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Abstract

Background: It is often unclear which approach to fit, assess and adjust a model will yield the most accurate
prediction model. We present an extension of an approach for comparing modelling strategies in linear regression
to the setting of logistic regression and demonstrate its application in clinical prediction research.

Methods: A framework for comparing logistic regression modelling strategies by their likelihoods was formulated
using a wrapper approach. Five different strategies for modelling, including simple shrinkage methods, were
compared in four empirical data sets to illustrate the concept of a priori strategy comparison. Simulations were
performed in both randomly generated data and empirical data to investigate the influence of data characteristics
on strategy performance. We applied the comparison framework in a case study setting. Optimal strategies were
selected based on the results of a priori comparisons in a clinical data set and the performance of models built
according to each strategy was assessed using the Brier score and calibration plots.

Results: The performance of modelling strategies was highly dependent on the characteristics of the development
data in both linear and logistic regression settings. A priori comparisons in four empirical data sets found that no
strategy consistently outperformed the others. The percentage of times that a model adjustment strategy
outperformed a logistic model ranged from 3.9 to 94.9 %, depending on the strategy and data set. However, in our
case study setting the a priori selection of optimal methods did not result in detectable improvement in model
performance when assessed in an external data set.

Conclusion: The performance of prediction modelling strategies is a data-dependent process and can be highly
variable between data sets within the same clinical domain. A priori strategy comparison can be used to determine
an optimal logistic regression modelling strategy for a given data set before selecting a final modelling approach.

Abbreviations: DVT, Deep vein thrombosis; SSE, Sum of squared errors; VR, Victory rate; OPV, Number of
observations per model variable; EPV, Number of outcome events per model variable; IQR, Interquartile range;
CV, Cross-validation

Background
Logistic regression models are frequently utilized in clin-
ical prediction research and have a range of applications
[1–4]. While a logistic model may display good perform-
ance with respect to its discriminative ability and cali-
bration in the data in which was developed, the
performance in external populations can often be much

poorer [5–7]. Regression models fitted to a finite sample
from a population using methods such as ordinary least
squares or maximum likelihood estimation are by nature
overfitted and the prediction error can be unacceptably
high in new populations [8, 9]. Failure to take this
phenomenon into account may lead to poor clinical de-
cision making [10–13], and an appropriate model
building strategy must be applied. In the same vein,
failure to apply the optimal modelling strategy could
also lead to the same problems when the model is ap-
plied in clinical practice.
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Despite great efforts to present clear guidelines for the
prediction model building process [14–16] it may still be
unclear to researchers which modelling approach is most
likely to yield a model with optimal external perform-
ance. At some stages of model development and valid-
ation, several approaches could be taken. For example,
different forms and combinations of predictors could be
modelled, underlying probability distributions could be
varied, and penalization could be applied. Each approach
may yield a different model, with a different predictive
accuracy. Uncertainty over which approach to take may
arise even for generally accepted strategies if recommen-
dations are based on simulated or empirical examples
that may not be generalizable to the data at hand. In
addition, it has been shown that for linear regression the
success of a strategy is heavily influenced by a few key
data characteristics, and in order to address this a frame-
work was proposed for the a priori comparison of differ-
ent model building strategies in a given data set [17].
We present an extended framework for comparing

strategies in linear and logistic regression model build-
ing. A wrapper approach is utilized [18], in which re-
peated bootstrap resampling of a given data set is used
to estimate the relative predictive performance of differ-
ent modelling strategies. Attention is centred on a single
aspect of the model building process, namely, shrinkage-
based model adjustment, to illustrate the concept of a
priori strategy comparison. We demonstrate applications
of the framework in four examples of empirical clinical
data, all within the setting of deep vein thrombosis (DVT)
diagnostic prediction research. Following from this, simu-
lations highlighting the data-dependent nature of strategy
performance are presented. Finally, the outlined compari-
son framework is applied in a case study, and the impact
of a priori strategy selection is investigated.

