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Abstract
Background: Attributable fractions (AF) assess the proportion of cases in a population
attributable to certain risk factors but are infrequently reported and mostly calculated without
considering potential confounders. While logistic regression for adjusted individual estimates of
odds ratios (OR) is widely used, similar approaches for AFs are rarely applied.

Methods: Different methods for calculating adjusted AFs to risk factors of cardiovascular disease
(CVD) were applied using data from the National Health and Nutrition Examination Survey
(NHANES). We compared AFs from the unadjusted approach using Levin's formula, from Levin's
formula using adjusted OR estimates, from logistic regression according to Bruzzi's approach, from
logistic regression with sequential removal of risk factors ('sequential AF') and from logistic
regression with all possible removal sequences and subsequent averaging ('average AF').

Results: AFs following the unadjusted and adjusted (using adjusted ORs) Levin's approach yielded
clearly higher estimates with a total sum of more than 100% compared to adjusted approaches with
sums < 100%. Since AFs from logistic regression were related to the removal sequence of risk
factors, all possible sequences were considered and estimates were averaged. These average AFs
yielded plausible estimates of the population impact of considered risk factors on CVD with a total
sum of 90%. The average AFs for total and HDL cholesterol levels were 17%, for hypertension 16%,
for smoking 11%, and for diabetes 5%.

Conclusion: Average AFs provide plausible estimates of population attributable risks and should
therefore be reported at least to supplement unadjusted estimates. We provide functions/macros
for commonly used statistical programs to encourage other researchers to calculate and report
average AFs.

Background
The major burden of disease has shifted from communi-
cable to non-communicable diseases in high-income
countries during the past century [1,2]. Populations are

aging in most high income countries, resulting in a further
increase of non-communicable diseases [3]. This accumu-
lation of prevalent non-communicable diseases and their
sequelae represent a major challenge for health service
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capacities and financial resources. Policy makers need evi-
dence based advice for decisions on potential interven-
tions and population based prevention strategies.

While publications often report estimates of individual
associations such as relative risks or odds ratios, attributa-
ble fractions (AFs) are infrequently reported. The AF
quantifies the proportion of cases that can be attributed to
a certain risk factor for a specific disease, for example, the
proportion of lung cancer cases attributable to smoking.
Smokers have a highly increased risk of lung cancer. How-
ever, this individual risk does not give any information on
the relevance of smoking for lung cancer in a population
also containing nonsmokers. AFs help assessing a poten-
tial impact of preventive interventions on population
health.

A number of risk factors for non-communicable diseases
have been established such as hypertension for cardiovas-
cular disease [2]. Multivariable logistic regression has
become a standard procedure to provide valid estimates
of individual risk studies. Similar methods, however, have
rarely been applied for AFs, although corresponding
approaches have been described before [4-6]. Their infre-
quent application in public health research might particu-
larly be due to lacking inclusion of their estimates in
statistical software packages.

The main aim of this paper is to illustrate the use of AFs
by comparing different approaches estimating AFs. There-
fore we used established risk factors of cardiovascular dis-
ease in the 2005–2006 National Health and Nutrition
Examination Survey (NHANES) for illustration purposes
[7]. Additionally, we provide functions/macros for the fre-
quently used statistical software packages R [8], SAS [9],
and STATA [10], allowing readers to recalculate the results
shown and moreover, to encourage readers to calculate
and report adjusted AFs of their own research observa-
tions.

Methods
Definition of the attributable risk
Throughout this paper, we refer to the attributable frac-
tion (AF). A risk factor strongly associated with the dis-
ease, but infrequently prevalent in the population, is less
relevant compared with a risk factor of similar effect mag-
nitude affecting a larger proportion of the population. The
AF considers both, the individual association and the
exposure frequency and thus, allows to estimate the rele-
vance of a risk factor for a disease in a population. The def-
inition of AFs used in this paper reflects the proportion of
cases that can be attributed to a certain risk factor in a pop-
ulation.

