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Abstract

Background: Most randomized controlled trials with a time-to-event outcome are designed assuming proportional
hazards (PH) of the treatment effect. The sample size calculation is based on a logrank test. However,
non-proportional hazards are increasingly common. At analysis, the estimated hazards ratio with a confidence interval
is usually presented. The estimate is often obtained from a Cox PH model with treatment as a covariate. If
non-proportional hazards are present, the logrank and equivalent Cox tests may lose power. To safeguard power, we
previously suggested a ‘joint test’ combining the Cox test with a test of non-proportional hazards. Unfortunately, a
larger sample size is needed to preserve power under PH. Here, we describe a novel test that unites the Cox test with
a permutation test based on restricted mean survival time.

Methods: We propose a combined hypothesis test based on a permutation test of the difference in restricted mean
survival time across time. The test involves the minimum of the Cox and permutation test P-values. We approximate
its null distribution and correct it for correlation between the two P-values. Using extensive simulations, we assess the
type 1 error and power of the combined test under several scenarios and compare with other tests. We investigate
powering a trial using the combined test.

Results: The type 1 error of the combined test is close to nominal. Power under proportional hazards is slightly lower
than for the Cox test. Enhanced power is available when the treatment difference shows an ‘early effect’, an initial
separation of survival curves which diminishes over time. The power is reduced under a ‘late effect’, when little or no
difference in survival curves is seen for an initial period and then a late separation occurs. We propose a method of
powering a trial using the combined test. The ‘insurance premium’ offered by the combined test to safeguard power
under non-PH represents about a single-digit percentage increase in sample size.

Conclusions: The combined test increases trial power under an early treatment effect and protects power under
other scenarios. Use of restricted mean survival time facilitates testing and displaying a generalized treatment effect.
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Background
As we recently discussed [1], the design of almost all
randomized controlled trials (RCTs) with a time-to-event
outcome depends on the proportional hazards assump-
tion for the treatment effect. However, for various reasons
non-proportional hazards (non-PH) are being detected
more frequently nowadays. The reasons may include
larger trials which increase power to detect non-PH, and
the development of new therapies with different modes of
action.
The sample size calculation for such a trial assumes a

logrank test will be performed. Under PH, the logrank
test is closely equivalent to a Cox test, that is, a test
based on the difference in log partial likelihoods with the
binary treatment variable as the only covariate in a Cox
PH model. In what follows, statements referring to the
Cox test are equally applicable to the logrank test when
PH holds. This may not be the case under non-PH. At
the analysis stage, an estimate of the hazard ratio (HR)
with a confidence interval (CI) is often obtained from the
aforementioned Cox model. If non-PH is present, the
HR varies over follow-up time, and the overall estimated
HR that is obtained is a type of average over the event
times [2].
To accommodate possible non-PH, we suggested [1]

combining the Cox test with the Grambsch-Therneau test
of non-PH [3] for a possible time-dependent treatment
effect. We called it a ‘joint test’. We showed that the joint
test has more power than the Cox test when certain pat-
terns of non-PH are present. However, to obtain the same
power as the Cox and logrank tests when PH holds, a sub-
stantial increase in the sample size is needed. For example,
for a certain configuration of patient accrual and follow-
up, to achieve power 90% at a 5% significance level in a
two-arm trial with equal allocation, the Cox and logrank
tests require 763 patients (509 events) whereas the joint
test needs 919 patients (613 events), an increase of more
than 20%. A 20% larger trial may be a heavy ‘insurance
premium’ to guard against loss of power with some types
of non-PH.
A second disadvantage of the joint test concerns the

estimand. The Cox and logrank tests are most powerful
(indeed, optimal) with a time-fixed hazard ratio, whereas
the joint test responds to some fairly general patterns
of non-PH. No estimand, readily interpretable in terms
of a treatment effect, is available with the joint test. (In
fact, the test statistic of the Grambsch-Therneau test is
derived from a correlation between the scaled Schoenfeld
residuals and the failure times. Under PH the population
correlation is zero).
Recently, we have argued [4] for the restricted mean

survival time (RMST) as a helpful and interpretable gen-
eral measure of the treatment effect on the scale of time
rather than survival probability or hazard. RMST may

be used irrespective of whether PH holds or not. The
RMST may be succinctly described as the mean survival
time from randomization to a clinically relevant time
horizon, t∗. The treatment effect is the change (usually,
gain) in RMST at t∗ for the research treatment com-
pared with control. The choice of a representative t∗ is
context-dependent; typically it will be towards the end
of the follow-up period when the trial data are most
mature.
Mathematically, the RMST at t∗ equals the integrated

survival function on (0, t∗) [5]. A convenient ‘non-
parametric’ estimator, based on the Kaplan-Meier survival
curve, involves jackknife quantities [6]. The estimator
has been implemented in software for Stata [7, 8] and
R [9].
An ‘obvious’ test statistic for the treatment effect based

