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Abstract

Background: It is well recognized that treatment effects may not be homogeneous across the study population.
Subgroup analyses constitute a fundamental step in the assessment of evidence from confirmatory (Phase III)
clinical trials, where conclusions for the overall study population might not hold. Subgroup analyses can have
different and distinct purposes, requiring specific design and analysis solutions. It is relevant to evaluate methodological
developments in subgroup analyses against these purposes to guide health care professionals and regulators as well as
to identify gaps in current methodology.

Methods:We defined four purposes for subgroup analyses: (1) Investigate the consistency of treatment effects
across subgroups of clinical importance, (2) Explore the treatment effect across different subgroups within an
overall non-significant trial, (3) Evaluate safety profiles limited to one or a few subgroup(s), (4) Establish efficacy
in the targeted subgroup when included in a confirmatory testing strategy of a single trial. We reviewed the
methodology in line with this “purpose-based” framework. The review covered papers published between
January 2005 and April 2015 and aimed to classify them in none, one or more of the aforementioned purposes.

Results: In total 1857 potentially eligible papers were identified. Forty-eight papers were selected and 20
additional relevant papers were identified from their references, leading to 68 papers in total. Nineteen were
dedicated to purpose 1, 16 to purpose 4, one to purpose 2 and none to purpose 3. Seven papers were dedicated
to more than one purpose, the 25 remaining could not be classified unambiguously. Purposes of the methods
were often not specifically indicated, methods for subgroup analysis for safety purposes were almost absent and
a multitude of diverse methods were developed for purpose (1).

Conclusions: It is important that researchers developing methodology for subgroup analysis explicitly clarify the
objectives of their methods in terms that can be understood from a patient’s, health care provider’s and/or
regulator’s perspective. A clear operational definition for consistency of treatment effects across subgroups is
lacking, but is needed to improve the usability of subgroup analyses in this setting. Finally, methods to particularly
explore benefit-risk systematically across subgroups need more research.
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Background
Confirmatory (Phase III) clinical trials aim to provide
conclusive evidence on the efficacy and safety of new
drugs, usually as compared to standard treatments. The
conclusions from such studies are typically considered
applicable to the whole study population. However, in
light of growing biological and pharmacological know-
ledge leading to more personalized medicine and tar-
geted therapies, it is well recognized that the treatment
effect of a new drug might not be homogeneous across
the study population. Subgroup analyses are therefore
essential to interpret the results of clinical trials. If sub-
groups with a potential worse or better benefit-harm
balance exist, identification is fundamental in the inter-
est of patients.
The methodology and reporting of subgroup ana-

lyses have been subject of research and several litera-
ture reviews have been conducted. According to
Pocock et al. [1], 70 % (35/50) of reported trials con-
tained subgroup analyses, of which 60 % (21/35)
claimed subgroup differences. The total number of re-
ported subgroup analyses per published trial varied
from one to 24 with a median of four. In 20 % of the
trials, subgroup analyses were purely descriptive.
Thirty-seven % of trials reported p-values for treat-
ment effect within subgroups and 43 % (15/35) used
tests of interaction. Hernandez et al. [2] selected 63
cardiovascular clinical trials, of which almost two
thirds (39/63) reported subgroup analyses. A sub-
group effect was claimed in over half of these (21/39)
based on either interaction tests (7/11) or subgroup-
specific tests (14/28). Wang et al. [3] reviewed 59
clinical trials, of which 34 performed more than five
subgroup analyses and five were unclear about the
number of subgroup analyses performed. They found
that in the majority of papers it was not specified
whether subgroup analyses were pre-specified or per-
formed post-hoc (40/59). In Gabler et al. [4], the au-
thors reviewed 319 studies from high-impact factor
journals (BMJ, JAMA, NEMJ, The Lancet, Annals of
Internal Medicine). They found that 29 % (92/319) of
the studies reported interaction analyses, 28 % (88/
319) reported subgroups analyses only without formal
statistical comparisons and 43 % (139/319) did not re-
port on the heterogeneity of the treatment effect. Sun
et al. [5, 6] investigated the impact of industry fund-
ing on the reporting of subgroup analyses in random-
ized controlled trials. Their study included 469
randomized controlled trials published in 2007, of
which 207 (44 %) reported subgroup analyses. Sub-
group analyses were more frequent in high impact
journals, non-surgical trials and trials with larger sam-
ple size. When the primary outcome was not signifi-
cant, industry funded trials were more likely to report

subgroup analyses than non-industry funded trials,
contrary to when there was a statistically significant
primary outcome.
Subgroup analyses are known to be prone to statistical

and methodological issues such as inflation of type I
error due to multiple testing, low power, inappropriate
statistical analyses or lack of pre-specification. To deal
with these issues, guidelines for the design, analysis, in-
terpretation and reporting of subgroup analyses have
been proposed [7–12]. They generally share the same
main points: the number of subgroups to be tested
should be small, subgroups of interest should be pre-
specified and based on a strong biological reasoning or
based on observed effects in the subgroup in previous
studies, adjustment for multiple testing should be con-
sidered, subgroup-treatment interaction tests should be
preferred to subgroup-specific tests, all subgroups tested
should be reported including whether they are pre-
planned or post hoc.
Despite such guidance, the assessment of subgroup

analyses remains complex. For example, the CAPRIE
trial aimed to show superiority of clopidogrel to aspirin
in the secondary prevention of cardiovascular events in
patients at risk of ischemic events. The primary endpoint
was the first occurrence of myocardial infarction (MI),
ischemic stroke, or vascular death in patients with ath-
erothrombosis. The intent-to-treat analysis showed a
relative risk reduction (RRR) of 8.7 % in favor of clopi-
dogrel (p = 0.043). In an additional analysis, the
CAPRIE investigators showed that heterogeneity was
observed (p = 0.042) depending on the qualification of
prior cardiovascular events, which was used as a strati-
fication factor at randomization: prior MI: RRR = 7.3 %,
prior stroke: RRR = −3.7 %, symptomatic peripheral arter-
ial disease: RRR = 23.8 %. This observed heterogeneity led
two regulatory agencies to different assessments. The
National Institute for Health and Care Excellence (NICE,
English and Welsh authority) concluded a clinical benefit
for the overall population whereas the Institut für Qualität
und Wirtschaftlichkeit im Gesundheitswesen (IQWiG,
German authority) concluded efficacy only for the most
beneficial subgroup of patients (symptomatic peripheral
arterial disease) [13–15]. The disparate conclusion by the
two regulatory agencies illustrates the diverging views or
interpretations, and the lack of consensus and inter-
national standards for the conduct and interpretation of
subgroup analyses.
We observed that methodological papers on subgroup

