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Abstract

Background: Simon’s two-stage design is the most widely implemented among multi-stage designs in phase II
clinical trials to assess the activity of a new treatment in a single-arm study. In this two-stage design, the sample size
from the second stage is fixed regardless of the number of responses observed in the first stage.

Methods: We develop a new minimax adaptive design for phase II clinical trials, by using the branch-and-bound
intelligent algorithm based on conditional error functions.

Results: We compare the performance of the proposed design and competitors, including Simon’s minimax design,
and a modified Simon’s design that allows early stopping for futility or efficacy. The maximum sample size of the
proposed minimax adaptive design is guaranteed to be less than or equal to those from other existing designs. When
the proposed design has the same maximum sample size as others, it always has the smallest expected sample size. In
addition to the minimax adaptive design, we also introduce admissible adaptive designs determined from a Bayesian
perspective.

Conclusions: The proposed adaptive minimax design can save sample sizes for a clinical trial. The minimum required
sample size is critical to reduce the cost of a project.

Keywords: Adaptive design, Admissible design, Efficacy, Futility, Minimax design, Simon’s design

Background
In phase II clinical trials, a new treatment or a new therapy
is often assessed by measuring activity with dichotomized
endpoints, responding ’yes’ or ’no’ to the intervention.
For Oncology clinical trials, the response criteria may be
determined by the Response Evaluation Criteria In Solid
Tumours (RECIST) [1]. The traditional experiment in
phase II Oncology trials is often conducted in a single arm
study, which is also popular in other studies, such as AIDS.
All patients enrolled in the study are treated with the same
treatment, and their measurements are obtained at the
end of the study and compared to the priori estimate from
historical studies with the similar condition of experiment
and patients. From ethical and economical considerations,
a trial should be allowed to stop earlier after an interim
analysis to better protect patients, especially in situations
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when the treatment is indeed ineffective. For this reason, a
multi-stage design is often implemented, and among these
designs the most popular is Simon’s two-stage design [2].
Simon [2] proposed two optimal designs: the optimal
design with the expected sample size under the null (ESS0)
minimized, and the minimax design having the smallest
ESS0 among the designs with the maximum sample size
(MSS) minimized. Simon’s design allows early stopping
in the first stage for futility only. Recently, Mander and
Thompson [3] extended Simon’s design to allow stopping
for efficacy or futility by introducing an additional design
parameter that represents the stopping criteria for effi-
cacy in the first stage. It is guaranteed that the MSS of the
modified design is less than or equal to that of Simon’s.
In Simon’s design and the modified Simon’s design due

to Mander and Thompson [3], the second stage sample
size is always fixed and is not allowed to bemodified as the
result observed from the first stage. Tomake a design flex-
ible and efficient, adaptive designs have been developed
to allow the second stage sample size to depend on first
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stage responders. It is easy to show that Simon’s opti-
mal design is a special case of adaptive designs, therefore,
the expected sample size of an optimal adaptive design is
always less than or equal to that of Simon’s design. Several
optimal adaptive designs have been developed for phase II
clinical trials, and the majority of them are based on the
optimal criteria with the smallest ESS0. Banerjee and Tsi-
atis [4] developed an optimal adaptive two-stage design
by using a Bayesian decision-theoretic construct to mini-
mize the expected loss through backward induction, with
type I and II error rates respected. The sample size savings
are small to modest when compared to Simon’s optimal
design. Later, Englert and Kieser [5] developed an opti-
mal adaptive two-stage design based on conditional error
functions [6] and an efficient search strategy [7]. Although
these adaptive designs guarantee the type I and II error
rates, these designs suffer from a counter-intuitive fea-
ture that the second stage sample size may increase as
the number of responses observed from the first stage
increases. Very recently, Shan et al. [8] developed an
optimal adaptive two-stage design with the monotonic-
ity property respected; the second stage sample size is
a non-increasing function of the first stage responders.
This improvement makes it practical to use the optimal
adaptive design.
In phase II clinical trials, it is desirable to achieve the

primary goal of the study with the number of patients
minimized, as the cost of the study highly depends on
the number of patients. In addition, Institutional Review
Boards approve proposed studies based on the maxi-
mum possible number of patients that are needed to
address the scientific questions. Therefore, the minimax
design is preferable by researchers with the smallest MSS
as compared to the optimal design when the MSS dif-
ference between the two designs is not small. To our
best knowledge, no adaptive design based on the mini-
max criteria has been proposed for use in practice. Due
to the importance of such designs, we develop a new
minimax adaptive design with the monotonic property
respected in this article by using the branch-and-bound
algorithm [7] based on conditional type I and II error
rates.
Both minimax and optimal designs have been widely

used in clinical trials. It is often the case that the expected
sample size of theminimax design is much larger than that
of the optimal design, although the minimax design has
a smaller maximum sample size. To compromise between
the maximum sample size and the expected sample size
under the null, an admissible adaptive design was pro-
posed by Jung et al. [9], which was implemented in Java
language by them. By using the Bayes risk function as in
Jung et al. [9], we propose a new admissible adaptive two-
stage design that is between the minimax adaptive design
and the optimal adaptive design.