on RMST is the square of the ratio of the RMST difference
to its standard error. Under the global null hypothesis of
identical survival curves, the test statistic has a chisquare
distribution on 1 d.f. However, such an approach has a
serious challenge. The value of t∗ would need to be pre-
specified in the trial protocol, but in the ensuing data,
the selected t∗ may be suboptimal, leading to a loss of
power. A single t∗ is too fragile. A more natural test
could be based on the maximal squared ratio over a suit-
able range of values of t∗. Such a test would be much
less likely to ‘miss something important’—particularly
under non-PH, when the largest cumulative difference
between the survival curves may appear at essentially
any t∗.
In the present paper, we develop an approach to

design and testing based on the idea of paying a modest
‘insurance premium’, consisting of a slightly larger sam-
ple size, against the possibility of non-PH, as mentioned
above for the joint test. To do so, we describe a test which
combines the Cox test with a test of the RMST difference.
The latter involves testing the RMST difference at vari-
ous t∗ values, together with a suitable adjustment of the
resultingminimal P-value to allow for multiple testing and
correlation with the Cox test P-value.
The structure of the paper is as follows. In section

‘Methods’, we describe the trial datasets we use for illus-
tration and as the basis of fairly extensive simulation
studies. We describe RMST and discuss its dynamic
role in understanding a generalized treatment effect. We
define our new combined test, which is based on analy-
sis of the time-dependent RMST curve and on the Cox
test. We then describe the use of simulation to assess
the power and type 1 error of the combined and other
tests. Finally, we suggest a simple way of powering a trial
using the combined test. Section ‘Results’ gives the results
of the simulation studies and summarizes our findings.
Section ‘Discussion’ rounds up some important additional
points.
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Methods
Datasets
As a source of illustrative data, chiefly for the purpose
of simulation, we use data from three randomized trials:
GOG111 in advanced ovarian cancer [10], PATCH1 in
recurrent cellulitis of the leg [11], and ICON7, also in
ovarian cancer [12]. The outcomes used in these trials are
overall survival, time to first recurrence and progression-
free survival, respectively. Table 1 gives statistics on the
treatment effect in the trials.
PLR denotes the P-value from the logrank test. PCox

and PGT represent the P-values from the Cox test and
Grambsch-Therneau test of non-PH, respectively. Pjoint
is the P-value from the joint test [1]. Pperm and Pcomb
are described in section ‘Combined test of the treatment
effect’. As anticipated, PLR and PCox are very similar. We
do not study PLR any further.
Figure 1 shows Kaplan-Meier plots of the datasets. All

three trials exhibit a treatment effect (HR < 1) and vary-
ing degrees of non-PH, although for the smaller PATCH1
trial, the P-values for the Cox and Grambsch-Therneau
tests are just above the 5% level (see Table 1). In ICON7
the non-PH is most marked and the Kaplan-Meier sur-
vival curves actually cross.
Further information on the nature of possible non-PH

in the three trials is provided by Fig. 2.
Scaled Schoenfeld residuals are the basis of the

Grambsch-Therneau test; non-random trends with time
(t) may indicate non-PH. Scatter plot smoothing is essen-
tial since the raw residuals invariably have considerable
‘noise’. Smoothed scaled Schoenfeld residuals are not nec-
essarily an unbiased estimate of a time-dependent log HR
[13], so the plots should be interpreted conservatively. In
each trial there seems to be a positive treatment effect
(ln HR < 0) during the first part of follow up, dimin-
ishing over time and possibly switching to a negative
treatment effect (ln HR> 0) at longer follow up times. We
describe this important phenomenon as an ‘early effect’ of
treatment.

Restricted mean survival time (RMST)
The RMST μ of a survival-time random variable T > 0 is
defined as the mean of min (T , t∗), where T is truncated
at some horizon t∗ > 0. When T is years to death, we may
describe μ as the ‘t∗-year life expectancy’. RMST has been

used to summarize survival outcomes when non-PH has
been observed [14].
It can be shown thatμ equals the area under the survival

curve S (t) from 0 to t∗ [5, 15], that is

μ = E
[
min

(
T , t∗

)] =
∫ t∗

0
S (t) dt (1)

In a two-arm clinical trial with survival functions S0 (t)
in the control arm and S1 (t) in the research arm, the
restricted gain in life expectancy, that is the differ-
ence in RMST between arms, is given by

∫ t∗
0 S1 (t) dt −∫ t∗

0 S0 (t) dt = ∫ t∗
0 [S1 (t) − S0 (t)] dt. Thus the gain is the

(signed) area between the survival curves. Note that if the
survival curves cross at some t < t∗ the RMST difference
could change sign.

