this paper are model
based. If the underlying model is wrong, for example, in
the setting of strongly autocorrelated or overdispersed
data, the true coverage probabilities may differ from the
nominal 95%.

Because ratio estimators are known to be biased upwards,
particularly with sparse data, we also considered a bias-
corrected estimator based on the expected value of a sec-

ond-order Taylor series expansion of (1 + )/(1 - )

around α given by

This approximation led to the following bias-corrected
estimator of R:
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Table 4: Estimated peak-to-low ratio and 95% CI for the seasonal incidence of monocytic leukemia in England and Wales (1974–98) 
using four different estimators and two confidence interval procedures

Ad hoc
95% CL

Method of F & V
95% CL

Estimator Point Estimate Lower Limit Upper Limit Lower Limit Upper Limit

E

1.20 1.07 1.35 1.07 1.37

LS

1.20 1.06 1.34 1.07 1.36

D2

1.18 1.05 1.32 1.07 1.33

MLE

1.20 1.07 1.35 * *

R̂

R̂

R̂

R̂
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We found that estimators based on this correction factor
tended to be somewhat over-corrected, possibly because

they are based on an approximation of the variance of .

One important limitation of the estimators proposed in
this paper is that they are based on the assumption of a
single cyclical effect (harmonic) that can be well approxi-
mated by a sine curve. For more complex data, with mul-
tiple periodic components or a linear trend, alternative
statistical methods should be used. For such data there
exist more complex harmonic models [20,12], spectral
methods [21], and various periodic regression models.
Also, we outline an approach to estimating seasonal
intensity using a periodic generalized linear model that
assumes a log link and a Poisson distributed outcome (see
Additional file 3). This approach is based on a different
model for the mean, i.e., that the log of the expected value
of the counts is a sinusoidal function. However, it allows
for the inclusion of covariates and extends naturally to
variably-sized intervals through use of a Poisson offset.

Edwards's method has been widely used in epidemiology
in studies of seasonality. In this paper we have shown that
Edwards's estimator of the seasonal relative risk can be
substantially biased. The estimator proposed in this paper
represents a straightforward modification of Edwards's
estimator. Like that of Edwards, it is a simple estimator
that is available in closed form. For modest seasonality
and small numbers of events, this estimator appears to
have the best finite sample performance characteristics of
those estimators considered.

For more frequent events or stronger seasonality, the
weighted least-squares approach discussed in this paper is
preferable and is easily implemented using standard sta-
tistical software.
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