Methods
In this section, a framework for the comparison of logis-
tic regression modelling strategies is introduced, followed
by a description of the strategies under comparison in this
study. The designs of four simulation scenarios using ei-
ther entirely simulated data or simulated data derived
from empirical data are outlined. Finally, the design of a
case study in strategy comparison is described. All ana-
lyses were performed using the R statistical programme,
version 3.1.1 [19]. All computational tools for the com-
parison of modelling strategies can be found in the “apri-
com” package, available within the CRAN package
repository (http://CRAN.R-project.org/package=apricom).

A framework for strategy comparison
It was proposed by Pestman et al. [17] that different
strategies for linear regression model building could be
compared prior to selecting a final strategy by means of

a simple framework. The predictive performance of a
linear regression model in a data set can be summarized
by the sum of squared errors (SSE) [20]. In order to
compare two different models, A and B, the SSE of each
model could be compared directly by taking the ratio
SSE(B)/SSE(A). A ratio greater than 1 indicates the SSE
of B is greater than that of A, and therefore model B has
a poorer predictive performance.
This concept can in theory be extended to the com-

parison of different modelling strategies. However, as-
pects of modelling that involve sampling or data
splitting have a random element, and repetition of the
comparison would give different results each time. In
order to obtain a general comparison of two strategies,
the process of model building and SSE estimation could
be repeated many times, each time yielding a different
ratio of the SSEs. This will eventually produce a distribu-
tion of SSE ratios. This distribution can be used to make
inferences about the performance of one modelling
strategy compared to another in a given set of data. One
useful measure is the proportion of times that the ratio
SSE(B)/SSE(A) is less than 1, which has previously been
referred to as the “victory rate” (VR). This estimates the
probability that a model built using strategy B will out-
perform a model built using strategy A. An example of
the overall concept of strategy comparison, and the kind
of distribution it yields is illustrated in Fig. 1.
While the SSE can be used to compare the perform-

ance of two linear models, it cannot be readily extended
to the setting of logistic regression. The log likelihood is
a commonly used measure to assess the fit of a logistic
regression model [16]. Nested models can be compared
by taking the ratio of the likelihoods of the models. The
difference in -2 log likelihoods of models built using two
different strategies will yield a distribution of log-ratios
when subjected to repeated sampling. The proportion
of times the log-ratio falls below zero estimates the
probability that strategy B will outperform strategy A in
the given data.
In addition to the victory rate, the comparison distri-

bution, consisting of SSE ratios or differences in -2 log
likelihoods, can be characterized by looking at its me-
dian value and interquartile range. This gives an indica-
tion of the magnitude and variability of the difference in
performance of the two strategies under comparison. It
may be the case that the victory rate of one strategy over
another approaches 100 %, implying that it is the super-
ior choice. However, if the median value is very close to
1 for linear regression or 0 for logistic regression, then
the absolute differences in performance could be consid-
ered so small that the strategies are equally good.
For the analyses in this study, we implemented the

concept shown in Fig. 1 within a resampling framework.
Bootstrapping was used to repeatedly generate samples
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from an initial data set, and a model was fitted in each
bootstrap sample according to each strategy. The models
were then applied in the initial data set, which can be
seen to represent the “true” source population, and the
model likelihood or SSE was estimated.

Shrinkage and penalization strategies
In this study, six different modelling strategies were con-
sidered. The first strategy, which was taken as a com-
mon comparator for the others, is the development of a
model using either ordinary least squares or maximum
likelihood estimation, for linear and logistic regression
respectively, where predictors and their functional forms
were specified prior to modelling. This will be referred
to as the “null” strategy. Models built following this
strategy often do not perform well in external data due
to the phenomenon of overfitting, resulting in overopti-
mistic predictions [8, 9, 21, 22]. The remaining five strat-
egies involve methods to correct for overfitting.
Four strategies involve the application of shrinkage

techniques to uniformly shrink regression coefficients
after they are estimated by ordinary least squares or
maximum likelihood estimation. Strategy 2, which we
will refer to as “heuristic shrinkage”, estimates a shrink-
age factor using the formula derived by Van Houwelingen
and Le Cessie [23]. Regression coefficients are multiplied