RMST as a function of time
Just like the survival function S (t), rather than focusing
on a single t∗, RMST may be considered to be a function
of time. As an example, we use the PATCH1 trial. The
Kaplan-Meier curves by treatment arm are shown in Fig. 1
(b). Other functions related to RMST are shown in Fig. 3.
As noted in Table 1, using conventional levels of statistical
significance there is a borderline advantage of the research
treatment (P = 0.052, Cox test). Also, borderline signifi-
cant non-PH is present (P = 0.051, Grambsch-Therneau
test). Further investigation shows that the log HR gets
nearer to 0 over time, and may even exceed 0 at longer
follow-up times (see Fig. 2 (b)).
Figure 3 (a) shows the RMST as a function of time at

several time points in each arm, and (b) the difference
in RMST with a 95% pointwise confidence interval, cal-
culated up to the largest event time (3.57 years). The
RMST difference increases over time up to 3 years. The
maximal chisquare statistic is 8.11 and occurs at t =
2.22 years. As shown in Fig. 3 (b), the standard error of
the RMST difference increases over time; this is because
the number of patients still at risk diminishes, mainly
due to administrative censoring. The apparent P-value
for the RMST difference (see Fig. 3 (d)) is 0.0044, seem-
ingly highly significant and much smaller than the Cox
test P-value. However, the apparent P-value is invalid as
it does not allow for multiple testing. Nevertheless, the
RMST analysis suggests an important difference in time
to recurrence may be present in the data, peaking at

Table 1 Statistics for three randomized trials used in examples

Trial n e HR (SE) PLR PCox PGT Pjoint Pperm Pcomb

GOG111 386 343 0.73 (0.08) 0.0037 0.0038 0.0061 0.00035 0.00041 0.00062

PATCH1 274 129 0.71 (0.13) 0.052 0.052 0.051 0.023 0.015 0.023

ICON7 1528 759 0.81 (0.06) 0.0041 0.0042 9 × 10−13 1 × 10−13 4 × 10−9 6 × 10−9

n = number of patients, e = number of events For further details, see the text
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Fig. 1 Kaplan-Meier plots for the three trials datasets. Solid line, control arm; dashed line, research arm

Fig. 2 Smoothed scatter plots of scaled Schoenfeld residuals for the treatment variable in the three trials denoted by (a), (b) and (c). Grey shaded
areas show pointwise 95% confidence intervals. Solid horizontal lines show y = ln HR, the (constant) log hazard ratio estimated by a Cox model.
Dashed horizontal lines show y = 0, corresponding to ln(HR) = 0, null treatment effect



Royston and Parmar BMCMedical ResearchMethodology  (2016) 16:16 Page 5 of 13

0.0

0.5

1.0

1.5

2.0

2.5

R
M

S
T

 (
yr

)

0 1 2 3 4

Control Research

(a)

0.0

0.2

0.4

0.6

0.8

R
M

S
T

 d
iff

er
en

ce
 (

yr
)

0 1 2 3 4

(b)

0

2

4

6

8

C
hi

sq
ua

re
 s

ta
tis

tic

0 1 2 3 4

(c)

0.005

0.010

0.020

0.050

0.100

0.200

0.500

1.000

A
pp

ar
en

t P
−

va
lu

e

0 1 2 3 4

(d)

Years since randomization

Fig. 3 RMST analysis of the PATCH1 trial. All statistics are displayed as functions of time in years since randomization. a RMST in each treatment
group; b RMST difference between treatment groups with 95% pointwise confidence interval; c Chisquare statistics corresponding to (b); d P-value
derived from values in (c)

around 3 years (see Fig. 3 (b)). The example motivates fur-
ther investigation of the maximal chisquare statistic, as
follows.

A permutation test for the maximal chisquare statistic
Theoretically, no test of two survival curves can have
higher power than the logrank and Cox tests when PH
holds. However, if the data exhibit evidence of non-PH,
the power of the tests may be reduced and a test based on
the maximal RMST chisquare statistic might do better.
If there is an important difference between the survival

curves for the treatments over some region of the time
axis, the RMST difference should reflect it. To locate such
a region, we consider searching over a suitable grid of
times to find the t∗ value that maximizes the chisquare
statistic, X2, for testing the RMST difference. Call the
maximal chisquare value Cmax. When there is a real treat-
ment difference, Cmax should be ‘large’ and ‘significant’.
Because the search for Cmax by definition involves mul-

tiple testing of the RMST difference, the P-value for Cmax
derived from the chisquare distribution on 1 d.f. is too
small and gives an inflated type 1 error in the global null
case of identical population survival curves. To overcome
the difficulty, we adopt a permutation test approach to
obtain a corrected P-value for Cmax. The aim is to deter-
mine how extreme is Cmax within the null distribution of
the maximal chisquare statistic. For example, if Cmax lay

at the 95th centile of the null distribution, the corrected
P-value would be 0.05.
In practice, such a permutation test requires a priori

choices of a suitable interval over which to vary t∗ and of
the number (nt) of t∗ values at which to determine Cmax.
In many trials, it is reasonable to argue that a proportion
of the frailest patients will succumb to an event fairly early
on, irrespective of the treatment they receive. Further-
more, we are unlikely to obtain a reliable, representative
and clinically meaningful estimate of RMST difference
early in follow-up. A sensible choice for the lower bound
of the interval should therefore not be too small. We chose
the 30th centile of the event times as our preferred lower
bound.
Under PH, the RMST difference continues to increase

with t∗. A logical choice for the upper bound is therefore
the largest (uncensored) event time. Note that when using
the jackknife method, RMST cannot be estimated beyond
the largest event time anyway.
The choice of nt , the number of time points at which

RMST and X2 are evaluated, is somewhat arbitrary. In
20 non-randomly chosen trials datasets in our keeping,
mostly in cancer, we compared the P-values for the per-
mutation test resulting from nt = 5, 10, 15 and 20 and
found that 5 tended tomiss the optimal t∗ too often. There
was little to choose between 10, 15 and 20. For economy
of computation we chose nt = 10.