Levin's formula
One of the most frequently applied approaches calculat-
ing the AF is the Levin formula. It is named after its first
describer who introduced the concept of calculating
attributable risks in 1953 [11]. The idea is to separate the
number of cases into expected and excess cases. The
expected cases are calculated under the assumption that
the proportion of cases should be equal among the
exposed and unexposed. The cases among the exposed
exceeding the expected number of cases based on the esti-
mate derived from the prevalence of the disease among
the unexposed are supposed to be cases attributable to the
risk factor. Based on this assumption Levin described a
formula that requires only the relative risk estimate (RR)
and the prevalence of the risk factor (p):

The relative risk is often approximated by the odds ratio
e.g. in cross-sectional studies.

Plug-in and Bruzzi's method
One approach sometimes used to adjust AFs for other
known risk factors considers adjusted odds ratio estimates
from multivariable logistic regression analysis in Levin's
formula [12,13]. This approach has a couple of disadvan-
tages as we outline in the discussion section. Another
approach using logistic regression estimates was suggested
by Bruzzi et al [14]. This method provides adjusted AFs
and was originally presented for case-control data but can
also be applied in cross-sectional studies.

Sequential and average AF
The concept of obtaining AFs directly from logistic regres-
sion was introduced by Greenland and Drescher [15]. The
basic idea behind this approach is to estimate a logistic
regression model with all known/available risk factors.
The AF of the risk factor of interest is then calculated as
follows:

1. The risk factor has to be coded dichotomously. It is
'removed' from the population by classifying all individu-
als as unexposed, irrespective of their real status.

2. A logistic model using this modified dataset is used to
estimate predicted probabilities for each individual:

where α represents the estimate for the intercept of the
logistic regression model, β denotes the parameter vector
for the covariates included in the model, and xi denoting
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the observations of the covariates for each individual,
however, with the 'removed' covariate set to zero for all
individuals.

3. The sum of all predicted probabilities is the adjusted
number of cases of the disease that would be expected if
the risk factor was absent in the population.

4. The AF is then calculated by subtracting these expected
cases from the observed cases and dividing by the
observed cases.

This procedure can be repeated for any dichotomous risk
factor in the logistic regression model. It is also applicable
when removing risk factors sequentially from the model
and has been called 'sequential attributable fraction' [16].
However, when using the latter approach, the result is sen-
sitive to the order of the risk factor removal from the
model.

The dependence on the removal sequence can be simply
addressed. If the risk factors are removed in every possible
order and averaged over all obtained AFs, the average esti-
mate does not depend on the order sequence anymore
[16]. This approach has to be repeated k! times with k as
the number of risk factors in the model. Eide calls this
approach 'average attributable fraction' [16].

We provide codes for the software packages SAS, STATA
and R to allow calculating average AFs from logistic regres-
sion [see Additional files 1, 2 and 3].

Data
We used data of the National Health and Nutrition Exam-
ination Survey (NHANES) 2005–2006 to estimate AFs
[7]. We focused on evidence based risk factors for cardio-
vascular disease. We restricted the study population to
participants of at least 40 years of age who were not preg-
nant at the time of the investigation.

Cardiovascular Disease (CVD)
Subjects were classified as having CVD according to their
responses in the questionnaire on medical conditions.
When subjects stated that a doctor or other health profes-
sional had told them having coronary heart disease,
angina pectoris, or a heart attack, they were classified as
having CVD.

We a priori considered smoking (more than 100 cigarettes
ever), diabetes (physician told subject that he/she has dia-
betes), high total cholesterol level (physician told subject
that he/she had high cholesterol level), low HDL choles-
terol (< 45 mg/dl), and hypertension (systolic blood pres-
sure > 140, diastolic blood pressure > 90, or a physician
mentioned diagnosis of high blood pressure) as risk fac-

tors because of ample evidence from the literature and
their previous inclusion in the Framingham risk score
[17].