The remainder of this article is organized as follows.
In “Methods” Section, we introduce the detailed search
method for the optimal adaptive design when the first
stage and the MSS of the second stage sample size are
fixed, then present the approach to find the minimax
adaptive design. In “Results” Section we compare theMSS
and the ESS0 of the proposed minimax adaptive design
with competitors. A real clinical trial from a cancer study
is used to illustrate the proposed design at the end of
“Results” Section. Finally, we provide some remarks in
“Discussion and conclusions” Section.

Methods
Simon [2] proposed the widely used two-stage designs for
early phase II clinical trials with binary endpoints by test-
ing the response rate to make a conclusion of go or no-go
to the next trial phase of the study. In this study design, the
unacceptable response rate πu can be estimated from his-
torical data, and the acceptable response rate πa is often
the targeted response rate of a new treatment or ther-
apy, where πu < πa. For example, in the clinical trial for
urothelial cancer with neoadjuvant therapy [10], the unac-
ceptable and acceptable response rates are πu = 35 % and
πa = 50 %, respectively. The hypotheses to be tested are

H0 : π ≤ πu,

against

Ha : π ≥ πa.

The null hypothesis is rejected for a large response rate.
Let n1, n2, and n be the number of subjects enrolled in the
first stage, the second stage, and both stages combined,
respectively, and x1, x2, and x are the associated number
of responses observed from the study.
In the clinical trial of the neoadjuvant therapy for

urothelial cancer [10], Simon’s minimax design was used
for sample size determination to achieve 80 % power
(β = 0.2) at the significance level of α = 0.1 when the
response rates were πu = 35 % and πa = 50 %. The
design was calculated as: (r1/n1, r/n) = (10/31, 21/49)
with the ESS0=40.8. The trial was allowed to stop for futil-
ity at the first stage if the number of first stage responses
x1 ≤ 10 was observed from a total of n1 = 31 patients.
Otherwise, an additional n2 = n − n1 = 49 − 31 = 18
patients were enrolled in the second stage, and at least
22 responses should be observed from total 49 patients,
x ≥ 22, in order to claim that the neoadjuvant therapy had
sufficient activity. The MSS of the minimax design was
49. An alterntive to the minimax design is Simon’s opti-
mal design whose ESS0 was the smallest among all designs
that met the design criteria. The design parameters for
the optimal design are: (r1/n1, r/n) = (7/20, 24/58) with
the ESS0 = 35.2. As expected, the ESS0 of the optimal
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design is less than that of the minimax design (35.2 agaisnt
40.8), but the MSS is much larger for the optimal design
as compared to the minimax design (58 against 49).
A modified Simon’s design that allows early stopping

for futility or efficacy, was proposed by Mander and
Thompson [3] who introduced another design param-
eter, r2, as ((r1, r2)/n1, r/n). This design is referred to
as the Minimax-EF design. For the aforementioned can-
cer study, the design can be calculated by using the
Stata package, simon2stage [3], as ((r1, r2)/n1, r/n) =
((11, 16)/32, 21/49), see Table 1. With n1 = 32 patients
enrolled in the first stage of the study, the study will be
stopped for futility if x1 ≤ 11 or efficacy if x1 > 16. A deci-
sion can not be made in the first stage when 11 < x1 ≤ 16,
and additionally n2 = n− n1 = 49− 32 = 17 patients will
be enrolled in the second stage. At the end of the study,
the null hypothesis will be rejected if x > 21. Otherwise,
it is concluded that the new treatment is not promising
enough to warrant further investigation. The ESS0 of the
minimax-EF design is 39.2 as compared to the ESS0 =
40.8 from Simon’s minimax design.
In the two aforementioned designs, the second stage

sample size is not allowed to change with the number
of responses observed from the first stage. To improve
the efficiency and flexibility of a study, we propose a new
adaptive two-stage design based on the minimax crite-
ria from Simon’s, the design with the smallest ESS0 and

Table 1 The proposed adaptive minimax design for the
urothelial cancer trial with the neoadjuvant therapy with
(α,β ,πu ,πa) = (0.1, 0.2, 0.35, 0.5)

S n2(S) n(S) r(S)

Minimax-EF design

≤ 11 0 32 0

12 17 49 21

13 17 49 21

14 17 49 21

15 17 49 21

16 17 49 21

≥ 17 0 32 0

Minimax adaptive design

≤ 9 0 28 0

10 21 49 21

11 21 49 21

12 21 49 21

13 21 49 21

14 19 47 20

15 18 46 20

≥ 16 0 28 0

MSS. In the proposed adaptive design, the second stage
sample size, n2(S), depends on the number of first stage
responses, S, and n2(S) is a non-increasing function of S,
specifically, n2(S1) ≥ n2(S2) when S1 < S2. For a given
first stage sample size n1, the value of S ranges from 0
to n1: S = 0, 1, . . . , n1. Moreover, the associated critical
value for each S, r(S), also needs to be determined for the
adaptive design. Then, the proposed design is presented as

n1 and (n2(S), r(S)) , S = 0, 1, 2, · · · , n1,
with a total of 2n1 + 3 unknown parameters. As pointed
out by many researchers [5, 8], it becomes quickly impos-
sible to estimate these parameters by enumerating all
attainable values of n2(S) and r(S), even after controlling
for the upper bound of the second stage sample size.
Conditional error functions are frequently used in adap-

