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Abstract

Background: Confidence intervals for the between study variance are useful in random-effects meta-analyses
because they quantify the uncertainty in the corresponding point estimates. Methods for calculating these
confidence intervals have been developed that are based on inverting hypothesis tests using generalised
heterogeneity statistics. Whilst, under the random effects model, these new methods furnish confidence intervals
with the correct coverage, the resulting intervals are usually very wide, making them uninformative.

Methods: We discuss a simple strategy for obtaining 95 % confidence intervals for the between-study variance with
a markedly reduced width, whilst retaining the nominal coverage probability. Specifically, we consider the possibility
of using methods based on generalised heterogeneity statistics with unequal tail probabilities, where the tail
probability used to compute the upper bound is greater than 2.5 %. This idea is assessed using four real examples and
a variety of simulation studies. Supporting analytical results are also obtained.

Results: Our results provide evidence that using unequal tail probabilities can result in shorter 95 % confidence
intervals for the between-study variance. We also show some further results for a real example that illustrates how
shorter confidence intervals for the between-study variance can be useful when performing sensitivity analyses for
the average effect, which is usually the parameter of primary interest.

Conclusions: We conclude that using unequal tail probabilities when computing 95 % confidence intervals for the
between-study variance, when using methods based on generalised heterogeneity statistics, can result in shorter
confidence intervals. We suggest that those who find the case for using unequal tail probabilities convincing should
use the ‘1–4 % split’, where greater tail probability is allocated to the upper confidence bound. The ‘width-optimal’
interval that we present deserves further investigation.

Keywords: Confidence interval width, Quadratic forms, Statistical conventions

Background
The random-effects model [1–3] is routinely used in
meta-analysis. This model involves two parameters: the
average effect, μ, and the between-study variance, τ 2.
Although μ is of primary interest, τ 2 is also important
because it describes the extent to which the true effects
differ. For example, a small τ 2 reassures us that the studies’
true effects are similar so that μ adequately describes the
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true effect in all studies. A large τ 2 however means that
there are important differences between the true effects,
which should ideally be explained using techniques such
as subgroup analyses or meta-regression [4].
A wide variety of estimates of τ 2 are available. Here

we focus on a class of methods for calculating confidence
intervals that we refer to as using forms of “generalised
heterogeneity statistics”. This includes confidence inter-
vals that correspond to some very popular point estima-
tors [1, 5]. Our main reason for investigating the use of
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these particular methods is because, under the assump-
tions of the random-effects model, they are exact. This
means that we can explore the use of confidence inter-
vals with unequal tail probabilities whilst retaining the
nominal coverage probability; if we instead explored the
use of alternative, and approximate, methods then we
would have the added complication that using unequal tail
probabilities would also have implications for the actual
coverage probability. Hence for other methods we would
have to further explore if shorter confidence intervals
were due to lower coverage probabilities rather than using
better statistical methods. It is for this same reason that
we do not investigate the recently proposed approximate
method that uses generalised heterogeneity statistics [6].
The use of unequal tail probabilities was described in
some of the previous accounts of the methods that we use
[7, 8] and in other accounts it is obvious that they could
have been used. Hence the use of unequal tails when cal-
culating confidence intervals using the methods we use
here is not methodologically novel, but to our knowledge
this paper is the first to investigate this particular issue in
detail.
Point estimates of τ 2 are routinely provided by meta-

analysis computer software and can be used when making
approximate inferences about the average effect [1, 9].
Methods for further calculating confidence intervals for
τ 2 have now also become available [7, 8, 10, 11]. Unfortu-
nately, the confidence intervals for τ 2 obtained from such
methods are usually very wide. This is, in part, due to
the fact that there is little information about τ 2 in typi-
cal meta-analyses containing a handful of studies. Despite
this fundamental limitation, it is natural to consider strate-
gies for obtaining narrower confidence intervals. In this
paper we discuss a simple strategy that enables one to
apportion unequal amounts of the allowed type I error
rate between the tails of the confidence interval. In the
context of Bayesian analyses, presenting highest posterior
density regions is a way to try to obtain shorter credible
intervals than those that use equal probability tails of the
posterior density, although this will not be successful in
every case. Figure 2 below suggests that the use of unequal
tails to provide shorter confidence intervals is conceptu-
ally similar to the use of highest posterior density regions,
because we use quantiles where the Q profile statistic is
greater than the conventional 2.5 % and 97.5 % quantiles.
However, since the proposed methods are not likelihood
based, it is not straightforward to directly compare our
methods to Bayesian approaches.
For the most part, we will focus on the Q profile method

