
Wolkewitz et al. BMCMedical ResearchMethodology  (2016) 16:116 
DOI 10.1186/s12874-016-0199-y

RESEARCH ARTICLE Open Access

Multiple time scales in modeling the
incidence of infections acquired in intensive
care units
Martin Wolkewitz1,2*, Ben S. Cooper3,4, Mercedes Palomar-Martinez5, Francisco Alvarez-Lerma6,
Pedro Olaechea-Astigarraga7, Adrian G. Barnett8 and Martin Schumacher1

Abstract

Background: When patients are admitted to an intensive care unit (ICU) their risk of getting an infection will be
highly depend on the length of stay at-risk in the ICU. In addition, risk of infection is likely to vary over calendar time as
a result of fluctuations in the prevalence of the pathogen on the ward. Hence risk of infection is expected to depend
on two time scales (time in ICU and calendar time) as well as competing events (discharge or death) and their spatial
location. The purpose of this paper is to develop and apply appropriate statistical models for the risk of ICU-acquired
infection accounting for multiple time scales, competing risks and the spatial clustering of the data.

Methods: A multi-center data base from a Spanish surveillance network was used to study the occurrence of an
infection due to Methicillin-resistant Staphylococcus aureus (MRSA). The analysis included 84,843 patient admissions
between January 2006 and December 2011 from 81 ICUs. Stratified Cox models were used to study multiple time
scales while accounting for spatial clustering of the data (patients within ICUs) and for death or discharge as
competing events for MRSA infection.

Results: Both time scales, time in ICU and calendar time, are highly associated with the MRSA hazard rate and
cumulative risk. When using only one basic time scale, the interpretation and magnitude of several patient-individual
risk factors differed. Risk factors concerning the severity of illness were more pronounced when using only calendar
time. These differences disappeared when using both time scales simultaneously.

Conclusions: The time-dependent dynamics of infections is complex and should be studied with models allowing for
multiple time scales. For patient individual risk-factors we recommend stratified Cox regression models for competing
events with ICU time as the basic time scale and calendar time as a covariate. The inclusion of calendar time and
stratification by ICU allow to indirectly account for ICU-level effects such as local outbreaks or prevention interventions.
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Background
The individual patients’ time at-risk (the length of stay
at-risk in ICU) is a key determinant for ICU-acquired
infections [1]. For infections which are based on rather
exogenous acquisition routes [2], the risk might also
depend on calendar time due to local outbreaks or
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fluctuations in the prevalence of other infectious patients,
contaminated health-care worker in the same ICU or
prevention interventions on the ICU-level [3]. In other
words, the use of calendar time (in combinationwith strat-
ification by ICU-level) allows to indirectly account for
these transmission-associated effects. Thus, there are two
time scales to be addressed in a risk factor analysis of
ICU-acquired infections.
In time-to-event analysis, one basic time scale has to

be selected. In general, possible choices for the basic time
scale may include age, time since enrollment in a study,
calendar time, or time since an event such as disease
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diagnosis. In many cases there may be no single time scale
that is clearly more appropriate than others. The choice of
time scale is, however, crucial: it affects the interpretation
of the model and how risks and rates are assumed to vary
over time; and in some cases different choices can even
lead to apparently contradictory results [4–6]. The time
scale therefore has to be chosen with care and the choice
taken into account when interpreting results.
In the Cox proportional hazards model, the specifica-

tion of the basic time scale plays a major role since time
effects are not explicitly modeled as they are absorbed into
the unspecified baseline hazard [4]. Thus, the underlying
time scale provides the most flexible way to control for
time effects. For instance, if the primary interest is in how
a factor (such as a drug treatment) affects mortality for
a disease, then a time scale of age might be most appro-
priate if the mortality rate is highly age-dependent but
relatively unaffected by time since diagnosis, while a time
scale of time since diagnosis might be more appropriate if
the converse is true.
Time since enrollment (or time on study) is one of the

most frequently used time scales, though there has been
considerable debate about whether this choice has always
been the most appropriate [4–6]. The use of calendar time
as the basic time scale for longitudinal observational data
(the so-called real-time approach) treats the population
of interest as a dynamic population rather than a closed
cohort [7, 8]. An application is, for instance, the impact of
environmental exposure on pregnancy outcomes [6].
For ICU-acquired infections caused by transmissible

pathogens such as MRSA and Vancomycin-resistant Ente-
rococci, calendar time is often a natural choice when
studying the effect of interventions on the ICU-level [9].
This is because hazards of acquiring the infection are
likely to vary over calendar time as a result of fluctuations
in the prevalence of the pathogen on the ward [3]. These
fluctuations are typically unobserved as they result from
asymptomatic carriage, making direct adjustment for the
ICU-level prevalence impossible.
In addition to patient-individual characteristics, the risk