analyses sometimes lacked a clear connection between
the methodological solutions and specific purposes. Five
different purposes for subgroup analyses have been sug-
gested by Grouin et al. [16], in the context of market au-
thorisation of new drugs: (i) to confirm that efficacy
benefits observed in the trial are consistently seen across
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subgroups, (ii) to identify subgroups with larger treat-
ment effect when the study reaches an overall statisti-
cally significant effect, (iii) to check specific subgroups
that a priori are suspected to show less or no treatment
effect, (iv) to identify a statistically positive subgroup in
case of a non-significant overall effect, and (v) to identify
safety problems limited to one or few subgroups. To
gain systematic insight in the “state of the art” and areas
of research needed, we reviewed the proposed methodo-
logical solutions for this “purpose based” framework.
We first explain the search strategy as well as the

“purpose based” framework. Next, the main results of the
study are presented. We conclude with a critical discussion
and suggestions for further methodological development.

Methods
Search strategy
This review covers papers published between January 2005
and April 2015. The last search was conducted on PubMed
the 01st of May 2015. The search was restricted to statis-
tical and methodological journals, i.e., the “Journal of Bio-
pharmaceutical Statistics”, “Statistics in Medicine”, “BMC
Medical Research Methodology”, “Statistical Methods in
Medical Research”, “Contemporary Clinical Trials”,
“Trials”, “Clinical Trials”, “Pharmaceutical Statistics”, “Drug
Information Journal”, “Biostatistics”, “Biometrical Journal”,
“Biometrika”, “Statistical Methodology” and “Biometrics”.
Various keywords such as “subpopulation”, “subset”,
“subgroup” or “interaction” were considered. In addition
reference lists of identified papers were checked, without
restriction to these journals. The complete algorithm is
provided in the Additional file 1.

Framework for selection and review
Potentially relevant papers were selected on their title
and abstract. To structure our review we adapted the
five purposes proposed by Grouin et al. [16]. Purpose (i)
and (iii), trying to establish consistency either in positive
or negative direction for either all clinically important
subgroups or a selected set of subgroups, were merged.
Purposes (ii) and (iv), identifying favorable subgroup(s)
and aiming to exploit heterogeneity, were also merged.
Purpose (v), which concerns safety rather than efficacy,
was maintained as proposed by Grouin et al. Finally, we
added a specific purpose dedicated to confirmatory sub-
group strategies. To summarise, four distinct purposes
constitute the framework of this study:

1. Investigate the consistency of treatment effect across
subgroups of clinical importance.

2. Explore the treatment effect across different
subgroups within an overall non-significant trial.

3. Evaluate safety profiles limited to one or a few
subgroup(s).

4. Establish efficacy in the targeted subgroup when
included in a confirmatory testing strategy of a single
trial.

The methodological papers could fall in none, one or
more of these categories. The classification of a paper in
a category is based either on an explicit statement on
the purpose, or was inferred by the first author from the
full text.

Results
In total 1857 potentially eligible papers were identified.
There is a clear increase in the volume of research over
time (Fig. 1). This recent activity in the area of subgroup
analysis illustrates its importance in drug development.
Forty-eight papers were selected based on the search

strategy (Fig. 2). Twenty additional relevant papers were
identified from their references, leading to 68 papers in
total.
The Venn diagram (Fig. 3) shows the classification of

papers across purposes. Thirty-six papers were dedicated
to exactly one purpose: 19 to purpose 1, 16 to purpose 4
and one to purpose 2. Seven papers were dedicated to
more than one purpose. The remaining 25 papers could
not be classified to a specific purpose.
Thus, most papers addressed purpose 1, “Investigate

the consistency of treatment effect across subgroups of
clinical importance”(25/68) or purpose 4, “Establish effi-
cacy in the targeted subgroup when included in a con-
firmatory testing strategy of a single trial” (21/68).

Investigate the consistency of treatment effect across
subgroups of clinical importance
Consistency of treatment effects across subgroups is of
major importance. It impacts the interpretation of study
findings and in addition affects the prescription of treat-
ment by health care providers. Therefore, assessment of
consistency is a crucial step in the interpretation of a
clinical trial. In total 25 papers covered this purpose. An
example illustrating consistency assessment is first de-
scribed, followed by the review of the selected papers.
In a randomized double-blind clinical trial (MERIT-

HF), 3991 patients with chronic heart failure (New York
Heart Association (NYHA) functional class II–IV) and
with ejection fraction of 0.40 or less, stabilised with opti-
mal standard therapy, were recruited [17]. These pa-
tients were randomly assigned to either metoprolol CR/
XL (n = 1990) (starting dose of either 12.5 mg or 25 mg
once daily) or placebo (n = 2001). The target dose was
200 mg once daily and doses were up-titrated over
8 weeks. Dose regimen could be modified according to
the judgement of the investigator. The primary endpoint
was all-cause mortality. An interim analysis after a mean
follow-up time of one year concluded early stopping of
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Fig. 2 Study flowchart
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the trial due to established efficacy. However, in post-hoc
subgroup analyses, the “all US patients” subgroup did not
show a reduction in total mortality. The American regula-
tory agency then performed a post-hoc interaction analysis
comparing “US patients” vs. “all other countries”. The haz-
ard ratio in the former was 1.05 (95 % CI 0.71–1.56)
whereas in the latter it was 0.55 (95 % CI 0.43–0.70, test
for interaction p = 0.003). This situation invoked heated
debate between the American authorities and the Investi-
gator (MERIT-HF study group). At present, metoprolol
CR/XL is indicated in the USA “for the treatment of
stable, symptomatic (NYHA class II or III) heart failure of
ischemic, hypertensive, or cardiomyopathic origin. It was
studied in patients already receiving ACE inhibitors, di-
uretics, and, in the majority of cases, digitalis. In this
population, metoprolol CR/XL decreased the rate of mor-
tality plus hospitalisation, largely through a reduction in
cardiovascular mortality and hospitalisations for heart fail-
ure “. The Clinical Pharmacology section of the label
states that “the combined endpoints of all-cause mortality
plus all-cause hospitalisation and of mortality plus heart
failure hospitalisation showed consistent effects in the
overall study population and the subgroups, including
women and the US population. However, in the US sub-
group (n = 1,071) and women (n = 898), overall mortality
and cardiovascular mortality appeared less affected. Ana-
lyses of female and US patients were carried out because
they each represented about 25 % of the overall