Results
Data on 2,217 subjects aged 40 years and older with full
information on CVD and respective risk factors were avail-
able. We restricted all analyses to this subset to ensure the
same denominator in all analyses. There were 1,108 male
subjects and 1,109 female subjects. A total of 1,179 (53%)
subjects were 60 years and older.

Overall 279 (13%) subjects had evidence of CVD. The
most frequent risk factor for CVD among the study popu-
lation was smoking with 1,146 (52%) subjects who were
classified as smokers. The least frequent risk factor was
prevalent diabetes with 354 (16%) subjects affected. Fre-
quencies of CVD and risk factors separated by age catego-
ries '40–59 years' and '60 and older' are shown in table 1.

The risk factor with the highest unadjusted individual risk
for CVD was age of 60 years and older with an odds ratio
of 4.5 (95% confidence interval: 3.3, 6.2) compared to
subjects aged 40 to 59 years. This finding was also
observed in multivariable logistic regression adjusting for
other risk factors, yielding an odds ratio of 3.8 (95% con-
fidence interval: 2.7, 5.1). Estimates for unadjusted and
adjusted odds ratios for all risk factors are presented in
table 2.

The AF for each risk factor considered was highly depend-
ent on the method applied for its estimation. Hyperten-
sion, for example, appeared to account for 51% of all
cases of CVD when applying the classical Levin's formula.
When using adjusted odds ratios plugged into Levin's for-
mula the AF was considerably reduced to 34%. However,
the average AF directly derived from logistic regression
after considering all permutations was only 16%. The var-
iation between the different approaches was correspond-
ingly high for other risk factors (table 3).

Table 1: Description of dataset from the National Health and 
Nutrition Examination Survey 2005–2006 on 2,217 subjects of 40 
years and older and full information on outcome CVD and 
displayed risk factors

40 to 59 years
(N = 1,038)

60 years and older
(N = 1,179)

Variable n % n %

CVD 52 5.0 227 19.3
Male 491 47.3 617 52.3
Hypertension 442 42.6 828 70.2
High total cholesterol 449 43.3 623 52.8
HDL cholesterol < 45 mg/dl 341 32.9 334 28.3
Smoking 495 47.7 651 55.2
Diabetes 113 10.9 241 20.4
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The unadjusted AFs calculated using Levin's formula had
a total sum of more than 200%. For estimates from the
Levin formula using adjusted odds ratios from multivari-
able logistic regression the sum was 194% and also far
above the possible maximum of 100%. The same applied
for estimates according to the method suggested by
Bruzzi, for which the estimates were comparable to esti-
mates from Levin's formula considering adjusted odds
ratios from logistic regression. However, this method also
allows for calculating a summary AF that is not equivalent
to the sum of all individual AFs and sums up to a number
below 100% (table 3).

The sequential AFs were dependent on the order the risk
factors were 'removed' from the study population. Results
in the respective columns in table 3 were based on only
two out of 7! = 5,040 possible permutations for k = 7 cov-
ariates. When firstly removing high age followed by gen-
der, hypertension, high cholesterol, HDL-cholesterol,
smoking and at last diabetes, the AF for age was the high-
est with 54% for age of at least 60 years and for diabetes
was the lowest with 1% (table 3). In contrast, a model
with inverse withdrawal of the risk factors yielded remark-
ably different estimates and e.g. the AF for age was only

13% for at least 60 years or older. However, the sum of
AFs is always independent of the removal order and was
90% for the two different sequences.

Average AFs were considerably lower than unadjusted AFs
from Levin's formula or estimates from Levin's formula
with adjusted odds ratios from logistic regression (table
3).

The average AF for diabetes was 5.4% and was the lowest
average AF observed for the risk factors considered. This
contrasts with the individual risk of diabetes yielding an
adjusted odds ratio of 1.9 (95% confidence interval: 1.4,
2.5), which was one of the highest among modifiable risk
factors.