of acquiring a MRSA infection in an ICU might also
depend on spatio-temporal factors, i.e., when (calendar
time) and where (which ICU) a patient requires intensive
care.
The choice of calendar time as the basic time scale

also controls for time-varying factors acting on the ICU-
level such as changes in medical management, hygiene
practices, patterns of antibiotic usage, staffing levels, and
seasonal factors [3, 9–11] .
The occurrence of ICU-acquired infection also depends

on a second time scale, the patients’ individual time at-risk
(i.e. time since patient admission to the ICU), with longer
stays creating more opportunity for infection. This ICU
exposure time is one the most important determinants

for ICU-acquired infections and is frequently used for
studying patient individual risk-factors such as age, mor-
bidity, patient-individual antibiotic treatment or invasive
devices [12]. Here, we discuss these two time scales which
are crucial for the incidence of ICU-acquired Methicillin-
Resistant Staphylococcus aureus (MRSA) infections.
The patients’ individual time at-risk ends with the

occurrence of MRSA infection, ICU discharge or death
in ICU since after the two latter events the risk of ICU-
acquired infection is zero. Therefore, ICU discharge and
death in ICU are competing events for ICU-acquired
MRSA infections which should be considered in a risk
factor analysis [12–14]. Ignoring these competing events
can easily lead to heavily biased risk estimates [15] and
wrong conclusions about the impact of risk factors [16].
Due to the presence of competing events, there are two
metrics (the rate and the risk metric) in a risk factor
analysis [17, 18]. Thus, for a complete analysis, it is nec-
essary to perform event-specific hazard rate analyses (for
MRSA infection, discharge and death) as well as a sum-
mary analysis for the cumulative risk of MRSA infection
[19]. Furthermore, to account for the patients’ environ-
ment or geographical space, multi-level techniques are
necessary [13].
The major aim of this paper is to find an appropri-

ate model to study the incidence of MRSA infections
by accounting for multiple time scales, competing risks
and the hierarchical nature of the data. To do this, we
explore, compare and combine the aforementioned time
scales in a real ICU data setting. We calculate hazard rates
with respect to the corresponding time scale and perform
analyses based on the stratified Cox proportional haz-
ards model to study patient-individual risk factors in a
competing-risk framework.

Methods
Spanish ICU data
We used a multi-center data base from the Spanish
surveillance network HELICS-ENVIN (http://hws.
vhebron.net/envin-helics/), embedded in the HELICS
project (Hospitals in Europe Link for Infection Control
through Surveillance) [20]. We included ICUs which con-
tributed to the registry between January 2006 and
December 2011 and we included only patients who stayed
at least two days in an ICU due to the definition of hospital-
acquired infections. We excluded ICUs which contributed
fewer than 500 patient admissions to the cohort to ensure
a sufficient amount of patient time at risk for each ICU.
The study population contains 81 intensive care units
with 84,843 admissions (693,180 admission-days).

Statistical methods
In the Additional file 1 is a Lexis diagram [21] of individ-
ual patient data from one selected ICU over 100 days in

http://hws.vhebron.net/envin-helics/
http://hws.vhebron.net/envin-helics/


Wolkewitz et al. BMCMedical ResearchMethodology  (2016) 16:116 Page 3 of 11

calendar time. It demonstrates how the data depend on
the two time scales. In the following, we compare the two
time scales in several steps. For the ICU time scale, the
time origin is the time of admission. For the calendar time
scale, patient admissions entered themodel with staggered
or delayed entrywith left-truncation occurring at the time
of admission.

Overall hazard rates
We used a penalized likelihood approach [22] to estimate
the overall hazard rates λk(t) separately for each event k:
for ICU-acquired MRSA infection (the event of interest),
death and discharge without MRSA. The overall hazard
rates depend both on ICU or calendar time. The variation
of the overall hazards due to different ICUs was accounted
by using a shared frailty model [22]. More formally, let c
represent the calendar time and c0 the truncation time,
i.e., the admission time in calendar time scale. Thus, for
each competing event k (MRSA, death without MRSA,
discharge without MRSA) and the i-th ICU, the event-
specific hazard rate with a shared frailty termZk

i is defined
as

ICU time: λk(c − c0|Zk
i ) = Zk

i λ
k
0(c − c0)

calendar time: λ̃k(c|c0, Z̃k
i ) = Z̃k

i λ̃
k
0(c|c0)

with baseline hazard λk0(.) (or λ̃k0(.)) for event k; the
term |c0 denotes the left-truncation time. The frailty
term Zk

i (or Z̃k
i ) is a random effect which varies across

ICUs (patients within ICU share the same frailty) and is
assumed to be Gamma distributed with shape parameter
1/θk and inverse scale parameter 1/θk , thus E(Zk) = 1
and Var(Zk) = θk . Large values of θk signify a closer posi-
tive relationship between patients within ICU and greater
heterogeneity across ICUs.