Royston and Parmar BMCMedical ResearchMethodology  (2016) 16:16 Page 6 of 13

To operationalize the test, we randomly permute the
treatment covariate a large number M of times. This
removes any systematic association between the out-
come and the treatment assignment while preserving the
remaining structure of the survival data. In each permuted
dataset we determine the maximal chisquare statistic over
the nt = 10 selected equally spaced times, giving a sam-
ple C1, . . . ,CM drawn from the null distribution of Cmax.
Let N = ∑M

i=1 I (Ci > Cmax) be the number of permuta-
tion samples in which Ci exceeds Cmax, where I(.) is the
indicator function. For example, if Cmax was larger than
all the Ci then N = 0. N has a binomial distribution with
denominator M. The P-value for the permutation test is
determined as Pperm = (N + 0.5) / (M + 1), where 0.5 is
a continuity correction. The resolution of the test, that
is the ‘most significant’ P-value available with a given M,
is 0.5/ (M + 1).
Let P = N/M. By simple algebra, the vari-

ance of Pperm equals [M/ (M + 1)]2var(P) =
[M/ (M + 1)]2[P (1 − P) /M]. We are free to choose
M. How large should M be? For performing simulation
studies, which are compute-intensive for large M, we
suggest using M = 999, giving a resolution of 0.0005. For
definitive data analysis, a much larger value of M may be
required.

Approximating the permutation test
As defined above, the permutation test is plausible but
with three noteworthy drawbacks: (i) Pperm is stochas-
tic, meaning that it has a chance component and is not
precisely reproducible (different analysts will get differ-
ent answers for the same dataset); (ii) an appropriate

choice of M is not ‘obvious’; and (iii) simulation stud-
ies of the test may consume considerable computer
time. A simple approximation to the test would be
valuable.
We hypothesized that Pperm must bear a strong relation-

ship with Pmax, the uncorrected P-value from Cmax. We
simulated 1000 replicates of the global null case in each
of the three example datasets and computed Pperm (with
M = 999) and Pmax in each of the 3000 samples. A plot of
Pperm against Pmax is shown in Fig. 4.
The large degree of ‘optimism’ in Pmax is clearly visi-

ble. After trial and error, we fitted a Box-Tidwell model
of the form E (y) = β1xp1 + β2xp2 , with p1 and p2 real
numbers estimated from the data, to obtain the following
approximation to Pperm:

E
(
Pperm

) = 1.762 (Pmax)
0.885 − 0.802 (Pmax)

2.547 (2)

To avoid a tiny downturn in E
(
Pperm

)
for Pmax >

0.85, we truncated the fitted curve at
(
Pperm,Pmax

) =
(0.9963, 0.85). As can be seen in Fig. 4, the fit is excellent
throughout the range of Pperm. We used the approxima-
tion (2) in subsequent work, so that Pperm now denotes
the approximate permutation test P-value calculated from
Pmax.
In the Appendix, we study the accuracy and generaliz-

ability of the approximations (2) and (3) through the type
1 errors of E

(
Pperm

)
and Pcomb through simulations based

on the twenty trials mentioned in section ‘A permutation
test for the maximal chisquare statistic’. We find a small
amount of non-random variation in the empirical type
1 errors. Overall, however, the variations do not appear
large enough to be of practical concern, and the mean

Fig. 4 Scatter plot of Pperm against Pmax in 3000 simulated samples based on 3 datasets. Solid curve shows an empirical fit from a Box-Tidwell model.
Diagonal dashed line is the line of identity
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empirical type 1 errors are close to their nominal values.
Note that the original version of Pperm can be calculated as
a check on the approximation in critical cases, e.g. when
the approximated P-value is near an important cutoff such
as 0.05.

Combined test of the treatment effect
Next, we consider a new test which combines the Cox
test with the permutation test. The aim is to assess the
strengths of each test across a range of alternatives. We
calculate Pmin, the smaller of the two P-values,

Pmin = min
(
PCox,Pperm

)
where Pperm is shorthand for E

(
Pperm

)
in (2). Although

under the null hypothesis PCox and Pperm are each uni-
formly distributed, they are positively correlated, since
each responds to departures from the global null. As a
result, Pmin will be ‘significant’ too often. We adjust Pmin
to allow for the correlation to obtain a test with the correct
type 1 error probability.
We addressed adjustment using simulation followed by

approximation of the null distribution of Pmin. Based on
the three trials datasets described above, we simulated
realistic replicates of the datasets using the Stata program
stsurvsim [16], as outlined in section ‘Approach to sim-
ulation’. In each replicate of each dataset, the treatment
covariate was randomly assigned to 0 or 1 with 1:1 allo-
cation. We obtained null-distribution values of PCox and
Pperm and hence Pmin in each of 10,000 replicates per
dataset.
We approximated the null distribution of Pmin empiri-

cally. Because its support is confined to the interval (0, 1)
(appropriate for a P-value) and it is fairly flexible, we mod-
elled Pmin using a two-parameter beta distribution. Its
cumulative distribution function is the incomplete beta
function