In an additional model not considering hypertension, the
AF of smoking was similar to the model also considering
smoking (table 3).

Discussion
This study illustrates the use of AFs as an impact measure-
ment of a risk factor on population level. Risk factors with
similar odds ratios yielded quite different AFs indicating

Table 2: Unadjusted and adjusted odds ratios (ORs) of risk factors for the outcome cardiovascular disease among 2,217 subjects of the 
NHANES dataset 2005–2006 aged 40 years and older.

Risk factor Unadjusted OR 95% confidence interval Adjusteda OR 95% confidence interval

Age of 60 years and older 4.5 3.3, 6.2 3.7 2.7, 5.1
Male 2.0 1.6, 2.6 1.6 1.2, 2.1
Hypertension 2.8 2.1, 3.8 1.9 1.4, 2.6
High total cholesterol 2.1 1.6, 2.7 1.6 1.2, 2.1
HDL cholesterol < 45 mg/dl 1.9 1.5, 2.5 1.7 1.3, 2.2
Smoking 2.0 1.5, 2.6 1.7 1.3, 2.2
Diabetes 2.6 2.0, 3.5 1.9 1.4, 2.5

aadjusted for all risk factors displayed in the table

Table 3: Attributable fractions (AFs) of risk factors for the outcome cardiovascular disease among 2,217 subjects of the NHANES 
dataset 2005–2006 aged 40 years and older.

Risk factor Levin Adj OR 
Levina

Bruzzi Sequential 
AFb

Sequential
AFc

Average 
AF

Average AF 
(not considering hypertension)

Age of 60 years and older 65.2 58.8 59.3 54.0 13.3 30.9 37.4
Male 33.6 22.8 24.1 10.5 6.6 9.8 10.2
Hypertension 50.9 33.6 36.2 11.9 15.3 15.7 -
High total cholesterol 33.8 23.0 24.4 5.5 12.7 10.0 12.5
HDL cholesterol < 45 mg/dl 21.8 17.3 17.7 3.2 10.6 7.1 8.0
Smoking 34.1 26.3 27.1 3.9 20.8 11.4 12.0
Diabetes 20.4 12.2 13.9 1.3 11.0 5.4 6.5
Sum 259.8 194.0 91.6d 90.3 90.3 90.3 86.6

aadjusted for all risk factors displayed in the table
bnota bene: These estimates are dependent on the order of the risk factors, in this case the order in which the variables are reported in the table.
cnota bene: These estimates are dependent on the order of the risk factors, in this case the opposite order in which the variables are reported in 
the table.
dBruzzi's method allows calculating a summary AF that is not the sum of all individual AF.
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different impacts on population level by prevalence of risk
factors. Unadjusted AFs tend to estimate higher AFs com-
pared with adjusted estimates. Average AFs seem to pro-
vide the most plausible estimates of the approaches
examined.

The results derived from the models are in accordance
with the evidence for cardiovascular risk factors. Like oth-
ers we observed cholesterol levels, hypertension, smoking
and diabetes as important cardiovascular risk factors [2].
Our approach additionally allows assessing the impact of
these risk factors on population level.

The approach with the most plausible results, the average
AF has the advantage of not adding up to more than
100%. In contrast, the simple Levin approach often yields
cumulative AFs of more than 100%. Some authors argue
that this makes sense since an individual can have several
risk factors and the disease can be therefore prevented in
several ways [18]. However, if there are a considerable
number of risk factors which are possibly correlated, it is
obvious that unadjusted AFs from bivariate analyses may
be biased providing an overestimation of the preventive
potential and adjusted AFs should be rather considered.