Patient-level risk factors
We used event-specific Cox proportional hazards mod-
els (rate metric) and a Fine & Gray model [23] (risk
metric) to explore covariate effects of vector X (gender,
age, type of diagnosis, antibiotic treatment 48 h before
and/or after ICU admission, trauma, days in hospital
before ICU admission, APACHE II (Acute Physiology
And Chronic Health Evaluation) score) comparing results
between models where the timescale was calendar time
and ICU time. The assumption of proportional hazards
was checked via the inspection of the Schoenfeld residu-
als [24]; note that proportionality due to the rate metric
does not lead to proportionality due to the risk metric but
even if proportionality is not fulfilled the hazard ratio has
the meaningful interpretation of an time-averaged effect
[25]. We then model both times together by including the
second time scale as a covariate. We stratified for ICU in
order to allow the hazard to be different across ICUs, and
hence we did not use the frailty terms.

Models with one time scale
Model 1a: ICU time as basic time scale

λk(c − c0|X) = λk0i
(
c − c0

)
exp

⎛
⎝∑

j
βk
j Xj

⎞
⎠

This is an event-specific Cox model with ICU time as
the basic time scale. The exponential of the regression
coefficients βk

j are corresponding hazard ratios of variable
Xj and event k.
Model 2a: calendar time as basic time scale (the real-

time approach)

λ̃k(c|c0,X) = λ̃k0i(c|c0)exp
⎛
⎝∑

j
β̃k
j Xj

⎞
⎠

This is an event-specific Cox model with calendar time
as the basic time scale and staggered or delayed entry with
left-truncation occurring at the time of admission.
Model 3a: subdistribution for MRSA, basic time scale is

ICU time
In a competing risks setting, the cumulative incidence

function for event k (CIFk(t)) depends on all event-
specific hazards [26]. This can be seen with following
formula with t = c − c0:

CIFk(t) =
∫ t

0

(
exp

(
−

∑
all events i

∫ u

0
λi(v)dv

))
× λk(u)du

We are basically interested in MRSA infection as our
event of interest. In simple words, the formula above is the
product of the time-dependent probability of staying alive
at-risk on ICU and the conditional probability of acquir-
ing a MRSA infection. Note that the probability of staying
alive at-risk on ICU depends on the competing events haz-
ards (discharge or dying withoutMRSA) in addition to the
MRSA hazard.
Fine & Gray [23] defined the subdistribution hazard

which is in our setting the probability of the MRSA infec-
tion given that a patient has stayed in ICU up to time
t without a MRSA infection or has had the competing
event (death ore discharge) prior to time t [27]. Thus,
the risk sets for the subdistribution hazard are unnatural
(discharged and died patients remain technically at-risk).
However, unlike the event-specific hazard, the subdis-
tribution hazard is directly linked to the corresponding
cumulative incidence function of MRSA infection. Based
on the subdistribution hazard, Fine & Gray proposed a
proportional hazards model to study risk factors on the
risk metric. The resulting subdistribution hazard ratios
of an exposure can be interpreted as effects which can
be seen when plotting cumulative incidence functions,
grouped by exposure categories.
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Models with two time scales
Model 1b: model 1a plus year of admission as a covariate

λk(c − c0|X) = λk0i
(
c − c0

)
exp

⎛
⎝∑

j
βk
j Xj + γ f

(
c0

)⎞⎠
with f (c0) as the calendar year of admission. If neces-
sary, other more detailed functions (which, for instance,
includes also the calendar month of admission) can be
chosen.
Model 2b: model 2a plus length of stay at-risk as a time-

dependent covariate

λ̃k(c|c0,X) = λ̃k0i
(
c|c0) exp

⎛
⎝∑

j
β̃k
j Xj + γ g

(
c − c0

)⎞⎠
with g(c − c0) as a function to categorize ICU time in 0-4,
5-9, 10-14 and 15+ days. If necessary, other categoriza-
tions can be chosen.
Model 3b: model 3a plus year of admission as covariate.

Results
Overall hazards
The overall hazard rates are displayed in Fig. 1. The
bottom row is clearly showing what is happening (with
respect to event risk) over a long time period (perhaps
reflecting more what is going on at the ICU level) whereas
the top row is showing what is happening at the patient
level in the short term since admission to an ICU.With the
ICU time scale, the hazard of MRSA acquisition increases
from 0 to 0.0015 within the first 15 days from admission
(perhaps due to the fact that an MRSA infection often

follows a MRSA colonisation which itself also requires
some exposure time in ICU). After 15 days, the MRSA
hazard slightly decreases. The hazard reflects the (unad-
justed) instantaneous risk for an ICU patient to acquire
a ICU-acquired MRSA infection during his or her ICU
stay. This hazard has to be interpreted jointly with the
corresponding hazards of the competing events since the
cumulative risk of MRSA infection depends also on the
discharge and death hazards. The hazards of death or dis-
charge without MRSA are also increasing within the first
week after admission (see Fig. 1: up to 0.025 at day 7 for
death and up to 0.25 at day 7 for discharge). After 10-
15 days, the hazard of death without MRSA is about 0.02
and the hazard of discharge without MRSA is much lower
(about 0.05) in contrast to earlier days.
The MRSA hazard rate with respect to calendar time

shows how the hazard steadily decreases from the January
2006 to December 2010 on the ICU level (Fig. 1 bottom
left), potentially due to the implementation of prevention
strategies [28]. During the years 2006–2010, the death
hazard rate without MRSA slightly increased from 0.014
to 0.017. The discharge hazard rate remains more or less
constant (about 0.1) over calendar time. Details regarding
the random effects of ICU are displayed in the Additional
file 1.