by the shrinkage factor and the intercept is re-estimated
[14]. Strategies 3, 4 and 5 each use computational ap-
proaches to derive a shrinkage factor [5, 7, 24]. For strat-
egy 3, the data set is randomly split into two sets; a model
is fitted to one set, and this model is then applied to
the other set in order to estimate a shrinkage factor.
Strategy 4 instead uses k-fold cross-validation, where k
is the number of subsets into which the data is divided,
and for each of the repeats of the cross-validation, a
model is fitted to k-1 subsets and applied to the
remaining set to derive a shrinkage factor. Strategy 5 is
based on resampling and a model is fitted to a boot-
strap replicate of the data, which is then applied to the
original data in order to estimate a shrinkage factor.
These methods will be referred to as “split-sample
shrinkage”, “cross-validation shrinkage” and “bootstrap
shrinkage” respectively.
The final strategy uses a form of penalized logistic re-

gression [25, 26]. This is intrinsically different to the
approaches described above. Instead of estimating a
shrinkage factor and applying this uniformly to the esti-
mated regression coefficients, shrinkage is applied dur-
ing the coefficient estimation process in an iterative
process, using a Bayesian prior related to Fisher’s infor-
mation matrix. This method, which we will refer to as
“Firth penalization”, is especially appealing in sparse

Fig. 1 An example of the comparison of two linear regression modelling strategies. Strategies A and B are individually applied to a data set and
the ratio SSE(B)/SSE(A) is calculated. The process is repeated 10,000 times yielding a comparison distribution. The left tail below a cut off value of
1 represents the victory rate of strategy B over strategy A, the proportion of times strategy B outperformed strategy A

Pajouheshnia et al. BMC Medical Research Methodology  (2016) 16:107 Page 3 of 10



data settings with few events and many predictors in
the model.

Clinical data sets
A total of four data sets, each consisting of data used for
the prediction of deep vein thrombosis (DVT) were used
in our analyses.
Set 1 (“Full Oudega”) consists of data from a cross-

sectional study of 1295 adult patients suspected of hav-
ing DVT, collected from 1st January 2002 to June 1st

2003, within a primary care setting in the Netherlands,
having gained approval from The Medical Research Eth-
ics Committee of the University Medical Center Utrecht
[27]. Information on 26 potential predictors of DVT
presence was collected, and a prediction rule including
8 dichotomous predictors was developed using logistic
regression.
Set 2 (“Oudega subset”) was derived by taking a sam-

ple of 500 observations, without replacement, from set
1. The resulting data has a similar case mix, but the
total number of outcome events was reduced from 289
to 110.
Set 3 (“Toll validation”) was originally collected as a

data set for the temporal validation of set 1. Data from
791 patients with suspected DVT was collected in the
same manner as set 1, but from 1st June 2003 to 1st

January 2006, after the collection of the development
data [28, 29]. This data set contains the same predictors
as sets 1 and 2.
Set 4 (“Deepvein”) consists of partly simulated data

available from the R package “shrink” [30]. The data are
a modification of data collected in a prospective cohort
study of 929 patients between July 1992 and August
2008, from four centres in Vienna, Austria [31]. As this
data set comes from a completely different source to the
other three sets, it contains different predictor informa-
tion. Furthermore, a combination of continuous and di-
chotomous predictors was measured.
Data set 4 can be accessed in full via the R program-

ming language “shrink” package. Data sets 1–3 are not
openly available, but summary information for the
data sets can be found in Additional file 1, which can
be used to simulate data for reproduction of the fol-
lowing analyses.

Strategy comparison in clinical data
Strategies for logistic regression modelling were first
compared using the framework outlined in 2.1, in the
Full Oudega data set, with 5000 replicates for each com-
parison. For each strategy under comparison, full logistic
regression models containing all 8 available predictors
were fitted. The shrinkage and penalization strategies
were applied as described in 2.2. For the split sample
strategy, data was split so that the initial model fitting

was done in 80 % of the data, and the process was re-
peated 100 times for stability. For the cross-validation
strategy, 10-fold cross-validation was performed, and aver-
aged over 10 replicates. For the bootstrap strategy, 100
rounds of bootstrapping were performed. For the final
strategy, Firth regression was performed using the
“logistf” package, in the R programming language [32].
These strategies were then compared against the null
strategy, and the distributions of the differences in -2
log likelihoods over all comparison replicates were plot-
ted as histograms. Victory rates, distribution medians
and distribution interquartile ranges were calculated
from the comparison results. The mean shrinkage was
also calculated where appropriate.