[10, 11] for calculating confidence intervals, because this
is the most established method that is based on gen-
eralised heterogeneity statistics. However we will also
explore the use of an alternative approach [7, 8]. Our main
focus will be to assess whether the possibility of using

unequal tail probabilities when computing 95 % confi-
dence intervals of this type results in shorter intervals; if
this is the case then we regard the analysis as being more
informative. Although the accruement of shorter confi-
dence intervals for τ 2 is a desirable goal in its own right,
we will also show how this can be useful when perform-
ing sensitivity analyses for the average effect, which is the
parameter of primary interest. We will see below that sub-
stantial gains can be made by ‘spending’ the majority of
the tail probability when computing the upper bounds of
confidence intervals for τ 2.
The length and coverage of confidence intervals is only

one of many criteria for evaluating them and there is a
large literature that relates to this issue. The interested
reader is referred to section 9.3 of Casella and Berger [12]
for an accessible introduction. In addition to discussing
the length (or the size in more than one dimension),
the expected length and the coverage probability of con-
fidence intervals, Casella and Berger describe a variety
of other ideas. These ideas include notions such as the
‘uniformly most accurate’ confidence interval, ‘unbiased’
confidence intervals and ‘loss function optimality’. Casella
and Berger provide a variety of references and exercises,
so that the committed reader may explore these issues
further. They also discuss Bayesian optimality of credible
intervals; another way to obtain shorter confidence inter-
vals for τ 2 is to use informative priors for this parameter
[13, 14] but we will focus on classical methods.

Methods
The random-effects model
The random-effects model for the study effect estimates
y1, . . . , yk in a meta-analysis is usually written as

yi|μi ∼ N(μi, σ 2
i ), μi ∼ N(μ, τ 2). (1)

where yi is the estimated effect from the ith study. The
model contains (k + 1) variance components: σ 2

i rep-
resents the within study variance for study i’s estimate
(assumed fixed and known in analysis but estimated in
practice) and τ 2 represents the variance of the true study
effects μi that are assumed to be normally distributed
around an average effect μ. In the special case where τ 2

is zero, (1) is equivalent to the standard fixed-effect (or
common-effect) model, where μi = μ for all i. In this case
all studies are assumed to provide an estimate of the same
underlying quantity.

Making approximate inferences about the average effect
Here our focus is on methods for calculating confidence
intervals for τ 2 but we also briefly describe the usual mode
of making approximate inference in a meta-analysis for
the average effect μ. We return to this issue below, where
we explain how our methods are useful when performing
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sensitivity analyses for μ; usually the average effect is the
parameter of primary interest.
Let wi = 1/σ 2

i be the within-study precision of the ith
estimated effect, yi. The fixed-effect estimate of μ and its
variance are given by

μ̂ =
∑k

i=1 wiyi
∑k

i=1 wi
, Var(μ̂) = 1

∑k
i=1 wi

(2)

which immediately gives rise to confidence intervals and
hypothesis test results. However (2) assumes that τ 2 =
0, which is a strong assumption that is relaxed by the
random-effects model. In the random-effects model we
replace wi with w∗

i where w∗
i = 1/(σ 2

i + τ̂ 2) in (2), where
τ̂ 2 is a point estimate. This method for making infer-
ences using the random effects model is only approximate
however because the uncertainty in the estimate of τ 2 is
not taken into account in this analysis. However in meta-
analyses with many studies this approximate method is
sufficiently accurate in application and is widely used with
moderate or even small numbers of studies. The Hartung
and Knapp modification [15, 16], which shares much in
common with methods already used in particle physics
[17], has been proposed to provide more accurate infer-
ence for the average effect. However this method has
also recently been critiqued by Wiksten et al. [18] on the
grounds that it is not always conservative compared to a
fixed-effect analysis.