Effects of patient individual risk-factors
The covariates of interest are listed in Table 1. Descriptive
statistics indicate the following variables are associated
with calendar time. The mean number of days in hospi-
tal before ICU admission steadily increased from about
9.5 days in year 2006 up to 18.5 days in year 2010+.

Fig. 1 Event-specific hazard rates depending on ICU time (upper panels) or calendar time (lower panels)
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Table 1 Description of study population
General Frequency (%)

Number of admissions 84843

Number of admission-days 693180

Number of ICUs 81

Number of MRSA infections during
ICU stay

469

Number of deaths without MRSA
infections during ICU stay

11131

Number of discharges without
MRSA infections from ICU

72701

Number of administrative censored
admissions

542

Overall risk of MRSA infections
(censored excluded)

0.56%

Overall rate of MRSA infections 0.068%

Calendar year of admission

2006 (reference) 11301 (13.32)

2007 14862 (17.52)

2008 17654 (20.81)

2009 19361 (22.82)

2010+ 21665 (25.54)

Parient level covariates

APACHE II score 0-10 (reference) 30291 (35.70)

APACHE II score 11-20 35428 (41.76)

APACHE II score 21-30 15187 (17.90)

APACHE II score >30 3937 (4.64)

Age (years) 0-40 42232 (49.78)

Age (years) 40-60 10227 (12.05)

Age (years) 61-80 (reference) 22989 (27.10)

Age (years)>80 9395 (11.07)

Days in hospital before ICU admission:

0-3 (reference) 67301 (79.32)

4-6 4616 (5.44)

6-10 3950 (4.66)

>10 8976 (10.58)

Type of diagnosis:

Cardiovascular (reference) 41990 (49.49)

Respiratory 11816 (13.93)

Gastrointestinal 10958 (12.92)

Central nervous system 14473 (17.06)

Other diagnoses 5606 (6.61)

Antibiotic treatment 48 h before
and/or after ICU admission

18052 (21.28)

Gender (male) 55308 (65.19)

Origin: community (reference) 41640 (49.08)

Origin: hospital/ICU 43203 (50.92)

Trauma 7167 (8.45)

The proportion of patient admissions with trauma steadily
decreased from 11.5% in 2006 to 7.1% in 2010+. The
proportion of admissions receiving antibiotic treatment
48 h before and/or after ICU admission steadily decreased
from about 30 to 19%.

One time scale
In Table 2, the effects of several risk factors are listed
from Models 1a and 2a. The hazard ratios do not signifi-
cantly differ much (estimates for one model are generally
within the 95% confidence interval of the corresponding
estimates in the othermodel) but they have different inter-
pretations. If ICU time is used as the time scale, then the
effects of interest are directly adjusted for ICU time effects
(such as the patient-individual intensity of the underly-
ing morbidity – generally the more critical care is needed
the longer the ICU stay). By using calendar time, the
effects of interest are directly adjusted for calendar time
effects such as local outbreaks, changing hygiene prac-
tices or intervention strategies. Thus, the combination of
using the calendar time scale and the additional stratifi-
cation by ICU addresses the spatio-temporal dynamics of
ICU-acquired MRSA infections. That means that the risk
factors are studied beyond this spatio-temporal pattern.
The estimated effects in Table 2 are different accord-

ing to the time scale used. This is especially true for the
APACHE II score, type of diagnosis, antibiotic treatment
and trauma where the effects are more pronounced when
calendar time is taken as the basic time scale. One expla-
nation is that these factors are highly associated with the
severity of patients’ illness and the ICU time captured
already part of this severity.

Two time scales
If calendar year is introduced in themodel as an additional
covariate (Table 3), the results for the patient-individual
factors barely change (comparing effects between models
1a and b) even though calendar year is associated with
all outcomes, MRSA as well as the competing events
death or discharge. This consistency might be due to
the noncorrelation of calendar and ICU time. Compar-
ing models 2a and b, one can see that including the
covariate length of stay at-risk in the model changes the
hazard ratios; they are now very similar to those from
model using ICU time scale (model 1b). Table 3 shows the
results of the two models 1b and 2b accounting for both
time scales simultaneously. Both models yield very similar
results.