Simulations
To investigate the extent to which strategy performance
may be data-specific, simulations were performed to
compare the performance of the modelling strategies
from 2.2 across ranges of different data parameters. To
compare strategies in linear regression modelling, data
were entirely simulated, using Cholesky decomposition
[33], and in all cases simulated variables followed a ran-
dom normal distribution with mean equal to 0 and
standard deviation equal to 1. In each scenario the num-
ber of predictor variables was fixed at 20. Data were gen-
erated so that the “population” data were known, with
1000 observations. In scenario 1, the number of observa-
tions per variable in the model (OPV) was varied by re-
ducing the number of rows in the data set in increments
from 500 to 50, whilst maintaining a model R2 of 0.5. In
scenario 2, the fraction of explained variance, summa-
rized by the model R2, was varied from 0.1 to 0.9, whilst
the OPV was fixed at a value of 5. For each linear regres-
sion setting, comparisons were repeated 10,000 times.
To compare strategies in logistic regression model-

ling, the full Oudega data set and Deepvein data set
were used. In scenario 3, the number of outcome events
per model variable (EPV) was varied by removing cases
and non-cases from the data incrementally, resulting in
EPVs ranging from 36 to 4, whilst maintaining a similar
case-mix and prevalence of DVT. This was also re-
peated in the Deepvein data, with values for the EPV
ranging from 24 down to 4. In scenario 4, strategies
were compared in the full Oudega data across a range
of settings where the fraction of explained variance,
taken to be the value of Nagelkerke’s R2 [34], varied.
First, a subset of 15 dichotomous variables was selected
from the total of 26 available variables. Then, selecting
8 variables at a time, the data was sampled in order to
generate a large number of subsets, each containing dif-
ferent combinations of predictors, and from these a se-
lection of data sets was chosen based on the
Nagelkerke R2 of a logistic model fitted to that data, so
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that a range of Nagelkerke R2 values would be covered.
For logistic regression scenarios, simulations were re-
peated 5000 times due to the greater computation time.

Clinical case study
A small case study was conducted in order to assess
whether an a priori comparison of strategies for devel-
oping a regression model will provide a model that
performs best in external data. Final models were de-
veloped in the full Oudega set using the winning strat-
egies from 2.4, as well the null strategy as a reference.
In order to directly assess the performance of a given
strategy the external predictive performance of each
model was assessed in the Toll validation data. The
predictive accuracy of each model developed according
to each strategy was measured by calculating the Brier
score [35], a function of the mean squared prediction
error. Calibration of the model was assessed graphic-
ally by plotting predicted risks, grouped in deciles,
against the observed outcome rates in each decile,
using the R package “PredictABEL” [36].

Results
Strategy comparison in four clinical data sets
Table 1 shows the results of the comparisons for all five
strategies against the null strategy, in the full Oudega
data. Firth penalized regression (66.9 %), split-sample
shrinkage (66.8 %) and bootstrap shrinkage (66.4 %) had
the highest victory rates. The bootstrap shrinkage strat-
egy had the distribution median furthest from zero
(-0.3), and a relatively large interquartile range (1.0), in-
dicating possible superiority in this setting, as well as
inconsistency.
The distributions in Fig. 2 indicate that none of the

strategies showed a clear superiority over the null
strategy in the full Oudega data. For the Firth penal-
ized regression strategy, the distribution is left-skewed,
indicating that in some of the comparison replicates
this strategy greatly outperformed the null strategy.
Given these results, the Firth strategy might be

considered to be the optimal choice, as it has both an
equally high chance of outperforming the null strategy
as compared to the split-sample and bootstrap ap-
proaches, and in trials where it had a poorer perform-
ance, the difference in -2 log likelihoods was minimal.
When comparisons were extended to additional DVT