population. Nonetheless, subgroup analyses can be diffi-
cult to interpret and it is not known whether these repre-
sent true differences or chance effects” [18]. This example
clearly illustrates the challenges to draw inferences from
(post-hoc) subgroup analyses.
Whilst “consistency” is a widely used term, there is no

formal agreement about its definition [19]. As a conse-
quence a diversity of methodological approaches exists:
investigating subgroup-specific treatment effect based on
the (within subgroup) statistical significance, investigat-
ing the directional treatment effect estimate in each sub-
group, performing a test of interaction, or considering
only qualitative interactions.

Statistically significant consistent subgroup-specific
treatment effect
Li et al. [20] investigated the probability of observing at
least one statistically significant negative subgroup result
conditional on a statistically significant overall positive
result, when the true treatment effect is positive and
homogeneous across all subgroups. In the scenario
where 15 subgroups, defined by five baseline variables
each defining three subgroups with equal proportions,
are tested, this probability is below 1 %. Therefore, if a
statistically significant negative result is observed after
concluding an overall positive treatment effect, it is un-
likely that this negative subgroup effect can be attributed
to chance. The authors state that further investigation,

Fig. 3 Venn diagram of the classification
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such as a similar observed trend in other studies or a
strong biological explanation, would be important to
confirm this finding. More recently, Wang and Hung
[21] investigated the probability of observing statistically
significant consistent versus inconsistent treatments ef-
fects across two mutually exclusive subgroups. Consist-
ent is defined as both subgroups having a statistically
similar results, and inconsistent as the two subgroups
having statistically different results. The authors show
that the probability of observing statistically significant
consistent effects is at most 50 %. The probability of ob-
serving a statistically significant beneficial treatment ef-
fect in both subgroups ranges from 7 % at extreme
subgroup proportions to approximately 25 % at equal
subgroup sample sizes. The probability that both
subgroup-specific treatment effects are not shown to be
statistically significant ranges from 20 % for extremely
different subgroup sizes to approximately 25 % for equal
subgroup sizes. Koch and Schwartz [22] proposed to
apply a less stringent type I error, so that power for the
subgroup test is similar to that for the overall studied
population. They suggest to consider a type I error of
0.05 for subgroups with more than 70 % of the patients,
0.15 for subgroups that include about half of the
patients, and 0.25 for small subgroups, e.g., ≤30 %. Ac-
cording to the authors, if a pre-specified subgroup fails
to show any efficacy based on those criteria, the
consistency of the overall treatment effect can be
brought into question.

Directionally consistent subgroup-specific treatment
effect
Li et al. [20] also considered the probability of observing
at least one directional negative subgroup effect condi-
tional on a statistically significant overall positive treat-
ment effect. Negative subgroup effect means here that
the subgroup treatment effect estimate is numerically
negative, under the assumption that the true treatment
effect is positive and homogeneous across all subgroups.
This probability is rather substantial. It is around 12 %
in case 6 subgroups, defined by two baseline variables
each defining three subgroups with equal proportions,
are tested. When 15 subgroups are tested, defined by
five baseline variables each defining three subgroups
with equal proportions, the probability is around 27 %.
Wang and Hung [21] also investigated the probability of
observing directionally consistent versus inconsistent
treatment effects: consistent if both subgroups have the
same sign for the treatment estimate, and inconsistent if
both subgroups have opposite sign. The probability of
observing directionally consistent beneficial subgroup ef-
fects is at least 75 %. Although a homogeneous effect is
expected in both subgroups, the probability of observing
a numerically harmful treatment effect in one subgroup

increases as the proportion of subjects in this subgroup
decreases, reaching a maximum of about 25 %. Recent
papers have proposed that the effect size in each sub-
group must at least be either positive or some pre-
defined percentage of the overall effect [23]. Keene and
Garrett argued that this is not a useful approach as it
fails to take into account the variability around a point
estimate. Moreover, this rule might discriminate against
drugs with large mean effects where large interactions
are more likely. Koch and Schwartz [22] also considered
this approach more subjective regardless of the plausibil-
ity. Following Hemmings [19], interpreting subgroup
analyses based on point estimates alone can be mislead-
ing and provide an incomplete basis for decision
making.

Test of interaction
To assess consistency of the treatment effect across sub-
groups, a statistical model including interaction term(s)
is commonly used. However, clinical trials are rarely
powered to detect statistically significant interactions;
hence results of such tests might provide a false sense of
consistency [21, 23, 24]. Furthermore, the utility of the
interaction test as guidance for treatment decisions is
limited, as discussed recently [22, 25]. While testing for
interaction is not sufficient on its own, the concept of
interaction can serve as a starting point for investigating
the consistency of treatment effects across subgroups.
Wang and Hung [21] introduced the so-called
interaction-to-overall effects ratio as the ratio of the
treatment effect difference between a subgroup and its
complement, and the treatment effect in the overall
sample. This ratio permits the determination of the ne-
cessary sample size increase needed to detect the inter-
action effect. For example, when this ratio equals 2, i.e.,
the interaction effect is twice the overall effect, the sam-
ple size is generally large enough to detect the inter-
action effect. Based on this ratio, the authors provided
decision rules for scenarios with two mutually exclusive
subgroups. Royston and Sauerbrei [26, 27] estimated the
significance level as well as the power of 21 methods for
investigating interactions between treatment and a con-
tinuous covariate. Based on simulation studies the au-
thors recommended the use of the multivariable
fractional polynomial interaction procedures when deal-
ing with continuous covariates. White and Elbourne [28]
pointed out that the presence of interaction for binary
data depends on the effect measure chosen (relative risk,
risk difference, odds ratio). Theoretically, if a treatment
effect truly exists, homogeneity in one measure, e.g.,
relative risk, requires heterogeneity in at least one other,
e.g., risk difference. Thus the measurement scale of the
interaction test, if performed, should be pre-specified
and based on clinical knowledge.