tive designs to fully use the information from the previous
stage, specifically,

P(s|r(s), n2(s),π) = 1 − B (r(s) − s : n2(s),π) ,

where s is the observed first stage response under the
design parameters n2(s) and r(s), and B(x : y, z) is the
cumulative probability function of a binomial distribution
for observed value x with size y and probability z. Note
that P(s|π) = 0 or 1 when the study is terminated after
the first stage for futility or efficacy, respectively. As a spe-
cial case, it is always reasonable to stop the trial when no
response is observed from the first stage, P(0|π) = 0.
It should be noted that the proposed design allows early
stopping in the first stage for either futility or efficacy just
as existing adaptive designs.
For each design, the type I and II error rates are then

calculated from conditional error functions as

α =
n1∑

s=0
P(s|r(s), n2(s),πu) × b(s : n1,πu),

and

β = 1 −
n1∑

s=0
P(s|r(s), n2(s),πa) × b(s : n1,πa),

where b(.) is the density function of a binomial distribu-
tion. All designs with guaranteed type I and II error rates,
are candidates for the optimal design. Often, multiple
designs meet the design criteria, and an additional criteria
should be applied in order to find the optimal design. The
criteria used in the proposed adaptive minimax design is
the smallest ESS0 and MSS,

min
max(n1+n2(s),s=0,1,...,n1)

ESS0, (1)

where ESS0 = ∑n1
s=0[ n1 + n2(s)]×b(s : n1,πu) is the

expected sample size under the null for the design with
n1 and max(n1 + n2(s), s = 0, 1, . . . , n1) as the first stage
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sample size and the MSS. The min in Eq. (1) is used in
two folders. The function is first used to find all satisfied
designs with the smallest MSS, minmax(n1+n2(s),s=0,1,...,n1).
The second is to identify the minimax adaptive design as
the one from these in the previous step with the smallest
ESS0.
We start the design search with a fixed first stage sam-

ple size n1 and the MSS n. Then, the MSS of the second
stage is n2,max = n − n1. It is easy to show that n2(S)
≤ n2,max and r(S) ≤ n2(S). The optimal design needs
to be searched over a triangle space for each S, φ(S) =
{(n2(S), r(S)) : r(S) ≤ n2(S) ≤ n2,max}, where S =
0, 1, 2, · · · , n1. The complete search space is a product of
these triangle spaces,

(φ(0) × φ(1) × · · · × φ(n1)) .

As the first stage sample size n1 increases, the size of this
complete search space increases exponentially. Therefore,
it is not feasible to conduct this naive search to identify
the optimal design.
It is much more complicated to search for an opti-

mal solution over a two-dimensional space than a one-
dimensional space. For this reason, Englert and Kieser [5]
suggested using the union of all type I conditional error
functions and (0, 1), referred to as �, as the parameter
space. For each element in �, it contains the informa-
tion of n2(S) and r(S) as in the two-dimensional space.
That said, it is equivalent to determine the conditional
type I error value for S and (r(S), n2(S)). It is still not fea-
sible to conduct a grid search over the parameter space
(a(n1 + 1) − dimensional space) due to the fact that the
size of the parameter space increases very quickly as n1
and n2,max go up.
In order to overcome the computational burden, the

branch-and-bound algorithm [7], an intelligent algorithm,
is considered when searching for the optimal design over
a one-dimensional space on each S. This algorithm can
be used to search for the optimal design with or with-
out constraints [5, 8]. The monotonicity restriction in the
optimal adaptive design search by Shan et al. [8] is an
important feature that makes a design usable in practice.
The second stage sample size is a non-increasing func-
tion of the number of responses observed from the first
stage: n2(S1) ≥ n2(S2) when S1 < S2. This monotonicity
restriction is respected in the proposed minimax adaptive
design.
As pointed out, it is time consuming to compute the

actual type I and II error rates for each element in the
parameter space, and the branch-and-bound algorithm is
able to finish the design search in a timely manner by dis-
carding elements that do not lead to the optimal design,
which is the key idea of this intelligent algorithm. When
the sample sizes (n1, n) are given, the ESS0 is the objective

function. Two procedures are recursively utilized in the
algorithm to identify the optimal design. The first pro-
cedure is the branching process that splits the problem
into several complement problems. The conditional type
I error functions are used in this step to split problems.
Although it is not a requirement to sort the elements in �

in the design search, it helps to reduce the computational
intensity to sort them by n2(S) in an ascending order, and
P(S|πu) in an increasing order. The ordering of n2(S) is
used to meet the monotonicity feature of the proposed
design.
The second procedure, the bounding procedure, com-

putes boundary values of constraint functions. Let
O(S,WS) be theWS-th conditional error function in the�

when the number of responses is S in the first stage. Sup-
pose the current branching outcome from the branching
procedure is at S = k

O(0, 1),O(1,W1),O(2,W2), . . . ,O(k,Wk),O(k+1,1), . . . ,O(n1,1).
(2)

When no response is observed from the first stage, the
trial is assumed to be stopped for futility, that is repre-
sented byO(0, 1). Note that we use n2(S,WS) and r(S,WS)
to replace n2(S) and r(S) in the design search. The objec-
tive function at the current branching step is calculated
as

f =
k∑

s=0
(n1 + n2(s,ws))×b(s : n1,πu)+

n1∑

s=k+1
n1b(s : n1,πu).