Generalised heterogeneity statistics
Various forms of heterogeneity statistics have been pro-
posed in order to provide point estimates of, and subse-
quently confidence intervals for, τ 2. We will refer to statis-
tics of this type as generalised heterogeneity statistics,
which we will define as a statistic of the form

Q =
k∑

i=1
wi(σ

2
i , τ 2)(yi − μ̂)2 (3)

where the weights wi(σ
2
i , τ 2) are functions of the within

and the between-study variances and

μ̂ =
∑k

i=1 wi(σ
2
i , τ 2)yi

∑k
i=1 wi(σ

2
i , τ 2)

(4)

so that μ̂ is the weighted mean of the yi. The choice
of the functional form of wi(σ

2
i , τ 2) determines the type

of generalised heterogeneity statistic. We allow the func-
tion wi(σ

2
i , τ 2) to take any form but functions that are

positive and non-increasing in both σ 2
i and τ 2 are most

appropriate, because then the weights allocated to studies
are positive non-increasing functions in the total variance
(σ 2

i + τ 2). To date, three forms of wi(σ
2
i , τ 2) have been

proposed for use in generalised heterogeneity statistics.

The conventional heterogeneity statistic
Cochran [19] suggested using wi(σ

2
i , τ 2) = 1/σ 2

i , where
σ 2
i is the estimated within-study variance, so that the con-

ventional weights in a fixed-effect analysis as in (2) are
used when computing Q. DerSimonian and Laird [1] pro-
vide the expectation of this statistic and suggested match-
ing this expectation to the observed Q in order to obtain a
moments based estimator of τ 2. Hoaglin [20] clarifies that
Cochran used the estimated within-study variances when
calculating his statistic; since here we take the within-
study variances as fixed and known in analysis, using
wi(σ

2
i , τ 2) = 1/σ 2

i to indicate Cochran’s heterogeneity
statistic suppresses the distinction between the estimated
and true within-study variances. This means describing
the conventional heterogeneity statistic as Cochran’s het-
erogeneity statistic is not completely historically accurate.
However we continue to associate Cochran with this par-
ticular heterogeneity statistic, so that his valuable contri-
bution to meta-analysis may continue to be recognised.

DerSimonian and Kacker’s generalised heterogeneity
statistics
DerSimonian and Kacker [21] suggested using
wi(σ

2
i , τ 2) = ai, where ai is any fixed positive constant.

Since the within-study variances are treated as fixed
and known, ai may be any positive function of σ 2

i . This
includes the reciprocal function so that DerSimonian and
Kacker’s suggestion includes the previous heterogeneity
statistic as a special case. If all ai are identical then Q
becomes an unweighted sum of squares. Hence DerSi-
monian and Kacker’s generalised statistic includes the
possibility of using equal weights, an idea that was also
suggested by DerSimonian and Laird [1].

The Q profile heterogeneity statistic
Usingwi(σ

2
i , τ 2) = 1/(σ 2

i +τ 2) provides a pivot for τ 2 that
can also be be used for estimation. This is a markedly dif-
ferent choice of weights to the previous two suggestions
because the weights are now a function of the unknown
parameter τ 2. Hence the Q profile heterogeneity statis-
tic is a function of τ 2 and we emphasise this by writing
this Q statistic as Q(τ 2). This choice of wi(σ

2
i , τ 2) is very

convenient because Q(τ 2) ∼ χ2
k−1 for all τ 2. Hence solv-

ing Q(τ 2) = k − 1 for τ 2 provides an estimate of τ̂ 2 that
is generally credited to Paule and Mandel [5]. Q(τ 2) is
a decreasing function in τ 2 [10] so that this estimate is
unique. If Q(0) < k − 1, so that there is no nonnega-
tive τ 2 that satisfies Q(τ 2) = k − 1, then τ̂ 2 is taken to
be zero. It has recently been shown that the Paule-Mandel
and the Empirical Bayes [22, 23] estimators are equiva-
lent in the more general context of random effects models
for meta-regression [24]. Bowden et al. [25] also noted
the equivalence of the Paule-Mandel estimator and the
Empirical Bayes approach of Carter and Rolph [26].
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Confidence intervals for the between-study variance
Many methods have been proposed to derive confidence
intervals for τ 2 but most rely on asymptotic arguments
[11]. For this reason they generally fail to achieve nom-
inal coverage, and this poor performance is exhibited in
confidence intervals [25]. Several authors have proposed
exact (under the random-effects model) methods for cal-
culating confidence intervals for τ 2 using various forms
of generalised heterogeneity statistics. All these methods
have been shown to result in confidence intervals rather
than more general confidence sets that need not be an
interval [27].