Tanniou et al. BMC Medical Research Methodology  (2016) 16:20 Page 6 of 15



Detecting qualitative interactions
Qualitative interactions occur when one treatment is su-
perior for one subgroup of patients and the alternative
treatment is superior for the complementary subgroup
[29]. True qualitative interactions are obviously of inter-
est when one assesses the consistency of the treatment
benefit across all subgroups. Several papers focus on the
investigation of qualitative interactions in clinical trials.
The likelihood ratio test and the range test are fre-
quently applied in this situation. They are known to be
biased and not very powerful [30, 31]. Li and Chan [32]
proposed improvements to the range test. Their
“extended range test” considers all observed treatment
differences in a stepwise manner, instead of only taking
into account the maximum and the minimum value of
standardised treatment differences. Gunter et al. [33] in-
vestigated qualitative interaction, using a combination of
bootstrap sampling followed by the construction of a
permutation threshold. To deal with testing a large
number of variables in a post-hoc manner, they pro-
posed a variable selection technique based on the Lasso
method. Kitsche and Hothorn [34] proposed a method
to detect qualitative interactions for normally distributed
outcome variables. They suggested using the ratio of
treatment effects, which allows for the distinction be-
tween quantitative and qualitative interactions via the
sign of the ratios. It allows detecting the existence of a
qualitative interaction, but also estimates the magnitude
of the interaction, i.e., to assess its clinical relevance.
More recently, Kitsche [35] extended his method to bin-
ary outcomes using the ratio of risk differences. The au-
thor noted that the major advantage of this method is
the additional information on the source and the
amount of the qualitative interaction, rather than its gain
in power.

Forest plots
Forest plots are a popular graphical approach for dis-
playing the results of subgroup analyses. As subgroup ef-
fect estimates from different baseline covariates, e.g.,
gender and age, may not be independent, forest plots
could provide an exaggerated impression of consistency
within a trial [19]. Varadhan and Wang [36] discussed a
method, called standardization or inverse probability
weighting, which is commonly used in epidemiology.
The principle is to remove confounding due to correl-
ation between variables by using appropriate weights.
The distributions of the variables of interest become
identical and therefore provide a proper unconfounded
comparison of treatment effects among strata of a base-
line subgrouping variable. This method can remove the
bias in the estimation of subgroup-specific treatment ef-
fects as well as in the estimation of the interaction effect
between the variable of interest and the treatment.

However, the variance of the subgroup-specific treat-
ment effects is increased. The authors finally advised
that RCTs should report standardized subgroup-specific
treatment effects with corresponding forest plots when
the important baseline covariates are strongly correlated.

Bayesian approaches
White et al. [37] stated that they were “unaware of any
previous trial in which expert prior beliefs about interac-
tions have been elicited prospectively and used to inform
the interpretation of the trial”. They proposed a Bayesian
approach where prior beliefs (questionnaires sent to
experts) were taken into account. The idea is to use
non-informative priors for the main effects, i.e., not
using expert prior beliefs, and use expert beliefs only for
interaction effects; hence avoiding a false positive conclu-
sion of the trial. Bayman et al. [38] proposed a Bayesian
method to detect qualitative interaction using the Bayes
factor. The subgroups should be exchangeable, meaning
that in the absence of qualitative interaction the treatment
effect is similar across subgroups. Prior distributions for
the mean and the standard deviation of the subgroups are
required. Finally, the null hypothesis of no qualitative
interaction is rejected when the Bayes factor is less than a
pre-specified value. Jones et al. [39] challenged the idea of
hypothesis testing for exploratory subgroups. They con-
sidered testing more appropriate for decision-making, and
proposed shrinkage estimation techniques for exploratory
post-hoc subgroup analyses. The authors applied seven
different subgroup models based on a literature review, all
incorporating shrinkage estimation techniques. These
models are compared using the Deviance Information
Criterion (DIC) and posterior predictive p-values.
Shrinkage methods have recently drawn researchers’ at-
tention such as Lipsky et al. [40]. Keene and Garett
[23] defined shrinkage estimators as a promising ap-
proach to modeling subgroup effects, as they balance
the observed subgroup treatment effects with the over-
all effect. Hemmings [19] also pointed this out as po-
tentially interesting and indicated the need for research
to develop this technique further. A summary of the
Bayesian methodology from a more general perspective
is also given by Alosh and co-workers [41].

Other potential methods
Risk-stratification modelling may overcome some of the
limitations of subgroup analyses [42–44]. The study
population is stratified via a multivariable risk prediction
model, taking into account multiple patient attributes
(risk factors), instead of only one in subgroup-specific
analyses. Each subject is thus assigned its predicted
treatment effect providing a net benefit or harm. Kent et
al. [44] provided two main recommendations: (1) report-
ing the distribution of the baseline predicted risk (or risk
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score) in the study population overall and by treatment
arm, and if there is heterogeneity, risk stratified analysis
should be performed, and (2) reporting relative and ab-
solute risk reduction in a risk-stratified analysis. Koval-
chik et al. [45] proposed a framework similar to risk-
based assessment of treatment effect heterogeneity. The
heterogeneity is assessed through a proportional interac-
tions model when multiple variables influence treatment
response. These covariates should be well-chosen to
benefit from the statistical advantages of this method.
Additionally, they provided a method for covariate selec-
tion to address model misspecification. Alosh and
Huque [46] recommended the use of a pre-specified
consistency criterion for a pre-specified subgroup. This
criterion could be based on clinical considerations, e.g.,
adverse events and/or toxicities of the investigated treat-
ment. Alosh and co-workers [47] also compared both
methods with a traditional test of interaction. The main
focus is on the probability of wrongly prescribing the
new treatment to the subgroup that would benefit least
from it. They concluded that the method from Koch and
Schwarz followed by the method from Alosh and Huque
could be applied to provide a flexible approach to assess
safety and efficacy. Recently, Alosh et al. [41] proposed a
more general approach to guide determination of the
population for treatment use that takes into account the
relative size of the subgroup as well as safety
considerations.