I (Pmin; a, b) = � (a + b)
� (a) �b

∫ Pmin

0
xa−1 (1 − x)b−1 dx

We estimated the parameters a and b by maximum like-
lihood. The estimate of a was close to 1 in each dataset.
For simplicity, we constrained a = 1. The estimates of b in
the three datasets were very similar. We therefore pooled
the data and estimated a single value, b̂ = 1.51 (95%
CI = 1.49 to 1.53). We used the rounded value b = 1.5
in subsequent work. Thus, to calculate Pcomb from a given
Pmin we apply the formula

Pcomb = I (Pmin; 1, 1.5) (3)

Note that as Pmin → 0 the limiting value of
I (Pmin; 1, b) /Pmin equals b. In effect, for small Pmin the
adjusted P-value is Pmin/b. If PCox and Pperm were inde-
pendent, the Bonferroni correction would apply and a
similar analysis would give b = 2. With b = 1.5, we are

taking advantage of the correlation and improving on the
conservative Bonferroni correction.
The value of Pmin corresponding to a given value of

Pcomb is given by inverting (3) via the inverse incomplete
beta function,

Pmin = I−1 (Pcomb; 1, 1.5)

For example, the 0.05 significance level for Pcomb is
equivalent to the 0.0336 significance level for Pmin.

Approach to simulation
We aimed to make the simulations of the type 1 error
and power of the various tests as realistic as possible. To
this end, we chose the three randomized trials described
in section ‘Datasets’ as prototypes, and mimicked sam-
pling from the distribution of time to event in each dataset
under four different scenarios (see section ‘Power of the
combined test’ for details of the scenarios). In general
terms, we first fitted a flexible parametric model, with-
out covariates, to each dataset separately and estimated
the parameters of a restricted cubic spline function with
3 degrees of freedom (d.f.) used to approximate the log
cumulative hazard function. We then reversed the event
indicator and estimated the distribution of the time to
censoring by the same approach. Using the Stata package
stsurvsim [16], we simulated times to event according
to the survival distributions represented by the estimated
log cumulative hazard functions. We censored the times
to event as necesary by also simulating times to censor-
ing, using the second set of spline parameter estimates.
In this way, we were able to produce realistic replicates of
the trial datasets with an appropriate amount of stochastic
variation induced.
We approached simulation of particular treatment

effects as follows. Under the global null (scenario A, see
section ‘Power of the combined test’) we simulated a com-
plete dataset of the required sample size (n) and divided
it at random into two equal subsamples, thus defining a
treatment variable with no effect, coded 0 = control arm,
1 = research arm. Under PH (scenario B) we simulated
the control arm as for scenario A. For the research arm, we
modified the spline function representing the log cumu-
lative hazard function from the overall data by adding
ln (0.75), meaning that the underlying hazard function in
the research arm was to be 0.75 times that in the control
arm. We simulated data from the modified research arm
spline function and concatenated the two subsamples to
create a single simulation replicate with a PH treatment
effect.
In scenario C (putative early effect) we ‘let the data

speak’. We simulated from the control and research arms
in the original data from the three trials independently
of one another according to separate flexible parametric
models. This enabled us to produce simulation replicates
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realistically similar to the original trial datasets, all of
which exhibited an early effect (see Fig. 2).
In scenario D we induced the late effect artificially, in

principle as done in scenario B. Because of its relatively
long follow up time, this was done only for the GOG111
dataset.We simulated the control arm as in scenario B and
modified the log cumulative hazard function in such a way
as to produce an HR function that was 1 up to one year
(no treatment effect) and < 1 at later times (beneficial
late effect of the research treatment). A between-arm
difference in the log cumulative hazard functions was
induced by applying a decreasing logistic function of log
time to the control arm function. The resulting hazard
ratio function was calculated mathematically. See Fig. 5
for an illustration of the four hazard ratio functions that
underlie datasets simulated from the GOG111 trial data.

Power of the combined test
As mentioned above, we studied four scenarios (A–D) for
assessing type 1 error and power: A. global null with HR
= 1; B. proportional hazards with HR = 0.75; C. non-
PH with an early treatment effect dwindling over time (as
seen in all the example datasets); and D. late treatment
effect beginning after 1 year. Simulation scenarios A–C
were based on all three datasets, whereas scenario D was
applied to the GOG111 dataset only.
We illustrate the type of data that arises in the simula-

tion. Figure 6 shows Kaplan-Meier curves of the treatment
effect in one arbitrarily chosen replicate in each scenario
based on the GOG111 dataset.
The nature of departures from PH can be quite sub-

tle and not easy to recognize from Kaplan-Meier plots,
which are the most frequent way of displaying survival

data. Further insight is provided by Fig. 5, which shows
how different are the hazard ratio functions for scenarios
A–D.
Note how difficult it is to distinguish ‘by eye’ between

the survival patterns in scenarios B and C. Yet, as we shall
see, the logrank and Cox tests perform differently between
these situations. Other tests may be more powerful than
Cox/logrank tests in scenario C, which is not the case in
scenario B.
In each of scenarios B, C and D, 5,000 independent

replicated datasets were generated, whereas in scenario A,
10,000 replicates were created as part of the type 1 error
investigation already discussed. In scenarios B, C and D,
sample sizes (n) were chosen by trial and error to provide
power of about 90% for the combined test, which thereby
served as a benchmark for assessing the other tests. The
sample size used for scenario A was essentially arbitrary;
we took n = 1000.