The Q profile method
Perhaps the best known method of this type is the Q pro-
file method [10, 11]. As noted above, the choice of weights
wi(σ

2
i , τ 2) = 1/(σ 2

i + τ 2) results in Q(τ 2) ∼ χ2
k−1. Hence

Q(τ 2) is a pivot in τ 2 with a very well known distribution.
Since Q(τ 2) is decreasing in τ 2 [10], we can use criti-
cal values from the χ2

k−1 distribution, a = χ2
α2,k−1 and

b = χ2
1−α1,k−1, where χ2

α,v is the α quantile of the χ2
k−1 dis-

tribution, to define a (1 − α) × 100 % confidence interval
for τ 2 where α1 + α2 = α. The values of τ 2 that lie in the
confidence interval satisfy

P(a < Q(τ 2) < b) = 1 − α (5)

If no τ 2 satisfies (5), because Q(0) < χ2
α2,k−1, then we

can either provide a null set [11] or provide the interval
[ 0, 0]= {0} [8, 10]. A Newton-Raphsonmethod for imple-
menting the Q profile method is available [27]. Through-
out we use α1 and α2 to denote the tail probabilities used
in the lower and upper bounds of the confidence interval
for τ 2, respectively.

Jackson’s method
Biggerstaff and Jackson [7] showed how the conven-
tional heterogeneity statistic can be used to obtain exact
(under the random-effects model) confidence intervals
and Jackson [8] extended this method to use the more
general heterogeneity statistics proposed by DerSimonian
and Kacker [21]. Jackson [8] showed that DerSimonian
and Kacker’s generalised heterogeneity statistics are dis-
tributed as a linear combinations of χ2

1 random variables,
where the coefficients depend on τ 2, and where the cumu-
lative distribution function of these Q statistics is contin-
uous and decreasing in τ 2. This means that 100(1 − α)%
confidence intervals can be obtained as the values of τ 2

that provide

P(Q ≥ q) ≥ α1 (6)

and

P(Q ≤ q) ≥ α2 (7)

where q in (6) and (7) is the observed value of a DerSi-
monian and Kacker generalised heterogeneity statistic. If
no τ 2 satisfies (7), because P(Q ≤ q) < α2 for τ 2 = 0,
then we can provide either a null confidence set or the
interval [ 0, 0] as in the Q profile method. Jackson [8] sug-
gested using the weights wi(σ

2
i , τ 2) = 1/σi in applications

where some between-study variation is anticipated but it
is uncertain how much.

Meta-regression and other extensions
All of these methods using generalised heterogeneity
statistics have been extended to the meta-regression set-
ting [27]. To our knowledge, the functional forms of
wi(σ

2
i , τ 2) are the only ones that have been considered

to date. The possible use of further forms of wi(σ
2
i , τ 2)

deserves further investigation.

Results and discussion
We begin with the preliminary investigation that we per-
formed which motivated us to carefully examine the pos-
sibility of using unequal tails when calculating confidence
intervals for τ 2. It has been claimed that the frequently
wide confidence intervals that are obtained in practice are
due to large upper bounds of confidence intervals [7, 8].
If this claim is true, then one way to obtain shorter confi-
dence intervals, whilst retaining the coverage probability
of 100(1−α)%, is to take α2 > α1. Thismeans that unequal
probabilities are used in the two tails, where the majority
of α is ‘spent’ in the tail of the upper bound, to reduce the
upper bound and so the width of the confidence interval.

TheW-optimal interval
In order to investigate the full potential of using α2 > α1,
we will focus on the α-split that post hoc, minimises the
resulting Q profile confidence intervals’ width. We will
return to Jackson’s method later, but we will begin with
the Q profile method because this is the longer established
method. For a given value of α (we will use the conven-
tional α = 0.05 throughout), we find the values α∗

1 and α∗
2 ,

subject to the constraint that α∗
2 = α − α∗

1 , such that the
resulting interval from (5) with α1 = α∗

1 and α2 = α∗
2 is

shorter than any other interval where α1 + α2 = α. We
will refer to the interval derived in this way as ‘W-optimal’,
which is an abbreviation for ‘width optimal’ .
It is important to recognise that the repeated sampling

properties of the methods described above assume that
α1 and α2 are specified in advance. Hence the theory
set out above provides no assurance that the W-optimal
interval will achieve the nominal coverage probability.
Indeed there is the natural suspicion that, by choos-
ing α∗

1 and α∗
2 that post-hoc minimise the confidence

interval width, that the W-optimal interval will possess
a coverage probability that is well below the nominal.
We will investigate this issue below, but for now we
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are content to use the mathematical definition of the
W-optimal interval to explore which values of α1 and α2
would result in the shortest confidence interval had these
values been specified in advance. The reader should note
that, for the present, we refer to the W-optimal interval,
and not the W-optimal confidence interval, because the
repeated sampling properties of the W -optimal interval
are not investigated until later in the paper. Furthermore,
as we explain in the discussion, we suggest that fur-
ther investigation is needed before we can safely recom-
mend presenting the W -optimal interval as a confidence
interval.