Subdistribution approach
Since most covariates are also associated with the com-
peting events for MRSA, it is also required to study the
covariate effects on the cumulative incidence function
(CIF) [19, 23]. The CIF depends on the underlying time
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Table 2 Results frommultivariate analysis (one time scale). Event-specific regression analyses based on Cox proportional regression models as described in main text. Proportionality
could be assumed after the inspection of Schoenfelds’ residuals. Event-specific hazard ratios are displayed with 95 %-confidence interval in brackets

Risk factors MODEL 1a basic time scale: ICU time MODEL 2a basic time scale: calendar time

MRSA Death without MRSA Discharge without MRSA MRSA Death without MRSA Discharge without MRSA

Patient level covariates

APACHE II score 11–20 vs. 0–10 1.35 (1.00–1.83) 2.05 (1.90–2.23) 0.62 (0.61–0.63) 1.78 (1.30–2.44) 2.20 (2.03–2.39) 0.63 (0.62–0.65)

APACHE II score 21–30 vs. 0–10 1.50 (1.09–2.07) 4.23 (3.91–4.57) 0.37 (0.36–0.38) 2.22 (1.59–3.12) 4.76 (4.39–5.16) 0.37 (0.31–0.38)

APACHE II score>31 vs. 0–10 1.50 (0.99–2.28) 6.86 (6.30–7.47) 0.24 (0.23–0.26) 2.75 (1.76–4.32) 8.02 (7.33–8.78) 0.24 (0.22–0.25)

Age (years) 0–40 vs. 61–80 1.09 (0.80–1.45) 0.62 (0.57–0.67) 1.08 (1.05–1.10) 1.03 (0.75–1.41) 0.62 (0.57–0.85) 1.06 (1.03–1.09)

Age (years) 40–60 vs. 61–80 0.96 (0.77 –1.20) 0.81 (0.77–0.85) 0.99 (0.98–1.01) 0.98 (0.77–1.24) 0.81 (0.77–0.85) 0.99 (0.97–1.01)

Age (years)>80 vs. 61–80 0.72 (0.47–1.11) 1.61 (1.52–1.70) 1.12 (1.09–1.15) 0.63 (0.40–0.98) 1.62 (1.53–1.73) 1.15 (1.12–1.19)

Days in hospital before ICU admission:

4-6 vs. 0–3 1.14 (0.78–1.66) 1.11 (1.03–1.20) 0.89 (0.86–0.92) 1.31 (0.87–1.96) 1.12 (1.03–1.22) 0.91 (0.88–0.95)

6-10 vs. 0–3 1.16 (0.78–1.73) 1.22 (1.13–1.32) 0.89 (0.85–0.92) 1.10 (0.71–1.70) 1.23 (1.12–1.34) 0.91 (0.88–0.95)

> 10 vs. 0–3 1.09 (0.8–1.46) 1.24 (1.17-1.31) 0.84 (0.81–0.86) 1.21 (0.89–1.67) 1.24 (1.16–1.32) 0.85 (0.82–0.87)

Type of diagnosis:

Respiratory vs. cardiovascular 1.10 (0.84–1.45) 0.98 (0.92–1.39) 0.75 (0.73–0.77) 1.42 (1.06–1.90) 0.99 (0.93–1.05) 0.75 (0.74–0.77)

Gastrointestinal vs. cardiovascular 1.29 (0.95–1.74) 1.01 (0.95–1.07) 0.84 (0.82–0.86) 1.48 (1.07–2.04) 1.01 (0.95–1.08) 0.82 (0.80–0.84)

Central nervous system vs. cardiovascular 1.18 (0.90–1.55) 1.37 (1.30–1.45) 0.77 (0.75–0.78) 1.39 (1.04–1.87) 1.41 (1.32–1.49) 0.75 (0.73–0.77)

Other diagnoses vs. cardiovascular 0.92 (0.62–1.36) 0.84 (0.76–0.91) 0.86 (0.84–0.89) 0.95 (0.58–1.56) 0.84 (0.76–0.94) 0.99 (0.93–1.02)

Antibiotic treatment 48 h before and/or after ICU
admission

1.21 (0.97–1.51) 1.09 (1.04–1.14) 0.77 (0.76–0.79) 1.44 (1.12–1.86) 1.13 (1.07–1.19) 0.72 (0.70–0.73)

Gender 1.14 (0.93–1.39) 1.01 (0.97–1.05) 0.99 (0.96–1.01) 1.22 (0.99–1.52) 0.99 (0.96–1.01) 0.98 (0.91–0.99)

Origin (hospital/ICU vs. community) 0.93 (0.74–1.19) 0.95 (0.91–1.00) 1.03 (1.01–1.04) 0.95 (0.75–1.22) 0.96 (0.91–1.01) 1.03 (1.01–1.05)