The overall goal is to find the values of W for each S in
O(S,W ) that minimizes the objective function as

min
O(S,WS),S=0,1,...,n1

f .

Two constraints need to be satisfied in the design search

αmin =
k∑

s=0
P (s|r(s,ws), n2(s,ws),πu) × b(s : n1,πu),

and

βmin = 1 −
k∑

s=0
P (s|r(s,ws), n2(s,ws),πa) × b(s : n1,πa)

−
n1∑

s=k+1
b(s : n1,πa).

These two constraints help to determine the set of feasi-
ble solutions, and discard the candidates that do not lead
to the optimal design.
The minimax-EF design is a special case of the mini-

max adaptive design, therefore, the MSS of the minimax-
EF design is the upper bound of the proposed adaptive
design. For this reason, we start the search with the MSS,
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nt , which is the MSS of the minimax-EF design. For this
given MSS, say nt , the possible number of subjects from
the first stage, n1, ranges between 1 and nt −1. The search
for n1 = 1 and nt − 1 as the first stage sample sizes are
excluded for practical reasons: it is not realistic to enroll
only one patient to make a decision.
For each sample size configuration (n1, nt), the algo-

rithm is applied for the design search. If the study is
stopped for futility when S ≤ s − 1, then we assign
n2(s,Ws) = n − n1 to guarantee that the MSS is exactly
nt . It should be noted that the MSS could occur at mul-
tiple S values. The ascending order of n2(S) for elements

in parameter space �, is useful to meet the monotonic
relationship between the n2(S) and S in searching for the
design. Among these obtained optimal adaptive designs,
the one with the smallest ESS0 is the adaptive mini-
max design when the MSS is nt . From the relationship
between the proposed design and the minimax-EF design,
it is guaranteed that an optimal adaptive design will be
obtained when MSS is nt . The MSS is then decreased by
1, and the optimal adaptive design is searched again with
theMSS=nt−1. This procedure will be continued until no
optimal design is obtained from three consecutive MMS
values, say n∗ − 1, n∗ − 2, and n∗ − 3. Then, n∗ is the

Table 2 Comparison between three optimal designs for expected sample size ESS0 at α = 0.05 given πa − πu = 0.2 and 0.15

Minimax Optimal

Simon Minimax-EF Adaptive Adaptive

πu πa Power n ESS0 n ESS0 n ESS0 n ESS0

πa − πu = 20 %

0.1 0.3 0.8 25 19.51 24 20.30 23 20.94 29 14.85

0.9 33 26.18 33 23.96 33 23.93 35 22.38

0.2 0.4 0.8 33 22.25 32 24.93 32 23.22 37 20.48

0.9 45 31.23 44 35.68 44 33.39 53 29.74

0.3 0.5 0.8 39 25.69 36 30.68 36 29.31 46 23.45

0.9 53 36.62 50 42.47 50 41.03 60 34.08

0.4 0.6 0.8 39 34.44 39 34.33 39 26.86 46 24.39

0.9 54 38.06 54 38.03 53 42.65 66 35.64

0.5 0.7 0.8 37 27.74 37 26.90 37 26.87 43 23.33

0.9 53 36.11 51 41.14 51 37.74 59 33.45

0.6 0.8 0.8 35 20.77 33 23.97 33 22.13 38 20.28

0.9 45 35.90 45 33.30 45 31.36 52 28.74

0.7 0.9 0.8 26 23.16 26 23.11 25 18.00 27 14.82

0.9 32 22.66 32 22.66 32 22.64 36 20.80

πa − πu = 15 %

0.1 0.25 0.8 40 28.84 38 33.94 38 28.87 43 24.49

0.9 55 40.03 53 47.87 53 41.29 62 36.45

0.2 0.35 0.8 53 40.44 53 40.41 53 40.33 63 34.87

0.9 77 58.42 76 66.51 74 59.58 87 50.80

0.3 0.45 0.8 65 49.63 64 51.32 64 48.08 77 41.33

0.9 88 78.51 88 78.45 88 68.29 104 59.96

0.4 0.55 0.8 70 60.07 69 54.17 69 49.84 82 44.05

0.9 94 78.88 94 76.30 94 74.20 106 63.84

0.5 0.65 0.8 68 66.11 68 66.05 67 58.41 81 43.01

0.9 93 75.00 93 72.20 93 69.84 109 61.87

0.6 0.75 0.8 62 43.79 62 42.89 61 45.26 69 38.53

0.9 84 73.20 84 73.13 84 64.00 97 54.99

0.7 0.85 0.8 49 34.44 49 34.36 49 33.00 59 29.78

0.9 68 48.52 65 50.46 65 48.78 78 42.60
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Table 3 Proposed optimal adaptive designs for πa = πu + 0.2 at α = 0.05. Simon’s minimax design (r1/n1, r/n), and the minimax that
stops for futility and efficacy ((r1, r2)/n1, r/n), are provided as reference

Power = 80 % Power = 90 %

S n2(S) n(S) r(S) S n2(S) n(S) r(S)

πu = 0.2

Simon:(4/18, 10/33) Simon:(5/24, 13/45)

Minimax-EF:((2, 6)/15, 10/32) Minimax-EF:((4, 9)/25, 13/44)