The NSCLC4meta-analysis
Figure 1 (left) shows a forest plot of the NSCLC4 meta-
analysis described in Bowden et al. [25]. The eleven RCTs
making up the meta-analysis compared the effect of sup-
portive care plus chemotherapy versus supportive care
alone for patients with non-small-cell lung cancer. The
results are shown on the log hazard ratio scale. Figure 1
(right) shows the 95 % confidence interval width for τ 2 in
the NSCLC4 meta-analysis as a function of α2. The con-
ventional ‘equal–α’ approach (α1 = α2 = 0.025) yields a
confidence interval for τ 2 of (0.052,0.787). TheW-optimal
interval for τ 2 is (0.021,0.638), which is attained for α∗

1
= 0.2 % and α∗

2 = 4.8 %. In order to minimise the confi-
dence interval’s width, we spend around 96 % of α on the
upper confidence bound and so use α2 >> α1 to obtain
the shortest 95 % confidence interval.

Further illustration of the NSCLC4meta-analysis
Figure 2 illustrates why α2 >> α1 provides shorter con-
fidence intervals for the NSCLC4 meta-analysis. In Fig. 2,
the density f (x) of χ2

k−1 is plotted against both the value
of the random variable x and the corresponding value of
the cumulative distribution function (shown as a propor-
tion). Also shown on the upper horizonal axis is Q−1(x)
for these data, where Q−1(·) is the inverse of Q(τ 2); from
(5) this function gives the confidence limits and so pro-
vides the interval estimation of τ 2 for the NSCLC4 meta-
analysis. The conventional 2.5 % and 97.5 % critical values,
and the W-optimal critical values of α∗

2 = 4.8% and
1 − α∗

1 = 99.8%, are also shown on Fig. 2 as vertical lines.
The main observation from Fig. 2 is that Q−1(x) is

extremely non-linear in x. Increasing α2 from its con-
ventional value of 2.5 %, to its optimal 4.8 %, drastically
decreases the upper confidence bound shown on the
upper horizonal axis, despite the fact that the χ2 per-
centile changes only slightly from 3.24 to 3.90. Conversely,
the lower bound decreases only slightly when decreasing
α1 to its optimal value, despite the fact that the χ2 quan-
tile increases substantially from 20.48 to 28.91. Hence, as
a direct consequence of the non-linear nature of Q−1(x),
taking α2 >> α1 drastically reduces the confidence inter-
val width.

Further trial examples
Table 1 summarises the results obtained for the NSCLC4
meta-analysis and also shows the same results for three
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Fig. 2 An illustration of the Q profile interval estimation for the NSCLC4 data using a confidence interval with equal tails and the ‘W-optimal’ interval

additional meta-analyses of cancer trials also discussed
in Bowden et al. [25]. We report the I2 statistic [28] and
the DerSimonian and Laird estimate of τ 2 for each meta-
analysis in order to quantify the heterogeneity present.
The W-optimal intervals are substantially narrower in
each case. Like the NSCLC4meta-analysis, theW-optimal
interval for the CERVIX1 meta-analysis involves a highly
unequal ‘α–split’ with α2 >> α1. In the case of the
NSCLC1 and CERVIX3 meta-analyses the nature of the
W-optimal interval is even more extreme, where the opti-
mal intervals are one-sided (α∗

1 = 0, α∗
2 = 0.05). The

DerSimonian and Laird point estimator and the Q pro-
file confidence interval are based on different statistical
principles, so that the point estimates of τ 2 in Table 1
are not guaranteed to lie within the confidence intervals.
Although this only happens in rare cases, this cannot
occur when the Paule-Mandel [5] point estimator is used.
Hence the Paule-Mandel point estimate and the Q profile

confidence interval are especially natural estimators to
report in conjunction with each other.