Trauma 1.25 (0.94–1.68) 0.67 (0.62–0.73) 0.74 (0.72–0.76) 1.41 (1.03–1.94) 0.67 (0.61–0.73) 0.73 (0.70–0.75)
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Table 3 Results from multivariate analysis (two time scales). Event-specific regression analyses based on Cox proportional regression models as described in main text.
Proportionality could be assumed after the inspection of Schoenfelds’ residuals. Eventspecific hazard ratios are displayed with 95 %-confidence interval in brackets

Risk factors MODEL 1a basic time scale: ICU time MODEL 2a basic time scale: calendar time

MRSA Death without MRSA Discharge without MRSA MRSA Death without MRSA Discharge without MRSA

Patient level covariates

APACHE II score 11–20 vs. 0–10 1.36 (1.01–1.83) 2.05 (1.90–2.21) 0.62 (0.61–0.63) 1.40 (1.02–1.93) 2.14 (1.97 2.32) 0.64 (0.63–0.65)

APACHE II score 21–30 vs. 0–10 1.52 (1.11–2.09) 4.22 (3.90–4.56) 0.37 (0.36–0.38) 1.53 (1.08–2.17) 4.58 (4.22 4.97) 0.38 (0.37–0.39)

APACHE II score>31 vs. 0–10 1.52 (1.00–2.32) 6.83 (6.28–7.44) 0.25 (0.23–0.26) 1.86 (1.18–2.96) 7.73 (7.05 8.45) 0.25 (0.24–0.26)

Age (years) 0-40 vs. 61–80 1.07 (0.80–1.44) 0.62 (0.57–0.67) 1.08 (1.05–1.10) 0.97 (0.71–1.34) 0.62 (0.57 0.67) 1.05 (1.02–1.08)

Age (years) 40-60 vs. 61–80 0.97 (0.78–1.21) 0.81 (0.77–0.85) 1.00 (1.00–1.01) 0.93 (0.74–1.18) 0.81 (0.77 0.85) 0.99 (0.97–1.01)

Age (years)>80 vs. 61–80 0.73 (0.47–1.11) 1.60 (1.52–1.70) 1.12 (1.09–1.15) 0.71 (0.45–1.11) 1.63 (1.53 1.74) 1.13 (1.10–1.16)

Days in hospital before ICU admission:

4-6 vs. 0–3 1.15 (0.79–1.68) 1.11 (1.03–1.20) 0.89 (0.86–0.92) 1.30 (0.86–1.97) 1.12 (1.03 1.22) 0.92 (0.89–0.96)

6-10 vs. 0–3 1.16 (0.78–1.73) 1.22 (1.13–1.32) 0.89 (0.86–0.92) 1.00 (0.64–1.56) 1.22 (1.12 1.33) 0.91 (0.88–0.95)

> 10 vs. 0–3 1.10 (0.82–1.48) 1.24 (1.17–1.31) 0.84 (0.81–0.86) 1.21 (0.88–1.66) 1.23 (1.16 1.32) 0.86 (0.83–0.88)

Type of diagnosis:

Respiratory vs. cardiovascular 1.13 (0.86–1.49) 0.97 (0.92–1.02) 0.76 (0.74–0.77) 1.30 (0.96–1.75) 0.97 (0.92 1.03) 0.77 (0.75–0.79)

Gastrointestinal vs. cardiovascular 1.28 (0.95–1.73) 1.01 (0.95–1.07) 0.84 (0.82–0.86) 1.39 (1.00–1.94) 1.01 (0.94 1.08) 0.84 (0.82–0.86)

Central nervous system vs.
cardiovascular

1.18 (0.40–1.55) 1.37 (1.30–1.45) 0.77 (0.75–0.78) 1.32 (0.98–1.77) 1.39 (1.30 1.47) 0.77 (0.75–0.79)

Other diagnoses vs. cardiovascular 0.90 (0.60–1.33) 0.84 (0.76–0.92) 0.86 (0.84–0.89) 0.93 (0.56–1.54) 0.84 (0.76 0.94) 1.01 (0.98–1.05)

Antibiotic treatment 48 h before and/or
after ICU admission

1.12 (0.89–1.40) 1.10 (1.05–1.15) 0.76 (0.75–0.78) 1.29 (0.99–1.67) 1.11 (1.06 1.17) 0.72 (0.71–0.74)

Gender 1.14 (0.94–1.40) 1.01 (0.97–1.05) 1.00 (1.00–1.01) 1.22 (0.98–1.52) 1.00 (0.96 1.04) 0.99 (0.97–1.00)

Origin (hospital/ICU vs. community) 0.94 (0.75–1.17) 0.95 (0.91–1.00) 1.03 (1.01–1.05) 0.95 (0.74–1.21) 0.96 (0.91 1.01) 1.02 (1.00–1.04)

Trauma 1.20 (0.40–1.61) 0.67 (0.62–0.73) 0.74 (0.72–0.76) 1.29 (0.94–1.78) 0.66 (0.60 0.72) 0.74 (0.71–0.76)