New:n1 = 19 New:n1 = 23

≤ 4 0 19 0 ≤ 4 0 23 0

5 13 32 10 5 21 44 12

6 13 32 10 6 21 44 13

7 13 32 9 7 21 44 13

8 13 32 10 8 21 44 13

9 11 30 10 9 21 44 13

≥ 10 0 19 0 10 15 38 11

≥ 11 0 23 0

πu = 0.3

Simon:(6/19, 16/39) Simon:(7/24, 21/53)

Minimax-EF:((8, 13)/27, 15/36) Minimax-EF:((11, 17)/37, 20/50)

New:n1 = 20 New:n1 = 32

≤ 5 0 20 0 ≤ 9 0 32 0

6 16 36 14 10 18 50 19

7 16 36 15 11 18 50 20

8 16 36 15 12 18 50 20

9 16 36 15 13 18 50 20

10 16 36 15 14 18 50 20

11 16 36 15 15 18 50 20

12 14 34 15 16 18 50 20

≥ 13 0 20 0 17 11 43 18

≥ 18 0 32 0

πu = 0.4

Simon:(17/34, 20/39) Simon:(12/29, 27/54)

Minimax-EF:((17, 19)/34, 20/39) Minimax-EF:((12, 19)/29, 27/54)

New:n1 = 16 New:n1 = 35

≤ 6 0 16 0 ≤ 14 0 35 0

7 23 39 20 15 18 53 26

8 23 39 20 16 18 53 27

9 23 39 20 17 18 53 27

10 23 39 20 18 18 53 27

11 23 39 21 19 18 53 26

12 22 38 20 20 17 52 26

13 16 32 18 21 17 52 26

14 9 25 16 22 17 52 26

15 5 21 15 23 17 52 27

16 3 19 16 ≥ 24 0 35 0
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Table 3 Proposed optimal adaptive designs for πa = πu + 0.2 at α = 0.05. Simon’s minimax design (r1/n1, r/n), and the minimax that
stops for futility and efficacy ((r1, r2)/n1, r/n), are provided as reference (Continued)

πu = 0.5

Simon:(12/23, 23/37) Simon:(14/27, 32/53)

Minimax-EF:((10, 15)/20, 23/37) Minimax-EF:((17, 23)/34, 31/51)

New:n1 = 20 New:n1 = 28

≤ 10 0 20 0 ≤ 14 0 28 0

11 17 37 23 15 23 51 30

12 17 37 23 16 23 51 31

13 17 37 23 17 23 51 31

14 17 37 23 18 23 51 31

15 15 35 22 19 23 51 31

≥ 16 0 20 0 20 23 51 31

21 21 49 29

22 6 34 22

≥ 23 0 28 0

πu = 0.6

Simon:(8/13, 25/35) Simon:(15/26, 32/45)

Minimax-EF:((10, 14)/17, 24/33) Minimax-EF:((15, 20)/25, 32/45)

New:n1 = 15 New:n1 = 23

≤ 9 0 15 0 ≤ 14 0 23 0

10 18 33 24 15 22 45 32

11 18 33 24 16 22 45 32

12 17 32 23 17 21 44 31

13 16 31 22 18 21 44 31

14 14 29 21 19 21 44 31

15 14 29 21 20 10 33 24

21 10 33 25

22 8 31 24

≥ 23 0 23 0

πu = 0.7

Simon:(19/23, 21/26) Simon:(13/18, 26/32)

Minimax-EF:((19, 20)/23, 21/26) Minimax-EF:((13, 18)/18, 26/32)

New:n1 = 13 New:n1 = 18

≤ 9 0 13 0 ≤ 13 0 18 0

10 12 25 21 14 14 32 26

11 12 25 21 15 14 32 26

12 12 25 20 16 14 32 26

13 7 20 16 17 14 32 26

≥ 17 3 21 18

minimum MSS, and the optimal design associated with
n∗ is the final minimax adaptive two-stage design. It is
obvious that n∗ ≤ nt .

For the candidates of an admissible design, the first
step is to identify the MSS values of the minimax adap-
tive design and the optimal adaptive design by Shan et al.
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Table 4 Proposed optimal adaptive designs for πa = πu + 0.15 at α = 0.05. Simon’s minimax design (r1/n1, r/n), and the minimax
that stops for futility and efficacy ((r1, r2)/n1, r/n), are provided as reference

Power=80 % Power=90 %

S n2(S) n(S) r(S) S n2(S) n(S) r(S)

πu = 0.1

Simon:(2/22, 7/40) Simon:(3/31, 9/55)

Minimax-EF:((4, 6)/33, 7/38) Minimax-EF:((6, 8)/47, 9/53)

New:n1 = 18 New:n1 = 33

≤ 1 0 18 0 ≤ 3 0 33 0

2 20 38 7 4 20 53 8

3 20 38 7 5 20 53 9

4 19 37 6 6 20 53 9

5 19 37 6 7 18 51 8

6 18 36 6 8 17 50 8

≥ 7 0 18 0 ≥ 9 0 33 0

πu = 0.2

Simon:(6/31, 15/53) Simon:(8/42, 21/77)

Minimax-EF:((6, 13)/31, 15/53) Minimax-EF:((13, 18)/62, 21/76)