prediction data sets, a large degree of heterogeneity
was observed in the victory rates for each strategy
across the different sets. The results of these compari-
sons are summarized in Table 2. The victory rates of
the heuristic strategy showed the greatest variation be-
tween data sets, ranging from 3.9 to 63.8 %. This is
reflected by the broad range in values of the estimated
shrinkage factor, with poorest performance coinciding
with severe shrinkage of the regression coefficients.
Firth regression showed the greatest consistency be-
tween data sets, with victory rates ranging from 65.8 to
73.8 %, and good performance in the Oudega and Toll
data sets, but relatively poor performance compared to
the split-sample, cross-validation and bootstrap strat-
egies in the Deepvein data set.

Simulation study
Figure 3a shows that for each strategy, the victory
rate decreased as the OPV increased, and the rela-
tionship was most apparent when the OPV was less
than 10. Similarly, Fig. 3b shows that as the explana-
tory power of the predictors in the model increased,
leading to an increase in the model R2, the victory
rates for each strategy decreased. However, not all
strategies behaved similarly, for example, as the frac-
tion of explained variance increased above 0.4, the
performance of the heuristic approach declined
drastically.
The performance of logistic regression modelling

strategies was also dependent on the information in a
data set. Figure 3c shows that in the full Oudega data
set, the victory rates of shrinkage strategies declined
slightly as the EPV increased, however estimation of
the victory rates in low EPV settings was not always

Table 1 A comparison of modelling strategies against the null strategy in the full Oudega DVT data

Strategy Victory rate (%) Median IQR Mean shrinkage

1. Heuristic shrinkage 56.9 −0.2 1.5 0.97

2. Split sample shrinkage 66.8 −0.2 0.7 0.98

3. 10-fold CV shrinkage 48.0 0.0 0.1 1.00

4. Bootstrap shrinkage 66.4 −0.3 1.0 0.97

5. Firth penalization 66.9 −0.2 0.6 -*

Victory rates and associated metrics are presented. Values are based on 5000 comparison replicates.
Abbreviations: IQR interquartile range, CV cross-validation
*No mean shrinkage for the Firth penalization strategy is presented as shrinkage occurs during the coefficient estimation process
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possible for the split-sample, cross-validation and
bootstrap strategies. The fraction of explained vari-
ance of the model had a greater influence on strategy
performance. Figure 3d shows that while most strat-
egies show a general decline in performance as the
model Nagelkerke R2 increases, the heuristic approach
improves drastically, from almost zero, to over 50 %
across the parameter range.
Comparing Fig. 3c and e highlights that the relationship

between strategy performance and a single data character-
istic may vary between data sets. While most strategies
showed a similar decline in performance as the EPV in-
creased, in the Deepvein data 10-fold cross-validation
began to improve as the EPV increased, and both 10-fold

cross-validation and the heuristic approach performed
very poorly in all EPV settings.

Case study
Based on the victory rates and distribution medians from
Table 1, and assessment of the graphs in Fig. 2, three poten-
tially optimal strategies were selected: the split-sample ap-
proach, the bootstrap approach and the Firth regression
approach. Differences between these methods were so small
that no clear preference could be made between the three.
The winning strategies and the null strategy were

applied to the full Oudega data and the resulting
models can be found in Additional file 2. Application
of the newly developed models to the Toll validation

Fig. 2 Histograms of the distributions resulting from comparisons between five modelling strategies and the null strategy in the full Oudega data
set. The victory rate of each strategy over the null strategy is represented by the proportion of trials to the left of the blue indicator line. The
distributions each represent 5000 comparison replicates

Table 2 A comparison of modelling strategies in three additional clinical data sets

Strategy Oudega random subset Toll validation data set Deepvein data set

Victory rate (%) Mean shrinkage Victory rate (%) Mean shrinkage Victory rate (%) Mean shrinkage