Explore the treatment effect across different subgroups
within an overall non-significant trial
In case a trial for a new treatment demonstrates an
overall non-significant result, treatment effects might
still not be homogeneously absent across the study
population. Therefore, exploring the treatment effect
across different subgroups is of interest as a relevant
subpopulation might benefit from that treatment [48].
The overall type I error could be substantially inflated.
As a result additional confirmatory tests cannot be per-
formed [16, 49]. Based on our search strategy, four pa-
pers were identified. The following example illustrates
the situation.
The Clomethiazole Acute Stroke Study (CLASS) [50]

investigated the use of clomethiazole versus placebo in
1353 patients diagnosed with an acute hemispheric
stroke. The primary endpoint of the study was the rela-
tive functional independence (≥60 points on the Barthel
Index, a questionnaire about activities of daily live) at
90 days. The dichotomous outcome was: functional in-
dependence or no functional independence. No signifi-
cant difference was found in the relative functional
independence at 90 days between the clomethiazole and
placebo group (p = 0.649). Although no overall signifi-
cant result was found, a significant interaction was

observed between TACS (total anterior circulation syn-
drome present or not) and the treatment (clomethia-
zole/placebo) (p = 0.038). Following the interaction test,
a subgroup test was conducted. Within the subgroup of
TACS patients a significant difference was found be-
tween the clomethiazole and placebo group (p = 0.008):
40.8 % in the clomethiazole group reached relative func-
tional independence, compared with 29.8 % in the pla-
cebo group. For the non-TACS patients no significant
difference (67.3 % vs. 70.3 %) was observed (p = 0.358).
Tanniou et al. [48] investigated the statistical level of

evidence of a single pre-specified subgroup finding in
an overall statistically non-significant study with a con-
tinuous outcome. In case of a single trial, the inflation
of the overall type I error is substantial and can be up
to twice as large as the pre-specified value, especially in
relatively small subgroups. Based on their results they
defined a threshold significance level (p-value ≤ 0.004)
for the subgroup test. They proposed to use this
threshold to decide on a new replication trial, if not yet
available. They also showed, unexpectedly, that testing
a subgroup when there is a so-called “trend” for effect
in the overall population, defined as a one-sided p-
value for the overall test between 0.025 and 0.05, is bad
practice with substantial overall type I error inflation
up to 0.23 (one-sided). When promising subgroup find-
ings arise in an overall non-significant trial, particular
attention should be given to plausibility and replication.
When a result is replicated, it often reassures decision
makers [19]. In absence of other evidence, replication
of promising subgroup findings should be the standard
approach if the trial is overall non-significant [49]. Tan-
niou et al. [48] extended their research to scenarios
with replications. The level of evidence is substantially
improved when the subgroup finding is replicated in an
independent trial. The power of the replicated trials
strongly depends on the chosen replication scenario.
The replication trial should preferably be planned with
the same targeted effect size as in the first trial, rather
than with the observed subgroup effect. The observed
subgroup effect is likely to over-estimate the true sub-
group effect resulting in an underpowered replication
trial even though the overall type I error is almost con-
trolled. Tanniou et al. [48] as well as Koch and Framke
[49] pointed out that in case two non-significant trials
reach the same significant conclusion for one particular
subgroup it may form a basis to confirm efficacy of the
new treatment in that subpopulation. In exceptional
situations (no replication possible, urgent medical
need), a case-by-case decision might lead to a positive
conclusion for a promising subgroup in an overall non-
significant trial. The underlying principles usually
include: a clear pharmacological rationale, external evi-
dence, a small p-value in the subgroup, and no
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imbalances regarding important prognostic factors
present [49].

Evaluate safety profiles limited to one or few subgroups
The size of a trial is by design expected to provide suffi-
cient power for confirmatory comparative evidence on the
primary efficacy endpoint. For safety this is often not the
case. For example, there might be insufficient follow-up
time for long term safety events or a limited number of
observable serious safety outcomes such as deaths. As
safety issues cannot be ignored, effort is needed to more
effectively identify harmful effects associated with new in-
terventions. Subgroup analyses may help identify suscep-
tible patient groups, for which benefit-risk might be
negative. Concerning the safety purpose, five papers were
identified. First, an example is provided.
Tysabri (natalizumab) is used to treat adults with re-

lapsing remitting multiple sclerosis. Its indication is re-
stricted to highly active multiple sclerosis forms of
disease due to safety concerns. Hemmings [19] provided
extracts from the European Public Assessment Report
(EPAR):
“Efficacy has convincingly been demonstrated at the

pre-specified 2-year clinical endpoints, including the
clinically highly relevant impact on disability progres-
sion, which is the major goal of treatment of relapsing
remitting multiple sclerosis (MS). Treatment with
300 mg natalizumab every 4 weeks resulted in a highly
statistically significant 42 % decrease in the risk of dis-
ability progression, as measured by sustained changes on
Expanded Disability Status Scale, when compared to pla-
cebo over a 2-year period, and a 68 % decrease in the
annualized relapse rate versus placebo over both 1 and
2 years […].
Reduced lymphocyte surveillance as induced by