Unfortunately there is no test statistic or other indicator of
the appropriateness of a certain model including the cov-
ariates considered. The appropriateness of a model should
be considered as regards content. The need to develop the
'most appropriate model' to investigate the research ques-
tion, thus, remains the top priority since the overall AF
and AFs of single risk factors possibly change after with-
drawal of risk factors due to confounding or risk factors
on the causal pathway. For example, hypertension as a
risk factor for cardiovascular disease might be on the
causal pathway of smoking related pathologies or con-
founded by smoking or an independent risk factor. Risk
factors on the causal pathway of other considered risk fac-
tors should be omitted from respective models. To assess
if hypertension is on the causal pathway of smoking sim-
ilar decisions have to be made as in the estimation of indi-
vidual risk factors. Since e.g. the AF for smoking status was
similar in the model containing and not containing
hypertension, hypertension does not seem to be exclu-
sively on the causal pathway of the effect of smoking on
cardiovascular disease.

Surprisingly, the approach of average AFs has only rarely
been applied. The original article by Eide, published in
1995 [16], has been cited 46 times according to ISI web of
knowledge (22nd September 2008). Among these 44 cita-
tions there are 11 self-citations, 15 papers with methodo-
logical considerations, and only 20 articles applying the
approach. The low number of applications might be due

to the lack of inclusion of this method in statistical pro-
gram packages. Therefore we provide functions/macros
for commonly used statistical programs to encourage
other researchers to calculate average AFs [see Additional
files 1, 2 and 3].

Methodological Considerations
The accuracy of AF estimates by the algorithms presented
in this paper still depends on the completeness of the
multivariable model. If important confounders are not
considered in the model, an overestimation of AFs can
occur similarly to an overestimation of individual risk fac-
tors in multivariable regression models. Other potential
confounders might not be considered in our model leav-
ing only 10% of cases for factors like heredity and all other
environmental factors together. However, such a bias is
only dependent on the number of covariates considered
and not on the applied method.

The functions provided for calculating adjusted AFs in the
appendix are based on logistic regression analysis. They
do not allow for consideration of continuous explanatory
variables within the model e.g. age in years. Considera-
tion of continuous covariates is theoretically possible and
is a matter of programming. However, an AF for a contin-
uous variable might be difficult to communicate. Calcu-
lating an AF for the mean or an inter-quartile range of a
continuous variable provides an estimate for a pre-
defined but possibly arbitrary parameter change.

Although the approach of calculating AFs with the Levin
formula and adjusted odds ratios from logistic regression
has been shown to yield inconsistent estimates [5,19], we
used this approach for illustration and comparison to
other approaches and do not recommend it due to biased
estimates.

The calculation of average AFs as discussed and favored in
this paper requires access to original observational data.
When using the method of average AFs in this paper, it is
not possible to estimate adjusted average AFs by pub-
lished aggregated data as for example in Levin's equation.
Following this consideration, combined estimates from
several studies (e.g. results from a meta-analysis) cannot
be considered in average AFs as proposed in this paper.
Although, such a combined estimate may be less subject
to variation due to a higher sample size, such a combining
of possibly biased estimates does not consider adjustment
for confounding. Therefore, average AFs from original
data remains important due to control for confounding
even if only one data set is available.

The results generated from an adjusted AF model for a spe-
cific population may not be fitting to settings in other
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populations. This is likely to be due to varying prevalence
of risk factors. Additionally, AFs in other populations may
differ due to the impact of additional age or ethnic groups
that were not included in the original sample. For infer-
ences on population level analyses should be based on
representative data from the population of interest.

Conclusion
Preventive strategies in populations have to take into
account the magnitude of targeted risk factors and their
prevalence in the population for which the respective
intervention is planned. The concept of average AFs pro-
vides a useful tool to address these issues. Application of
simple formulas such as the Levin formula, however, may
yield considerable overestimation of potential population
impact of specific interventions. The estimation may be
improved by the application of average AFs. Macros for
the standard statistical software programmes are provided
[see Additional files 1, 2 and 3]. Application of these for-
mulae requires access to individual subject data.
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