New:n1 = 31 New:n1 = 47

≤ 6 0 31 0 ≤ 9 0 47 0

7 22 53 15 10 27 74 20

8 22 53 15 11 27 74 20

9 22 53 15 12 27 74 20

10 22 53 15 13 27 74 20

11 22 53 15 14 26 73 20

12 21 52 15 15 26 73 20

≥ 13 0 31 0 16 26 73 20

17 25 72 20

18 14 61 18

≥ 19 0 47 0

πu = 0.3

Simon:(16/46, 25/65) Simon:(27/77, 33/88)

Minimax-EF:((13, 19)/43, 25/64) Minimax-EF:((27, 33)/77, 33/88)

New:n1 = 32 New:n1 = 51

≤ 9 0 32 0 ≤ 15 0 51 0

10 32 64 24 16 37 88 33

11 32 64 25 17 37 88 33

12 32 64 25 18 37 88 33

13 32 64 25 19 37 88 33

14 32 64 25 20 37 88 33

15 31 63 24 21 37 88 33

16 30 62 24 22 37 88 33

17 29 61 24 23 37 88 33

18 24 56 22 24 37 88 34

≥ 19 0 32 0 25 36 87 33

26 34 85 33

27 34 85 33

≥ 28 0 51 0
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Table 4 Proposed optimal adaptive designs for πa = πu + 0.15 at α = 0.05. Simon’s minimax design (r1/n1, r/n), and the minimax
that stops for futility and efficacy ((r1, r2)/n1, r/n), are provided as reference (Continued)

πu = 0.4

Simon:(28/59, 34/70) Simon:(24/62, 45/94)

Minimax-EF:((16, 23)/41, 34/69) Minimax-EF:((21, 31)/55, 45/94)

New:n1 = 37 New:n1 = 52

≤ 15 0 37 0 ≤ 20 0 52 0

16 32 69 33 21 42 94 44

17 32 69 34 22 42 94 45

18 32 69 34 23 42 94 45

19 32 69 34 24 42 94 45

20 32 69 34 25 42 94 45

21 31 68 33 26 42 94 45

22 31 68 33 27 42 94 45

23 31 68 33 28 42 94 45

24 21 58 29 29 42 94 45

≥ 25 0 37 0 30 42 94 45

31 39 91 43

≥ 32 0 52 0

πu = 0.5

Simon:(39/66, 40/68) Simon:(28/57, 54/93)

Minimax-EF:((39, 40)/66, 40/68) Minimax-EF:((30, 38)/59, 54/93)

New:n1 = 54 New:n1 = 55

≤ 28 0 54 0 ≤ 28 0 55 0

29 13 67 39 29 38 93 54

30 13 67 40 30 38 93 54

31 13 67 40 31 38 93 54

32 13 67 40 32 38 93 54

33 13 67 40 33 38 93 54

34 13 67 39 34 38 93 54

35 13 67 39 35 38 93 53

36 13 67 39 36 38 93 54

37 9 63 38 37 38 93 53

≥ 38 0 54 0 ≥ 38 0 55 0

πu = 0.6

Simon:(18/30, 43/62) Simon:(48/72, 57/84)

Minimax-EF:((16, 22)/27, 43/62) Minimax-EF:((48, 53)/72, 57/84)

New:n1 = 32 New:n1 = 58

≤ 19 0 32 0 ≤ 37 0 58 0

20 29 61 42 38 26 84 57

21 29 61 42 39 26 84 57

22 29 61 42 40 26 84 57

23 28 60 42 41 26 84 57

24 28 60 42 42 25 83 57

25 28 60 42 43 25 83 57

26 27 59 41 44 23 81 56

27 27 59 41 ≥ 45 0 58 0

28 15 47 34

≥ 29 0 32 0
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Table 4 Proposed optimal adaptive designs for πa = πu + 0.15 at α = 0.05. Simon’s minimax design (r1/n1, r/n), and the minimax
that stops for futility and efficacy ((r1, r2)/n1, r/n), are provided as reference (Continued)

πu = 0.7

Simon:(16/23, 39/49) Simon:(33/44, 53/68)

Minimax-EF:((16, 21)/23, 39/49) Minimax-EF:((29, 35)/41, 51/65)

New:n1 = 25 New:n1 = 37

≤ 18 0 25 0 ≤ 26 0 37 0

19 24 49 39 27 28 65 51

20 24 49 39 28 28 65 51

21 24 49 39 29 28 65 51

22 23 48 38 30 28 65 51

23 8 33 26 31 27 64 50

≥ 24 0 25 0 32 27 64 50

33 24 61 48

≥ 34 0 37 0

[8], nmin and nopt that are in the range of the MSS of
an admissible design. Secondly, for each given MSS, n,
between nmin and nopt , the optimal design with the small-
est ESS0 is calculated by using the algorithm aforemen-
tioned. The sample size information, n and ESS0, are used
in calculating the Bayes risk function

T = q × n + (1 − q) × ESS0 = (n − ESS0)q + ESS0,

where q is a pre-specified weight value, q ∈[ 0, 1]. It can be
seen that the Bayes risk function T is a linear function of

q with n − ESS0 as the slope and ESS0 as the intercept. As
ESS0 is always less than n, T is an increasing function of q.