Conclusions from the examples
All four examples indicate that using substantially larger
α2 values can result in considerably shorter 95 % con-
fidence intervals for τ 2. In each of the four cases, the
W-optimal interval results in smaller upper and lower
confidence interval bounds, where the upper confidence
bound is reduced very substantially but the lower bound
is only reduced slightly. This suggests that we can obtain
shorter 95 % confidence intervals by taking α2 >> α1 in
practice.

A final observation from the examples
One important and final observation from the examples
is that, by taking α2 > α1, we necessarily obtain smaller
lower and upper confidence interval bounds compared

Table 1 Summary of the four meta-analysis examples

Meta k I2 τ̂ 2 Equal-α W-optimal α∗
2 Width

Analysis CI interval Ratio

CERVIX3 5 56 % 0.087 (0, 1.660) (0, 1.100) 0.050 0.662

NSCLC4 11 75 % 0.132 (0.052, 0.787) (0.021, 0.638) 0.048 0.839

NSCLC1 17 45 % 0.024 (0.000, 0.181) (0, 0.147) 0.050 0.815

CERVIX1 18 62 % 0.112 (0.041, 0.500) (0.017, 0.427) 0.046 0.892

I2 is the heterogeneity statistic of Higgins and Thompson [28] and τ̂ 2 is the DerSimonian and Laird estimate. In each case we show the equal tailed (α1 = α2 = 0.025) 95 %
confidence interval, the W-optimal interval, the value of α∗

2 that provides the W-optimal interval and the ratio of the width of the W-optimal interval and the equal tailed
confidence interval. In each case we see that there is substantial reduction in the interval width by adopting α2 >> α1
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to intervals using the more conventional α2 = α1. This
means that smaller values of τ 2 are contained in α2 > α1
confidence intervals, so that less heterogeneity is inferred
from them.
Although we focus on the width of the confidence inter-

vals, we feel that it is not inappropriate to also prefer the
use of α2 > α1 on the grounds that it reduces both confi-
dence interval bounds. This is because the estimates of τ 2
in Table 1 are very much closer to the conventional lower
bounds than the upper bounds; this is quite generally the
case because of the illustration provided by Fig. 2. Instead
using α2 > α1 reduces (but does not remove) the extreme
asymmetry of confidence intervals for τ 2 around the point
estimate. Although approximate confidence intervals are
often better calculated on the log(τ 2) scale [27], which
also gives rise to this type of asymmetry, they can also be
computed on the τ 2 scale [29] which results in symmetri-
cal confidence intervals. Those who may find the location
of point estimates within conventional confidence inter-
vals disconcerting, and prefer presenting less asymmetric
confidence intervals for τ 2, are likely to also prefer to
use α2 > α1 on the grounds that this provides confi-
dence intervals where the point estimates are considerably
closer to the centre of the interval. We should be clear
however that there is no theoretical objection to pre-
senting point estimates that lie far away from the centre
of confidence intervals, indeed point and interval esti-
mation are two different types of statistical procedure,
but we suspect that less asymmetric confidence inter-
vals will be a desirable consequence for some applied
analysts.

Confidence intervals for the between-study standard
deviation
The previous results provide some empirical evidence that
notably shorter 95 % confidence intervals for τ 2 can be
obtained by using α2 > α1. These findings also apply
to confidence intervals for linear functions of τ 2 but the
conclusions above do not apply to non-linear functions
of τ 2. For example, the R metafor package [30] provides
interval estimation for τ 2, τ , I2 and H2. We return to the
possibility of performing interval estimation for the het-
erogeneity statistics I2 and H2 in the discussion; whether
it is appropriate or not to provide confidence intervals for
these heterogeneity statistics depends on one’s willingness
to accept them as functions of τ 2 and so potential param-
eters of interest. However τ is clearly an interpretable
parameter. In this section we examine the potential use
of α2 > α1 when calculating 95 % confidence intervals
for τ but in all other sections we consider 95 % con-
fidence intervals for τ 2. Since moment-based estimates
of τ 2 are usually presented in application, we anticipate
that most interest will lie in the width of intervals for
the between-study variance. However we also examine the

between-study standard deviation, in order to explore the
implications of a non-linear function of τ 2, because our
results on the τ 2 scale are not invariant to this type of
transformation.
In Table 2 we show the results as in Table 1 but this

time we report our findings for the τ scale; theW-optimal
interval is defined as the shortest confidence interval as
above but the W-optimal interval is now the shortest
interval resulting from (5) on the τ scale. Table 2 shows
that, for the three examples where k > 10, the W-optimal
interval on the τ scale is only slightly shorter than the
conventional 95 % confidence interval and that the cor-
responding optimum α∗

2 is now much closer to 0.025.
However for the CERVIX3 example, where k = 5, we still
have α∗

2 = 0.05 and theW-optimal interval is still substan-
tially shorter than the conventional confidence interval.
This suggests that notably shorter confidence intervals
can only be obtained on the τ scale by taking α2 >> α1
when k is small. Very many meta-analyses involve such
small numbers of studies in practice.