alpha4-integrin antagonism by natalizumab might have
been causative to the occurrence of 2 cases of progres-
sive multifocal leukencephalopathy in patients with MS,
and a further case in a patient with Crohn’s disease. Two
of the cases were fatal. The current safety database does
not yet allow for a clear estimation of the risk of serious
and/or fatal adverse events, like progressive multifocal
leukoencephalopathy or other serious infections. Since
MS is a disease of a typically young patient population
with usually no reduced lifespan, and since there are
therapeutic alternatives with an established safety profile,
Tysabri should be clearly restricted to patients that are
really in need of such a therapy. Expert view, also from
Patient Representatives, agreed to this principle.”
In this example, there is a suspicion that Tysabri might

be negative for a subgroup. There is, however, not
enough data to identify the subgroup.
Koch and Framke [49] stated that if safety concerns

arise, meticulous investigation should be mandatory in the

assessment of a clinical trial. On a more dedicated-to-
safety viewpoint, Grouin et al. [16] provided definitions
and methodology about safety assessment. Subgroup ana-
lyses assessing safety differ from those assessing efficacy in
the sense that their definitions are generally derived from
a clinical consensus. They are usually defined by prognos-
tic factors for safety risks, such as older age. Moreover, in
case the treatment under investigation is in a market
authorization process, these subgroup analyses are often
demanded by authorities; hence their pre-specification is
generally not necessary. The sample size for safety sub-
group analyses is rather based on clinical than statistical
reasons. Koch and Schwarz [22], for their part, proposed
to take into account any expected safety issues into the
consistency assessment. They considered the scenario
where the effect size in each subgroup must at least be
some percentage of the overall effect, e.g., 50 %. If any
safety issue is expected, this threshold could be more con-
servative, e.g., 70 %, to assure a good balance between the
efficacy and the safety profiles of a new treatment. The
same idea holds for confirmatory strategies where a larger
sample size and/or a more rigorous observed treatment
effect in the complementary subgroup might be necessary
to take safety issues into account.
Michiels et al. [51] investigated quantitative treatment-

by-biomarker interaction in randomized controlled trials
with a survival endpoint among multiple pre-defined
candidate biomarkers. The authors proposed five differ-
ent permutation test statistics and argued that these
tests could also determine whether a subgroup of pa-
tients has a different safety profile. Similarly the multi-
variate risk-stratified analyses discussed above can be
applied [42–44]. The authors argued that multivariable
risk-stratified analyses should be conducted routinely
whenever an adequate externally-developed and vali-
dated prediction tool is available. If not, safety problems
occurring in low-risk subjects could be missed.
The methods from Alosh et al. and Koch and Schwartz

[22, 41, 46, 47] can take into account safety issues to
relax or restrict some pre-specified thresholds to ensure
that any safety issue is counter-balanced by the potential
efficacy of the new treatment. A further reasonable ap-
proach for assessing a safety signal for a subgroup is by
pooling data from similar trials through meta-analyses.
Careful consideration should then be paid to the similar-
ity of the trials and representation of the subgroups [41].

Establish efficacy in the targeted subgroup when
included in a confirmatory testing strategy of a single
trial
In the development of personalized medicine and tar-
geted therapies it is logical to include one or more sub-
groups in the confirmatory testing strategy of a single
trial. With the appropriate testing strategy, a significant
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positive subgroup finding can be considered confirma-
tory. Depending on the testing strategy, this can hold
even if the overall test does not reach statistical signifi-
cance. In any case, it provides more targeted evidence
about the treatment under investigation. These study de-
signs are to date almost exclusively applied to new on-
cology drugs, where both a biomarker-positive and a
biomarker-negative subgroup are identified. Historically,
these analyses are not common for phase III clinical tri-
als [19]. Our intention was not to thoroughly review
these biomarker-defined subgroups and associated de-
signs, which face very specific issues. The list of papers
we reviewed that address this topic is thus certainly
non-exhaustive. As the pre-planned subgroup is part of
the trial confirmatory testing strategy, the key methodo-
logical problem relates to the control of the type I error
in multiple testing. Fridlyand et al. [52] provided an in-
dustry perspective on these designs as part of drug de-
velopment and proposed decision criteria for the choice
of a Phase III pivotal trial based on a Phase II result.
Based on the favourable or unfavourable outcomes in all
patients and/or the biomarker-based subgroup in proof-
of-concept trials, different design options apply for the
pivotal Phase III trial: targeted (or enrichment) design,
biomarker-stratified design, traditional design, or stop
the development of the new treatment. We first describe
the targeted designs, then different biomarker-stratified
designs, i.e., sequential subgroup-specific designs,
marker sequential test designs and fallback designs, and
finally other confirmatory methods are presented.

Targeted designs
The new treatment is only evaluated in the subgroup of
interest. Patients are first screened by their biomarker
status and then included in the trial; hence conclusions
are restricted to this subpopulation only. This design
does not require any particular method to control the
type I error rate [22]. It can reduce the number of ran-
domised patients needed relative to a traditional trial de-
sign, because of the expected larger treatment effect
and/or reduced variability. As the complementary sub-
group is not tested, prior evidence that the treatment is
very likely to work only for the subgroup of interest has
to be compelling. Moreover, if the treatment effect size
in the complementary subgroup is under-estimated, the
potential gain associated with the targeted trial may be
lost. In case of a biomarker defined subgroup, the poten-
tial benefit is also dependent on the diagnostic proced-
ure: the higher the specificity, the better the gain in the
number of randomised patients for this design [53, 54].
In some cases a targeted design might also have to enrol
patients from the complementary subgroup, possibly be-
cause membership or not in the subgroup of interest re-
quires a diagnostic procedure of which the outcome

might be unknown until after the start of the rando-
mised treatment [22]. Moreover, a diagnostic procedure
never has optimal sensitivity and specificity; hence it is
likely that also patients from the complementary sub-
group could be included and receive a treatment. Fur-
ther research has been dedicated to this topic with a
more decision-theoretic approach [55].