Second time scale

Calendar year of admission

2007 vs. 2006 0.68 (0.51–0.92) 1.05 (0.98–1.13) 0.95 (0.93–0.98)

2008 vs. 2006 0.57 (0.43–0.78) 1.11 (1.04–1.20) 0.92 (0.90–0.94)

2009 vs. 2006 0.59 (0.44–0.79) 1.11 (1.03–1.19) 0.88 (0.86–0.91)

2010+ vs. 2006 0.49 (0.36–0.67) 1.15 (1.07–1.24) 0.94 (0.91–0.96)

Length of stay

5-9 vs. 0–4 days 4.63 (3.30–6.48) 1.35 (1.28 1.42) 1.47 (1.44–1.50)

10-14 vs. 0–4 days 4.66 (3.18–6.84) 1.29 (1.20 1.38) 0.85 (0.82–0.87)

>14 vs. 0–4 days 5.42 (3.87–7.57) 1.05 (0.99 1.11) 0.61 (0.59–0.63)
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scale. The CIF is a very relevant quantity when the
ICU time scale is used since it reflects how the indi-
vidual patient risk accumulates with time spent in the
ICU (Fig. 2). In contrast, displaying the cumulative inci-
dence function with the calendar time scale is not useful.
One way to account for calendar time is adjusting for
the admission year as a covariate (model 3b). Table 4
shows how the covariates are associated with the sub-
distribution hazard of MRSA as our event of interest.
The importance of competing events in such a risk fac-
tor analysis can be seen when comparing the results of
model 3b with those from model 1b. Depending on the
metric used (rate or risk), the effects can be very different.
For instance, APACHE II score is moderately associated
with an increased hazard rate of MRSA infection (e.g.,
HR=1.52 (95%-CI: 1.00-2.32)) for APACHE II score>31
vs. 0-10) but highly associated with an increased risk
of MRSA infection (subdistribution HR=5.79 (95%-CI:
3.82-8.76)) for APACHE II score>31 vs. 0-10). This phe-
nomena can be explained by considering the effects on
the competing events: patients with higher APACHE II
scores are associated with an increased death hazard
(they die faster) but also with an decreased discharge
hazard (they stay longer at ICU). Since most patients
are discharged, the actual at-risk time is prolonged for
patients with higher APACHE II scores. Therefore, more
MRSA infections occur in this patient group since longer
stays create more opportunity for infection. The differ-
ence between the two metrics can also go in the other
direction: patients older than 80 years have a (non-
significantly) lower hazard to acquire a MRSA infec-
tion than patients aged between 61-80 years (HR=0.73
(95%-CI: 0.47-1.11)). However, the cumulative risk for
MRSA infection is much lower (subdistribution HR=0.47
(95%-CI: 0.31-0.71)) since the older patient group
die faster without MRSA (HR=1.60 (95%-CI:1.52-1.70))

Fig. 2 Cumulative incidence function of ICU-acquired MRSA
depending on ICU time scale and stratified per calendar year on
admission

and is discharged faster (HR=1.12 (95%-CI: 1.09-1.15))
meaning that the at-risk time for MRSA infection is
reduced.
The inclusion of the calendar year of admission in the

subdistribution analysis has no impact on the patient-level
covariates. Even though the effect of admission year is
strong, the estimates frommodel 3a and 3b are almost the
same.

Discussion
In this paper, we compared two important time scales
(ICU and calendar time) for modeling the incidence of
ICU-acquired MRSA infections. Both time scales have a
strong influence on the hazard rate and cumulative risk
of MRSA infections in ICUs but also of the competing
events (death and discharge). We showed that hazard
ratios of patient individual risk-factors of MRSA infec-
tions can differ depending on the underlying time scale in
Cox regression models. This difference can be overcome
by using both time scales simultaneously.
One strength of this study was the application of

advanced statistical methods on a large data base which
was necessary to model calendar time and patient-
individual characteristics simultaneously. We used com-
peting risks models based on the semi-parametric Cox
proportional hazards model and shared frailty models
even though other parametric frailty models could be
applied in such settings. In a recent review about analy-
ses of hospital-acquired infection risk factors, Brown and
colleagues also emphasized the need to adjust for the at-
risk time and period effects (calendar time) [1]. In addition
to the time scales, we gave emphasis on competing risks
since the interpretation and conclusions of the results
might be very different [18].
This study has limitations. First, the data have been col-

lected from volunteer ICUs, thus data can be subject to
reporting, information or selection bias. Second, part of
the ICUs contributed the whole study period from January
2006 andDecember 2011 whereas others contributed only
3 months per year (April to June) and some ICUs started
their continuous contribution at some time between 2006
and 2011. This might affect our findings, particular for
calendar time. Third, it can be assumed that transmis-
sion dynamics play the main role in MRSA colonisation
(which might later lead to MRSA infection). In our set-
ting, we were not able to study MRSA colonisation rates
because such an evaluation requires regular swabs from
patients to detect asymptomatic carriage. Instead, we
focused on MRSA infections because this is both the
clinically important outcome and the outcome for which
the best data are available. Fourth, we studied only time-
independent risk factors in the subdistribution approach.
Time-dependent risk factors (such as antibiotic treatment