Results
We compare performance of the proposedminimax adap-
tive design, Simon’s minimax design, the minimax-EF
design, and the optimal adaptive design due to Shan
et al. [8]. The first three designs are minimax designs,
while the last one is under the optimal criteria. The first

The number of responses in the first stage: S
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Fig. 1 The comparison among Simon’s minimax design, the minimax-EF design and the proposed adaptive minimax design for the design with
parameters (α,β ,πu ,πa) = (0.05, 0.1, 0.6, 0.8). The maximum sample size, n(S), is plotted as a function of the number of responses from the first
stage, S
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Table 5 Probability of early termination at the first stage for the
designs with πa = πu + 0.2 and 80 % power

πu Simon Minimax-EF New adaptive design

0.2 0.716 0.402 0.674

0.3 0.666 0.582 0.417

0.4 0.913 0.921 0.527

0.5 0.661 0.589 0.589

0.6 0.647 0.554 0.597

0.7 0.946 0.949 0.579

design and the last design are adaptive designs. To the
best of our knowledge, we do not find a direct com-
petitor in the category of adaptive two-stage designs
under theminimax criteria. Simon’s minimax design is the
most commonly used design under the minimax criteria,
thus it is included in the comparison. The minimax-
EF design stops for either futility or efficacy in the first
stage. This stopping rule is also applied in the proposed
design, thus, this design is also included in the compar-
ison. Simon’s design only allows stopping of the trial at
the first stage for futility, and the other three designs
allows the stoppage for either futility or efficacy in the first
stage.
The MSS and the ESS0 are compared in Table 2 for

the proposed minimax adaptive design, and the other
three competitors when πa − πu = 0.2, and 0.15 at the
significance level of α = 0.05. As expected, the pro-
posed minimax adaptive design has a smaller or the same
MSS as compared to the Simon’s minimax design and

the minimax-EF design. When the proposed design has
the same MSS as either of the two minimax designs, the
ESS0 of the proposed design is always smaller. For exam-
ple, the saving of the ESS0 from the proposed design as
compared to the minimax-EF design when they have the
same MSS in Table 2, ranges from 0.03 to 10.16, with
an average of 3.07 patients. The optimal adaptive design
is included as a reference, and the MSS of this design
is generally larger than that of the proposed minimax
adaptive design, with a range from 2 to 16, and an aver-
age of 9.3 patients from all the configurations studied in
Table 2.
We present the proposed minimax adaptive design with

specific design parameters in Tables 3 and 4 for πa =
πu + 0.2 and πa = πu + 0.15, respectively. The pre-
specified type I error rate is set as α = 0.05, and two type
II error rates are studied, β = 0.1 and 0.2. We present the
minimum adaptive design for various values of πu, from
0.2 to 0.7. For example, for the design to achieve 90 %
power with πu = 0.6, πa = 0.8 as in Table 3, Simon’s min-
imax design, the minimax-EF design and the proposed
adaptive minimax design are displayed in Fig. 1: the MSS
of the study (n(S)) VS the number of responses from the
first stage (S). Simon’s minimax design is calculated as
(n1, n, r1, r) = (26, 45, 15, 32) with the MSS=45 and the
ESS0 = 35.90. The minimax-EF design is found to be
((r1, r2)/n1, r/n) = ((15, 20)/25, 32/45) with 25 patients
enrolled in the first stage, and a possible total sample size
of 25. The trial will be stopped for futitlity when S ≤
15 or efficacy when S > 20 out of n1 = 25 patients
in the first stage. The ESS0 is 33.3 for this design. For
the proposed minimax adaptive design, the second stage
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Fig. 2 The Bayes risk function as a function of the weight value q in searching for an admissible adaptive design for (α,β ,πu ,πa) = (0.05, 0.1, 0.3, 0.5)
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sample size is allowed to change as a function of the first
stage responders, and the relationship is monotonic. The
first stage sample size is n1 = 23 and the maximum sam-
ple size is 45 and this maxmum sample size only occurs
for the cases with S = 15 and 16 responders observed
from the first stage. The trial is terminated at the end of
the first stage for futility or efficacy for S ≤ 14 or S ≥ 23,
respectively. In such cases, the MSS is the first stage sam-
ple size, which is 23. When the first stage response is
between 15 and 22, the corresponding second stage sam-
ple size n2(S) is presented in Table 3. As compared to
the other designs, the adaptive minimax design has the
smallest expected sample size and the smallest first stage
sample size in this particular example. In the proposed
design, the second stage sample size is a non-increasing
function of the number of responses from the first stage,
not a constant as in Simon’s design and the Minimax-EF
design. It can be seen that although the adaptive optimal
design has the smallest expected sample size as compared
to others, the MSS of the adaptive optimal design is
often much larger than that of the proposed adaptive
minimax.
As suggested by one of the reviewers, we compare the

probability of early termination (PET) at the first stage for
these designs. The PET is defined as the probability of a
study that is stopped at the first stage due to either futil-
ity or efficacy. We present the PET of the three designs
with πa = πu + 0.2 and 80 % power in Table 5. The
PET of the new adaptive design is always less than that by
Simon’s minimax design in these cases. There is no clear
relationship between the minimax-EF design and the new
design with regard to the PET. It can be seen that the PET
of the new design is more consistent as compared to the
competitors.
Figure 2 displays the lines of the Bayes risk function T as

a function of q for each design to attain 90 % power at the
significance level of 0.05, with πu = 0.3 and πa = 0.5. The
minimax adaptive design and the optimal adaptive design
are presented in Table 3, with nmin = 50 and nopt = 60.
Therefore, a total of 11 lines are displayed in the figure
to represent the optimal designs when n is between 50
and 60. In order to identify an admissible design for a
given range of q, one has to first compute the intersections
among these 11 lines, and the maximum number of inter-
sections between 0 and 1 is

(11
2
) = 55. Within these 55

intersections, 2 of them are out of the range of [ 0, 1],
this leads to a total of 53 intersections between 0 and
1. After sorting the x-values of these intersections, the
design among these 11 designs is the admissible design
for a given range of q when this design has the smallest T
over this range, see Table 6. It can be seen that the optimal
adaptive design is the admissible design when q is close to
0, and the minimax design is the admissible design when
q is close to 1.