1. Heuristic shrinkage 63.8 0.93 60.8 0.93 3.9 0.71

2. Split sample shrinkage 61.9 0.92 42.0 0.94 93.8 0.98

3. 10 fold CV shrinkage 38.3 1.00 39.6 0.99 90.9 0.99

4. Bootstrap shrinkage 56.4 0.89 42.6 0.94 94.9 0.97

5. Firth penalization 73.8 -* 66.0 -* 65.8 -*

Victory rates of each strategy over the null strategy are presented, as well as the mean shrinkage factor applied in each of the shrinkage-based strategies. Values
are based on 5000 comparison replicates.
Abbreviations: CV cross-validation
*No mean shrinkage for the Firth penalization strategy is presented as shrinkage occurs during the coefficient estimation process
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data found that the Brier scores for each model were
almost identical, ranging from 0.125 to 0.126 and there
was almost no difference in calibration. Calibration
plots can be found in Additional file 3. This indicates
that in this setting a priori strategy selection has little
impact on the external performance of the final model.

Discussion
There are numerous approaches for developing a clinical
prediction model, and in many cases no approach is uni-
versally superior. We demonstrate here that the per-
formance of regression modelling strategies is data set-
specific, and influenced by a combination of different

Fig. 3 a-e The influence of data characteristics on the performance of different modelling strategies compared to the null strategy. Victory
rates were estimated across a range of values of a data parameter, keeping all other parameters fixed. a Linear regression using
simulated data; the number of observations in the data per model variable was varied. b Linear regression using simulated data; the
fraction of explained variance (R2) of the least squares model was varied. c Logistic regression using simulated data based on the full
Oudega data; the number of outcome events in the data per model variable was varied. d Logistic regression using simulated data based on the
full Oudega data; the explained variance (Nagelkerke’s R2) of the maximum likelihood model was varied. e Logistic regression using simulated data
based on the Deepvein data; the number of outcome events in the data per model variable was varied. * A loess smoother was applied to (c), (d)
and (e)
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data characteristics. We outline a means of conducting a
comparison of modelling strategies in a data set before
deciding on a final approach. A concept that was previ-
ously outlined for linear regression has now been ex-
tended to logistic regression, using the model likelihood
as a means of comparing the performance of two strat-
egies. The resulting distribution of comparisons can then
provide researchers with evidence on which to base their
decisions for model building. Three summary measures,
the victory rate, the distribution median and the distri-
bution interquartile range can be used to guide re-
searchers in their analytical decision making.
As there are several available strategies for address-

ing the issue of overfitting, we used this as an example
to illustrate how different strategies can be compared
in a given data set using a computational framework.
This article makes no recommendations for which
shrinkage approach is more suitable than others; on
the contrary our findings highlight that the optimal ap-
proach for model building using shrinkage or penaliza-
tion largely depends on the data at hand, and it can be
difficult to anticipate beforehand how well a method is
likely to perform.
The comparisons that we conducted in empirical data

clearly show that strategy performance is inconsistent and
hard to predict across data sets. This is evidenced by the
variability in the victory rates presented in Tables 1 and 2.
Despite having a very similar case-mix, the victory rates of
shrinkage strategies over the null strategy varied by almost
25 % across the three related DVT data sets. These differ-
ences between the different data sets may be partly ex-
plained by differences in outcome prevalence and the
dichotomization of predictors. A detailed discussion of the
performance and properties of shrinkage approaches is be-
yond the scope of this article and can be found elsewhere
[7, 15, 37, 38]. Using the results of these comparisons, it is
possible to select a winning strategy for each individual
data set. However, it is not sufficient to base decisions for
model building solely on the victory rate. For example, the
victory rate of 90.9 % for 10-fold cross-validation in the
Deepvein data set, shown in Table 2, suggests that this
strategy is preferable to a strategy without shrinkage.
However, the absolute amount of shrinkage being per-
formed is on average negligible in this case, and the high
victory rate for cross-validation reflects very small im-
provements in model performance. We therefore recom-
mend that the median and shape of the comparison
distribution should also be taken into account when using
this approach for strategy selection.
In some settings, particularly the Oudega subset and