Wolkewitz et al. BMCMedical ResearchMethodology  (2016) 16:116 Page 9 of 11

Table 4 Results from multivariate analysis (subdistribution analysis). Regression analyses based on adapted Cox proportional
regression model (Fine & Gray model) as described in main text. Proportionality could be assumed after the inspection of Schoenfelds’
residuals. Subdistribution hazard ratios are displayed with 95%-confidence interval in brackets

Risk factors MODEL 3a one time scale subdistribution MODEL 3b two time scales subdistribution
approach basic time scale: ICU time approach basic time scale: ICU time
subdistribution MRSA

Patient level covariates

APACHE II score 11–20 vs. 0–10 3.05 (2.27–4.11) 3.06 (2.27–4.13)

APACHE II score 21–30 vs. 0–10 4.92 (3.58–6.76) 4.96 (3.61–6.82)

APACHE II score>31 vs. 0–10 5.71 (3.77–8.64) 5.79 (3.82–8.76)

Age (years) 0–40 vs. 61–80 1.14 (0.86–1.53) 1.13 (0.85–1.51)

Age (years) 40–60 vs. 61–80 1.04 (0.83–1.29) 1.04 (0.84–1.30)

Age (years)>80 vs. 61–80 0.46 (0.30–0.71) 0.47 (0.31–0.71)

Days in hospital before ICU admission:

4-6 vs. 0–3 1.32 (0.90–1.92) 1.32 (0.91–1.93)

6-10 vs. 0–3 1.44 (0.97–2.15) 1.44 (0.97–2.15)

> 10 vs. 0–3 1.32 (0.98–1.77) 1.32 (0.98–1.78)

Type of diagnosis:

Respiratory vs. cardiovascular 1.69 (1.29–2.21) 1.71 (1.31–2.25)

Gastrointestinal vs. cardiovascular 1.77 (1.31–2.38) 1.76 (1.31–2.38)

Central nervous system vs. cardiovascular 1.59 (1.21–2.09) 1.60 (1.22–2.11)

Other diagnoses vs. cardiovascular 1.39 (0.96–2.02) 1.40 (0.96–2.03)

Antibiotic treatment 48 h before and/or after ICU
admission

1.39 (1.11–1.73) 1.33 (1.06–1.66)

Gender 1.18 (0.96–1.44) 1.17 (0.96–1.43)

Origin (hospital/ICU vs. community) 0.95 (0.76–1.19) 0.96 (0.76–1.20)

Trauma 1.87 (1.34–2.49) 1.80 (1.35–2.41)

Calendar year of admission

2007 vs. 2006 0.71 (0.53–0.96)

2008 vs. 2006 0.64 (0.47–0.86)

2009 vs. 2006 0.73 (0.55–0.97)

2010+ vs. 2006 0.52 (0.38–0.70)

or invasive devices during ICU) can be introduced in the
event-specific analyses but there are challenges in inter-
preting results from risk metric approaches in presence of
time-dependent risk factors [18].
The choice of the basic time scale has been discussed in

the statistical literature. Andersen and Keiding [29] stated
that the underlying time scale should be chosen ’for which
the variation in the hazard is unknown or is expected to be
dramatic and a parametric description is less important’.
According to Pencina et al. [30], one should ask the ques-
tion: ’Which approach seems to better capture the nature
of the data that are to be modeled, and which is more
suitable to answer the research questions?’.
Given these general statements and based on our

findings regarding MRSA infections, ICU time should
be chosen as the basic time scale when studying

patient individual risk-factors. To indirectly account for
exogenous factors (such as local outbreaks or imple-
mentation of prevention strategies on the ICU-level), we
recommend to use calendar time as a covariate in Cox
regression models and stratify by ICU. A further advan-
tage of this time scale choice is that the cumulative inci-
dence functions of MRSA infections can be studied in a
competing event framework.

Conclusions
Risk factor analyses of general ICU-acquired infections
are already complex due to the presence of compet-
ing risks during the time in ICU as well as unit-level
effects. Moreover, the analysis of ICU-acquired infections
requires the involvement of calendar time. By account-
ing for both time scales, we believe that this approach
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provided deeper insights into the disease-risk association
since the additional use of calendar time allows to indi-
rectly account for transmission-associated effects.

Additional file

Additional file 1: Additional plots (Lexis diagram, variation due to
different ICUs) and statistical code (in SAS and R) is provided in Additional
file 1.pdf. (PDF 111 kb)
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