Biomarker-stratified designs
To investigate the effectiveness of a new treatment in a
broader population, biomarker-stratified designs enrol
both the biomarker-positive and the biomarker-negative
patients. These designs may be used either to demon-
strate the efficacy in the full population only or to dem-
onstrate the efficacy in the full population or in the
subgroup of interest. Multiplicity adjustments must
therefore be considered to control the overall type I
error rate. However, different designs might be consid-
ered depending on the prior evidence on the biomarker.

Sequential subgroup-specific designs
In the sequential subgroup-specific design, the
biomarker-positive subgroup is tested first, using a
threshold of significance, e.g., 5 % (two-sided). Only if
the test is statistically significant, the biomarker-negative
subgroup is tested at the same significance level of 5 %.
Its main advantage is that it provides clear evidence of
the treatment benefit in both biomarker subgroups.
However, its power is not optimal when the treatment
effect is homogeneous across both subgroups [56, 57].

Marker sequential test designs
An alternative design is the Marker Sequential Test
(MaST) design. This design incorporates testings of the
biomarker-positive subgroup, biomarker-negative sub-
group as well as the overall studied sample. First, the
biomarker-positive subgroup is tested at a reduced sig-
nificance level. If the result of this test is significant, the
biomarker-negative subgroup is then tested at the full
significance level. If the result of the biomarker-positive
subgroup is not significant, the overall studied sample is
tested at a reduced significance level. This design also
has the advantage to provide clear evidence about the
treatment effect in both subgroups. Contrary to the se-
quential subgroup-specific design, it has a good statis-
tical power when the treatment effect is homogeneous
across both subgroups. However, it requires a marginally
larger sample size [58].

Fallback designs
When prior evidence on the biomarker is less convin-
cing, a fallback design might be applied. In this two-
stage design, the first stage tests the overall sample at a
reduced alpha level. If the overall test is significant at
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that reduced level, then the trial stops and the treatment
would be recommended for all patients. Otherwise the
subgroup test is performed in the second stage. Wang et
al. [59] indicated that the properties of this design could
be improved by taking into account the correlation be-
tween the two test statistics. Spiessens and Debois [60]
tackled this aspect and took into account the correlation
between both tests statistics to calculate adjusted signifi-
cance levels. Song and Chi [61] proposed a two-stage
closed testing procedure which can be seen as an exten-
sion of the fallback procedure. A degree of efficacy
consistency may be maintained by prohibiting subse-
quent subgroup testing if the overall test does not show
any marginal significance, e.g., 0.025 < p < 0.10 (one-
sided). This degree of consistency could be useful to
avoid specific regulatory or ethical concerns. Other de-
sign parameters can be included to consider efficacy
consistency requirements, such as performing the sub-
group test only when there is no statistically significant
quantitative interaction, or when the result of the com-
plementary subgroup is no worse than a pre-specified
boundary. Similarly, Alosh and Huque [62] proposed a
method with a certain degree of consistency. Others
such as Zhao et al. [63] and Alosh et al. [46] proposed
extended fallback procedures.
Fallback designs focus on two primary hypotheses of

interest, namely the full sample (intent-to-treat patient
population) and a subgroup of interest. The clinical
question whether the treatment is effective in the com-
plementary subgroup is not addressed. Even if both pri-
mary hypothesis tests are statistically significant, the
overall result might be driven by the subgroup of inter-
est, therefore the effectiveness of the treatment in the
complementary subgroup cannot be guaranteed [19, 46,
64]. Rothmann et al. [64] explored the probability of in-
cluding the complementary subgroup, given that it does
not truly benefit from the new treatment. The authors
conclude that to extrapolate favourable efficacy to the
complementary subgroup, multiplicity is not the only
issue to address, but also an adequate amount of data
should be provided to obtain a reliable treatment effect
estimate in that group. Alosh and Huque [62] recom-
mended defining a threshold level of evidence on the re-
sponse for the least benefited (complementary)
subgroup. For instance, this threshold value might be
very conservative if the treatment of interest is very
toxic, or be very liberal if the treatment is very safe. The
authors provided extensions of three multiplicity proce-
dures to account for the consistency requirement on the
complementary subgroup.
Interim analyses might identify a potential subpopulation

of interest, if not identified previously. Chen and Beckman
[65] provided a method that controls the type I error rate
by optimally splitting the overall significance level.

Other confirmatory methods
Michiels et al. [51] investigated quantitative treatment-
by-biomarker interaction in randomised controlled trials
with a survival endpoint among multiple pre-defined
candidate biomarkers. The authors proposed five differ-
ent permutation test statistics, namely composite Wald,
composite difference, Sum single-Wald, Max single-
Wald, Fisher single-Wald. They also pointed out that a
significant treatment-modifying biomarker result will al-
ways have to be replicated using data from other phase
III trials. Koch and Schwartz [22] considered a modifica-
tion of Hochberg’s method for controlling the multipli-
city issue. A re-randomisation method can improve its
power as it allows increased significance levels for both
the overall and the subgroup tests based on the correl-
ation between the subgroup test and the overall test.
They also argued that if the overall test is significant and
the subgroup test is not, this latter test can still be seen
as consistent with a relaxed significance level. Millen et
al. [25, 66] proposed both a frequentist and a Bayesian
method for assessing (1) the influence and (2) the inter-
action conditions in order to improve the decision-
making process. The purpose is to use these conditions,
along with an appropriate multiple testing procedure, to
provide an inferential foundation for multi-population
tailoring trials. The influence condition addresses the
concern that the inference in the overall population may
be unduly influenced by a highly significant subgroup
treatment effect. The interaction condition is only rele-
vant when the influence condition is met. It states that
to enable an enhanced product label for the pre-defined
sub-population, its treatment effect has to be meaning-
fully greater than for the complementary subgroup. So,
the goal of this condition is to help guiding decisions for
a broad indication (overall population) versus an en-
hanced labelling (overall population indication with a
specific sub-population labelling). If both conditions are
met, it means that the treatment effect in the comple-
mentary subgroup is large enough, with an even greater
treatment effect in the pre-specified subgroup. Sivagane-
san et al. [67] investigated the use of Bayesian model se-
lection and a threshold on posterior model probabilities
to identify the relevant subgroup(s) among pre-planned
subgroups. Separate classes of models are first defined
for each covariate of interest. The associated posterior
probabilities are then calculated for each model, and
pre-specified thresholds are used to determine whether a
subgroup effect should be considered or not. Eng [68]
recently proposed a new method: the randomised re-
verse marker strategy design. Contrary to biomarker-
stratified designs, which randomise treatments stratified
on marker status, this design randomises patients to
either the marker-based strategy or the reverse marker
strategy arm. Biomarker-positive patients receive
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treatment A in the marker-based strategy arm and treat-
ment B in the reverse marker strategy arm, and
biomarker-negative patients receive treatment B in the
marker-based strategy arm and treatment A in the re-
verse marker strategy arm.