Applying the combined test to trial design
We intend the combined test to offer an ‘insurance policy’
against possible loss of power under non-PH, particularly
in the case of an early effect—a treatment effect whose HR
favours the research arm (i.e. HR < 1) early in the trial
and approaches or even exceeds 1 over time. When PH
holds, the ‘insurance premium’ requires a small increase
in sample size, as described in the following example.
We consider an example of a design scenario, based

this time on advanced bladder cancer, in which the sur-
vival function in the control arm over 1, 2, . . . , 12 years
is assumed to be 0.767, 0.628, 0.529, 0.453, 0.392, 0.343,
0.302, 0.268, 0.238, 0.213, 0.191, 0.172.We suppose patient
recruitment at a uniform rate over 8 years, with follow-up
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Fig. 5 Hazard ratio functions used in scenarios A, B, C and D
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Fig. 6 Kaplan-Meier survival curves illustrating the treatment effect in one arbitrarily chosen simulation replicate of scenarios A–D, each with sample
size 500. Survival pattern in the control arm and censoring pattern are derived from the GOG111 trial dataset

for a further 4 years. According to ART trial design
methodology [17, 18], powering the logrank/Cox test
under PH at 90% for significance level α = 0.05 requires
763 patients with 509 events. For the Pmin cutoff of
α = 0.0336 (giving cutoff 0.05 for Pcomb), n increases
by 10.6% to 843 patients (562 events). Simulation (detail
not reported) suggests that the power of the combined
test, designed as though it was a logrank/Cox test with
α = 0.0336, is about 91% (1% above nominal). This shows
that the increase in sample size from 763 to 843 somewhat
overshoots what is needed to achieve power 90%. A sim-
ple correction is to power the combined test at 89% with
α = 0.0336 rather than 90%. This requires 816 patients
(544 events), a small but potentially worthwhile reduction
in trial resources.
We do not advocate attempting to power a trial accord-

ing to the logrank/Cox test under PH alone or under a
particular prespecified pattern of non-PH. The assumed
functional form for the time-dependent HR may be seri-
ously in error, with unforeseeable consequences for power.
As will be apparent in the results of the simulation studies
described below, the Cox test continues to provide reason-
able power in some non-PH settings. However, its power
can be severely reduced in the case of an early effect. As
in our earlier paper [1], we propose to power a trial under
PH, accommodating an ‘insurance premium’ by taking
the significance level for the Cox test to be the Pmin that
achieves Pcomb = 0.05. As already stated, to implement a

design with α = 0.05 and power approximately 90% for
the combined test, the significance level for the logrank
and Cox tests needs to be α = 0.0336 and the power 89%.

Display of data, estimation and testing
We recommend plots resembling Figs. 1, 2 and 3 to display
the data, estimation of RMST and RMST difference, pos-
sible pattern of non-PH and preliminary testing for RMST
difference. The RMST difference at any given t∗ can be
regarded in Fig. 3 (b) as an instantaneous value of the con-
tinuous function and can be presented separately with its
95% CI. Corrected significance testing of maximal stan-
dardized RMST difference requires calculation of Pperm,
the approximate permutation test. Testing the treatment
effect according to the methods proposed in this paper
also requires the Cox test and the resulting values of Pmin
and Pcomb.

Results
Simulations
In Table 2, we report the results of the simulation studies
based on data from the three randomized trials (GOG111,
PATCH1, ICON7) in the four scenarios studied (see
Fig. 6).
The first three rows report the estimated type 1 error

at a nominal significance level of 5% for each test. The
three rows labelled B (PH) give the estimated power under
PH (scenario B in Fig. 6), with target HR = 0.75. The
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Table 2 Results of simulation studies

Scenario Dataset n Test

Cox Joint Perm. Comb.

A (null) GOG111 1000 5.2 5.3 4.9 5.3

PATCH1 1000 5.0 4.9 5.2 4.8

ICON7 1000 4.8 4.9 5.2 4.9

B (PH) GOG111 652 92.9 87.2 86.7 91.0

PATCH1 1280 92.6 86.9 87.7 90.2

ICON7 1240 91.9 86.6 88.3 89.8

C (early) GOG111 310 72.5 91.5 92.1 90.0

PATCH1 450 74.4 88.8 91.9 89.2

ICON7 522 36.9 98.7 92.4 89.5

D (late) GOG111 560 92.7 96.1 80.5 90.3

Values in table are percentages of 10,000 (scenario A) or 5,000 (scenarios B–D)
simulated datasets in which each of four tests was significant at the 5 percent level.
The datasets were simulated to mimic data from three randomized controlled trials
with varying sample size (n). Values in bold (or italic) type indicate the most (or least)
powerful among the four tests for the given scenario and dataset
Abbreviations: Joint joint test [1], Perm. permutation test, Comb. combined test

remaining four rows show the estimated power under the
C (early) and D (late) effect scenarios.