Toll data, we observed problems with model conver-
gence in logistic regression due to separation [39]. This
problem was most apparent in data with only dichotom-
ous variables in the models, and few EPV. The drop in

victory rates for sampling-based strategies, from 66.8 to
61.9 % for sample splitting, 48.0 to 38.3 % for 10 fold
cross-validation, and 66.4 to 56.4 % for bootstrapping
could in part be explained by this phenomenon. We
found that some strategies may exacerbate problems
with separation, and that low victory rates, with ex-
tremely skewed comparison distributions may indicate
the occurrence of separation. In such a case, researchers
may wish to consider alternative strategies.
Several authors have previously noted that regression

methods may perform quite differently according to cer-
tain data parameters [7, 40], and has been recognized
that data structure as a whole should be considered dur-
ing model building [41]. Our simulations in linear re-
gression confirm the findings of others in a tightly
controlled setting, and similar trends are seen upon ex-
tending these simulations to empirically-derived settings
for logistic regression. Through assessing the influence
of EPV on strategy performance in two different data
sets, we find that while trends are present, they may dif-
fer between data sets. In combination with the findings
from comparisons between strategies in four clinical
data sets this supports the idea that strategy perform-
ance is data-dependent. This may have implications for
the generalizability of currently existing recommenda-
tions for several stages of the model building process
that were originally based on a small number of clin-
ical examples.
The findings of our case study did not demonstrate

any clear benefit of a priori strategy comparison. This
can be explained in part by the similarity of the models
produced using each approach, seen in Additional file 2,
due to the minimal amount of shrinkage that was ap-
plied, and the similarity between the development and
validation data. A greater benefit may be expected if the
shrinkage strategies were applied first in a data set that
would be more susceptible to overfitting, and if the val-
idation data came from a wholly unrelated population.
These findings also demonstrate the probabilistic nature
of our comparisons. For example, the victory rate of
66.4 % for the bootstrap approach, shown in Table 1, im-
plies that one third of the time maximum likelihood
models developed in similar samples from this popula-
tion of DVT patients will outperform models built using
bootstrap-derived shrinkage. Therefore, it is essential to
note that a priori strategy comparison may have a lim-
ited impact in some settings.
Our study provides a unique approach to decision

making in regression model building for clinical pre-
diction research. While similar approaches are used
in other fields, they have not been adopted in clin-
ical research and merit further investigation. In ex-
tending previous methodology for linear regression
strategy comparison to the setting of logistic
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regression, our findings now have a much greater
relevance to clinical research. We also suggest ways
to interpret the results of strategy comparisons, pro-
viding summary measures and graphical displays that
can be used in combination to select a strategy. Fur-
thermore, we used multiple data sets to illustrate
how a priori strategy comparison can be applied in
practice, and provide open access tools in the R pro-
gramming language for other researchers to further
explore the comparison framework and apply it to
their own research.
It must be noted that there are limitations within

the current framework. Our study only focuses on
comparisons within the domain of shrinkage, which is
only one stage of the prediction modelling process. It
may be that our approach is not suitable for certain
aspects of model building that we have not explored.
For example, strategies that yield models that use
varying numbers of degrees of freedom should not be
compared directly by their model likelihoods. Further-
more, we currently only provide a framework for lin-
ear and logistic regression problems, and while this is
most useful for diagnostic settings, a natural exten-
sion would be to enable the comparison of survival
models, such as Cox proportional hazards models, as
these are the most commonly used methods in prog-
nostic prediction modelling [42].
Furthermore, the interpretation of the results of com-

parisons warrants some caution when using logistic re-
gression in sparse data settings. We encountered many
difficulties with separation of logistic regression, espe-
cially when resampling or sample-splitting methods
were used in the model building process. When separ-
ation occurs, the models may exhibit problems with
convergence, and this complicates the interpretation of
victory rates and other summary measures. While there
is no straightforward solution to this problem, we argue
that there may be some value in observing the fre-
quency and severity of separation that occurs during
strategy comparison.

Conclusion
Current literature provides several guidelines to aid re-
searchers in selecting an appropriate strategy for clin-
ical prediction modelling. Our findings highlight an
insufficiency in such approaches due to the influence
of data-specific properties on the performance of mod-
elling strategies. A wrapper approach can be used to
compare different strategies prior to the final model
building process. Optimal strategies can then be se-
lected based on a combination of comparison metrics,
but the impact of this approach on the final external
performance of a model may be limited.
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