Discussion
Patients’ and health care providers’ perspectives are of
main interest in drug development. In that respect, sub-
group analyses could improve health care quality and
thus constitute a fundamental step in the assessment of
confirmatory clinical trials. Benefit-risk conclusions may
hold for the overall study population, but if benefit-risk
is heterogeneous across relevant subgroups this should
impact the use of new drugs. The importance of sub-
group analyses is acknowledged, as illustrated by recent
regulatory (draft) guidance documents [69–71]. Sub-
group analyses come with well-known statistical and
methodological issues. Some researchers have provided
general guidance to assess the credibility of subgroup
findings without necessarily considering the entire con-
text in which these analyses are involved.
It is of crucial importance to distinguish different pur-

poses for subgroup analyses. This will help specific design
or analyses choices, and will optimize the decision-making
process based on the trial. Grouin et al. [16] proposed five
different purposes for subgroup analyses in the context of
market authorisation, which was the starting point for this
review. We adapted this framework to four distinct pur-
poses that could directly be related to design, analysis and
interpretation. To gain systematic insight in the “state of
the art” and areas of research needed, we reviewed the lit-
erature in line with this “purpose based” framework.
Concerning Purpose 1 (Investigate the consistency of

treatment effect across subgroups of clinical importance),
there is clear consensus that it should always be investi-
gated. Many methods are available but some flexibility is
necessary, taking into account the specific case-by-case
realities of each situation. The breadth and complexity
of the potential questions regarding consistency assess-
ments leads us to the idea that a clear conceptual basis
for deciding what is a desirable level of consistency in a
given trial or program is of interest. This should lead to
clear operational definitions of consistency.
With regard to Purpose 2 (Explore the treatment effect

across different subgroups within an overall non-
significant trial), subgroup analyses are exploratory as
their level of evidence is always too weak to reach any
definite answers. The best available solution is therefore
to conduct a replication trial, or replicate the subgroup
analysis in an already available trial. Tanniou et al. [48]
proposed a threshold p-value to be used to decide on a
(new) replication trial.

Purpose 3 (Evaluate safety profiles limited to one or
few subgroups) is often not addressed in the literature,
even if the safety issues are obviously a major concern .
Few methods proposed take the safety assessment into
account. Therefore, more research is needed. Methods
to assess efficacy and safety in a multivariate way are of
interest in this context.
Finally, Purpose 4 (Establish efficacy in the targeted

subgroup when included in a confirmatory testing strat-
egy of a single trial) is well understood and extensively
investigated. To date these methods and designs are al-
most exclusively applied to new oncology drugs where a
specific predictive biomarker is investigated. Several so-
lutions exist to solve the main statistical issue, i.e., to
control the type I error rate. On top of that a strategy
for selecting the order of statistical tests needs to be de-
fined. This is not a purely statistical problem, and comes
down to where one should place their bets, citing
Hemmings [19]. A clear rationale - both statistical as
well as clinical - and interpretation should guide the
confirmatory testing strategy.
The scientific (clinical) plausibility of subgroup results,

along with consideration of the statistical strength of evi-
dence will inform the appropriate design and analysis
approach. Thus, non-statistical considerations impact
the level of evidence required for either excluding a sub-
group for a new treatment, or restricting use of a treat-
ment to a subgroup.
Our framework structured the review, but also left

some new research areas out of scope. Subgroup ana-
lyses, particularly those that aim to identify certain pat-
terns or groups, are similar to classification problems
in general. Specifically, methods for recursive partition-
ing that also address control of the inflation of the type
I error rate are worth mentioning. These methods in-
clude SIDES, SIDEScreen, Virtual Twins, Interaction
Trees, Model-based recursive partitioning or STIMA
[72–80]. Dusseldorp and Van Michelen [81] presented
a non-recursive partitioning method (QUINT). More
recently, Loh et al. [82] also introduced three new re-
gression trees to identify subgroups with potential dif-
ferent treatment effects. Finally, Berger et al. [83]
introduced a Bayesian approach to identify subgroup
effects based on defining treatment models and base-
line models using tree-based methods. We did not con-
sider the role of randomisation in our framework. In
general, the consensus is that the validity of a subgroup
finding is improved when stratified for at randomisa-
tion [8–10, 16, 20, 21, 49, 61]. Kaiser [84], on the con-
trary, argued that even when randomization is not
stratified for the subgroup of interest, the treatment
group sample sizes in a pre-specified subgroup on aver-
age attain the desired allocation fraction of the study
overall.
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A limitation of our study is that the assignment of pa-
pers to one or more of the four purposes was subjective,
and for part of the papers had to be inferred. This is
largely due to the fact that papers are not specific on the
purpose of the methods they address.

Conclusions
To our knowledge, this is the first methodological and
statistical literature review dedicated to subgroup ana-
lyses as a methodological challenge. Many issues regard-
ing subgroup analyses are presented in the literature
without explicit reference to specific purposes. We intro-
duced a clear framework to guide research and applica-
tion of subgroup analysis. We noticed that a clear
operational definition of confirming consistency of treat-
ment effects across subgroups is lacking, but is needed
to improve methods of subgroup analyses in this setting.
Furthermore, researchers developing methodology
should explicitly clarify the objectives of methods in
terms that can be understood from a patient’s, health
care provider’s and/or regulator’s perspective. Finally,
methods to explore benefit-risk systematically across
subgroups require further research.
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