Summary of findings
1. Type 1 error: consistent with the nominal 5% value

for all tests and datasets.
2. Power under proportional hazards: as expected, the

Cox test has slightly more power (about +2%) than
the combined test. The joint test is weaker than both
the combined test (power about −3.5%) and the Cox
test (−5.5%).

3. Power under early effect: the Cox test can suffer a
dramatic lack of power in this type of scenario (note
particularly ICON7). The joint test can perform very
well when marked non-PH is present, as in ICON7.
The combined test also performs well in the early
effect scenarios.

4. Power under late effect: the joint test is the most
powerful in this example. The combined test
performs slightly worse than the Cox test (−2.4%).

5. Overall, although sometimes performing well, the
permutation test is not powerful enough to be
recommended as the sole test.

In summary, the combined test performs well in all sce-
narios and is only a little (not critically) weak under PH;
power is about 1.9% to 2.4% lower than the Cox test.
With an early treatment effect, the combined test can be
dramatically more powerful than the Cox test. Although
never the most powerful among the four tests consid-
ered in the case studies, the combined test is neverthe-
less recommendable as an ‘omnibus test’ of a generalized

treatment effect. The joint test generally performs well
in the non-PH scenarios but, critically, it is rather weak
under PH. This is because the non-PH component of the
joint test is essentially ‘wasted’ under PH.

Discussion
Many tests comparing two survival distributions have
been proposed and studied. For example, Li et al. [19]
recently compared the power of 21 such tests in rela-
tively small samples in which the survival curves cross.
With the power of the logrank test as reference, all of the
tests considered by Li et al. [19] exhibited mild to severe
loss of power under PH. Working in the context of ran-
domized controlled trials with a time to event outcome,
we have developed what we believe to be an acceptably
‘omnibus’ combined test of a generalized treatment effect
based on the Cox/logrank test and the maximal squared
standardized difference in RMST. Earlier, we proposed
[1] a similarly motivated joint test comprising the sum of
the Cox partial likelihood ratio statistic and the chisquare
for the Grambsch-Therneau test of non-PH. The present
combined test is somewhat more complex to compute
than the joint test, and does not outperform the joint test
in some of the simulation scenarios we considered. If we
accept augmentation of the Cox/logrank test as a reason-
able strategy to protect power under non-PH and support
sample size and power calculations for the design of trials
under PH, why should we prefer the combined test to the
joint test?
There are two main reasons. First, past experience

suggests that in a proportion of trials the PH assump-
tion holds, at least approximately. In such cases, the
Grambsch-Therneau test of non-PH will have very low
power and correspondingly the power of the joint test will
be reduced. The expectation is confirmed by our simula-
tion studies (see Table 2, scenario B). Second, the joint test
is not associated with any identifiable estimate of the treat-
ment effect or its behaviour over time. The permutation
test and hence the combined test reflect the behaviour
of the standardized difference in RMST over time (see
Fig. 3).
Inspection of the two components (Pperm and PCox) of

the combined test may indicate which is the dominant fea-
ture. If PCox < Pperm then the treatment effect is more
likely to be approximately PH. If Pperm < PCox then non-
PH is more likely to dominate. In any case, further infor-
mation may be obtained from the Grambsch-Therneau
test and from smoothed scatter plots of scaled Schoen-
feld residuals, such as Figs. 1 and 3. In all the example
trials (see Table 1) we observe Pperm < PCox, suggest-
ing that the non-PH elements are important here. Note
that for PATCH1 the combined test is significant at the
5% level (Pcomb = 0.023) whereas the Cox test is not
(PCox = 0.052). The two tests might therefore lead an
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analyst using conventional levels of statistical significance
to draw different conclusions.
Our proposed strategy for trial design based on the

combined test, to provide power 90% at a two-sided sig-
nificance level of 5% under PH, is to power the logrank
or Cox tests for 89% power at significance level 0.0336.
An advantage of this approach is that the various tools
that are available for refining the design to reflect accrual
rate and pattern, loss to follow up, time to recruit and
time for follow up can all be used essentially without
modification. In the example based on GOG111, such
a design will require an ‘insurance premium’ of only
about 7% more patients and events than one based on a
logrank or Cox test with power 90% at α = 0.05. The
main gain is a considerable improvement in power if
an early effect of treatment occurs which then dwindles
over time. Such an enhancement is potentially valuable
when the overall HR lies between the target value and
1 and the power of the logrank and Cox tests may be
correspondingly low.
An alternative strategy that might appeal to some is to

design the trial according to one of the many variants
of weighted logrank tests that are available [20, 21]. For
example, if an early effect is anticipated, power might be
increased by assigning higher weights to early events and
lower weights to later events, and vice versa for a late
effect. Comparison of the power of weighted logrank tests
with that of the several tests exemplified here, further
research beyond the present scope, may be of interest.
In any case, three salient criticisms of a weighted