Table 6 Admissible adaptive designs for (α,β ,πu ,πa) = (0.05,
0.1, 0.3, 0.5)

Interval of q n ESS0 Comment

[ 0.000, 0.040] 60 34.08 Optimal design

[ 0.040, 0.105] 59 34.12

[ 0.105, 0.132] 57 34.36

[ 0.132, 0.468] 54 34.81

[ 0.468, 0.580] 53 35.69

[ 0.580, 0.721] 51 38.45

[ 0.721, 1.000] 50 41.03 Minimax design

Application
We revisit the urothelial cancer trial with the neoad-
juvant therapy [10]. Simon’s minimax design was used
for study design to attain 80 % power at the signifi-
cance level of α = 0.1. The research team expected a
15 % increase in response rate as compared to the priori
estimated response rate πu = 35 %. The design param-
eters using Simon’s minimax design are: (n1, n, r1, r) =
(31, 49, 10, 21) with the ESS0=40.8. The minimax-EF
design is: ((r1, r2)/n1, r/n) = ((11, 16)/32, 21/49). The
design parameters, (n1, n(S), r(S)), for the proposed adap-
tive minimax design are presented in Table 1, and also
plotted in Fig. 3. They all have the same maximum sample
size 49, but the expected sample size under the null for the
proposed design is smaller, 38.9 VS 40.8(Simon’s design),
and 39.2 (the minimax-EF design). The adaptive design is
also flexible to allow the second stage sample size and its
associted critical value to depend on the result from the
first stage.

Discussion and conclusions
We develop a new minimax adaptive two-stage design
for use in phase II clinical trials to assess the new treat-
ment’s activity. The software program to implement the
adaptive designs in this article is written in the statisti-
cal language, R [11–14], and it is available per request
from the first author (guogen.shan@unlv.edu) or the cor-
responding author (jtao@263.net). We are also working
together to develop a new R package to implement the
adaptive minimax and admissible designs from this arti-
cle and the adaptive optimal design by Shan et al. [8]. The
proposed design allows the second stage sample size and
its associated critical value to depend on the result from
the first stage. The proposed design satisfies the mono-
tonicity property of the relationship between the second
stage sample size and the first stage responders, which is
an important feature for a practical application.
The MSS of the proposed adaptive minimax design

is always less than or equal to that of the minimax-EF
design. We consider this as an important advantage of
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Fig. 3 For the urothelial cancer trial with parameters (α,β ,πu ,πa) = (0.1, 0.2, 0.35, 0.5), the design parameters for Simon’s minimax design, the
minimax-EF design and the proposed adaptive minimax design. The maximum sample size, n(S), is plotted as a function of the number of
responses from the first stage, S

the minimax adaptive design to reduce the computational
intensity as compared to adaptive designs based on the
optimal criteria [8], where the upper bound of the sample
size has to be set in the design search process. To reduce
the computational time, one may use a backward search
method as in this article, starting with the maximum sam-
ple size from the minimax-EF design. In addition, when
the proposed design and other designs have the same
MSS, the expected sample size under the null of the
proposed design is always smaller than others.
The proposed adaptive design assumes a monotonic

relationship between the second stage sample size and
the first stage result. In practice, an investigator may
want to accrue more patients in the second stage when
the number of response from the first stage is large, to
obtain as much information as possible from the clini-
cal study. In this case, an additional constraint can be
added during the design search to meet the investiga-
tor’s requirement: the second stage sample sizes are the
same when S is above Sc, where Sc can be determined by
the new constraint from the investigator. The new con-
straint added in the design search should be clinically
meaningful.
The naive point estimate for the probability of response

rate is calculated as the number of responses divided by
the total number of patients, and it is well known that this
estimate is biased. In the traditional Simon’s design, Jung
and Kim [15] derived the uniformly minimum variance
unbiased estimate for the probability of response based on
the Rao-Blackwell theorem. To the best of our knowledge,
no unbiased estimate for the probability of response

has been proposed in an adaptive two-stage design set-
ting. This may be due to the complexity of an adaptive
design as compared to the traditional sample size fixed
design.
Randomized clinical trials are used in clinical tri-

als by comparing the new treatment or therapy to the
best available treatment for disease. Randomized clin-
ical trials are preferable in the majority of studies to
reduce the selection bias and confounding effects, thus
capturing the true effectiveness of the new treatment.
The widely used two-stage design for a two-arm study
with binary outcomes is the one due to Thall et al.
[16], that does not allow the second stage sample size
to change from the results of the first stage. We will
extend the adaptive approach from the one-arm study to
this two-arm study to develop a new adaptive two-stage
design for a randomized clinical trial with dichotomous
endpoints.
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