logrank test approach may be made. First, crucially, as
trial designers we have to prespecify the test before see-
ing the data. If we get the assumption of the pattern of
non-PH wrong, for example assigning weights assuming a
late effect when the ‘truth’ is an early effect, the resulting
power could be disastrously low. The putative ‘insurance’
offered by our combined test, to try to guard against such
mistakes, is important here. Second, in choosing the sum-
mary statistic, is a weighted hazard ratio or a standard
hazard ratio to be used, and in any case how may either
be interpreted in the light of non-PH? Third, the use of
weights for event times in such a logrank test suggests
that some events are ‘more important’ than others when
calculating the result of a trial. Would such an emphasis
be acceptable to consumers and investigators?We suspect
not.
A reviewer pointed out that a permutation test may

perform poorly in presence of confounders. Three com-
ments may be made. First, by design of randomized
controlled trials, the treatment effect is orthogonal to
covariates, therefore confounding is not an important
issue. Achieving orthogonality is indeed a key motiva-
tion for randomization. (Confounding could arise in trials
that are too small and/or in which randomization has

been botched.) Second, to our knowledge trials are not
normally designed allowing adjustment for confounders.
Thus if at all, confounding is an issue for analysis, not
design. Although we are not convinced that adjustment
is necessary in time-to-event trials, we are aware that
some researchers do routinely adjust for stratification fac-
tors and sometimes for prognostically important covari-
ates in the definitive analysis of their trial data. Third,
note that in our approach the permutation test is only
the starting point for the proposed combined test. Its
main role is to establish the null distribution of the
RMST-based test statistic, Cmax. We approximate the
permutation test P-value through transformation (2) of
Pmax. The permutation test result is not directly used in
determining Pcomb.
In a recent report, Uno et al. [22] described an approach

to hypothesis testing of the difference between two
Kaplan-Meier survival curves. The concept is somewhat
similar in spirit to our own proposal,though the details are
quite dissimilar. Their two tests, V1 and V2, as described
are one-sided. They are based on the integral over time of
weighted, standardized differences between the survival
functions. The power of the tests is studied by simulation
under PH and under several different non-PH scenar-
ios, akin to our own assessment. The power of the tests
in the non-PH scenarios exemplified seems impressive,
dominating that of other tests considered, including sev-
eral flavours of the logrank. However, their performance
under PH is less satisfactory. The power difference of V1
and V2 compared with the logrank test seems to depend
on the shape of the survival curve that is being simu-
lated (see their Fig. 6). In the best case the power of
the logrank and new tests is about the same, whereas in
the worst case, there can be as much as a ten percent-
age point difference. Plausibly reliable performance under
PH is one reason we prefer our new combined test to
our older joint test. Another drawback of Uno and col-
leagues’ proposal [22] is that the authors do not consider
how to power a trial with one of their tests as the final
analysis.
Of course, the credibility and robustness of a trial

design, based on the combined test as an insurance against
non-PH, depends on whether the test remains acceptably
powerful when exposed to other realistic patterns of PH
and non-PH survival curves. Using simulations, we have
tried to cover common, plausible situations that we have
seen in real trials. However, we acknowledge that stochas-
tic simulation can only ever provide snapshots of a wide
and varied landscape with local features that may be very
different from those we choose to mimic in simulation
designs. Further investigation of the performance of the
combined test and other tests in a wider range of trials
and accompanying simulations is a challenging topic for
additional research.
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Fig. 7 Empirical type 1 error of E
(
Pperm

)
for simulations of 20 randomized trials datasets at three nominal significance levels. Error bars show 95%

pointwise confidence intervals

Fig. 8 Empirical type 1 error of Pcomb and PCox (α = 0.05 only) for simulations of 20 randomized trials datasets at various nominal significance levels.
Error bars show 95% pointwise confidence intervals
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Software for Stata to implement the various estimates
and tests described in this article is under development
and will be reported in the Stata Journal in due course.

Conclusions
The combined test we propose increases trial power
when an early treatment effect is present and protects
power under other patterns of treatment effect, includ-
ing proportional hazards. We recommend analytical and
graphical use of restricted mean survival time to facili-
tate testing and displaying a generalized treatment effect.
Withminor modifications, standardmethodology for trial
design based on the logrank test can still be used with the
combined test.

Appendix
To check the accuracy and generalizability of the approxi-
mations (2) for E

(
Pperm

)
and (3) for Pcomb, we investigated

empirical type 1 errors in 10,000 simulation replicates of
each of the 20 trials datasets mentioned in section ‘A per-
mutation test for the maximal chisquare statistic’. Figure 7
shows results for E

(
Pperm

)
at nominal significance levels

(α) of 0.01, 0.05 and 0.1. With some minor heterogeneity,
values are generally close to nominal. Mean type 1 errors
are 0.0092, 0.050 and 0.103.
Figure 8 shows analogous results for Pcomb. For compar-

ison, we have included α = 0.05 results for PCox. Again,
results are close to nominal, overall means for Pcomb being
0.0098, 0.049 and 0.098.
We conclude that the approximations required to

estimate Pperm and Pcomb are adequate for practical
application.
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