An analytical investigation
The four examples examined above suggest that shorter
95 % confidence intervals for τ 2, and to a lesser extent τ ,
can be obtained by taking α2 >> α1. However the results
from these four examples may not generalise to other set-
tings. Our primary proposal for investigating whether this
is the case or not is the simulation study described below.
However it is also possible to make analytical progress,
using the artificial and special case where all studies are
the same ‘size’, that is σ 2

i = σ 2 = w−1 for all i. This
special case has been used previously to obtain analytical
results that can be used as a guide to how meta-analytic
techniques perform [9, 31]. We can then define I2 =
τ 2/(σ 2 + τ 2) as the proportion of variation that is due
to between-study variance. This means that I2 represents
the true quantity that I2 statistics estimate [28] and we

Table 2 Summary of the four meta-analysis examples

Meta k I2 Equal-α W-optimal α∗
2 Width

Analysis CI (τ ) interval (τ ) Ratio

CERVIX3 5 56 % (0, 1.287) (0, 1.048) 0.050 0.814

NSCLC4 11 75 % (0.227, 0.887) (0.193, 0.824) 0.040 0.954

NSCLC1 17 45 % (0.013, 0.426) (0.028, 0.436) 0.021 0.986

CERVIX1 18 62 % (0.201, 0.707) (0.182, 0.678) 0.035 0.982

I2 is the heterogeneity statistic of Higgins and Thompson [28]. In each case we
show the equal tailed (α1 = α2 = 0.025) 95 % confidence interval for τ , the
W-optimal interval for τ , the value of α∗

2 that provides the W-optimal interval (also
for τ ) and the ratio of the width of the W-optimal interval and the equal tailed
confidence interval. In each case we see that there is reduction in the interval width
by adopting α2 >> α1



Jackson and Bowden BMCMedical ResearchMethodology  (2016) 16:118 Page 8 of 15

can interpret our findings in terms of this very popu-
lar statistic. Another advantage of exploring this simple
special case is that all the methods based on generalised
heterogeneity statistics reduce to the same approach in
this situation, so that the conclusions from this analytical
investigation apply to all the methods we discuss.
The resulting investigation is mathematically technical,

and so we provide full details of this analytical work in the
web Additional file 1 that accompany the paper. Briefly
however, this investigation supports the conclusion that
using α2 >> α1 can result in markedly shorter 95 %
confidence intervals for τ 2 for the sample sizes usually
encountered in practice (k ≤ 100, say, although this is
most noticeable for much smaller k). This analytical inves-
tigation also suggests that this is also the case for 95 %
confidence intervals for τ , although here the gain is less
substantial because the reduction in average confidence
interval width is less impressive.
However the analytical investigation raises serious con-

cerns about the widths of 95 % confidence intervals result-
ing from α1 = 0 and so α2 = 0.05, which in any case
are at best highly undesirable because this choice neces-
sarily results in a lower confidence interval bound of zero.
Hence we are unable to rule out small values of τ 2 when
using such an extreme approach. This is despite the fact
that α1 = 0 and α2 = 0.05 is width-optimal for two of
the examples’ 95 % confidence intervals for τ 2, and also
for one of the examples’ 95 % confidence interval for τ .
The analytical results shown in the Additional file 1 show
that α1 = 0 and so α2 = 0.05 is width-optimal if the
between-study variance is equal to zero, or if the sample
size is small and the between-study heterogeneity is mild,
but more generally this very extreme allocation can result
in much wider 95 % confidence intervals. If τ 2 = 0 then
it is intuitively obvious that spending all the tail probabil-
ity in reducing the upper bound is width-optimal, and this
also appears to apply to small τ 2 in small samples, where
95 % confidence intervals are necessarily wide. However
τ 2 is unknown and may be larger, in which case α1 = 0
and α2 = 0.05 is far from width-optimal, in addition to
being unacceptable on the grounds that the lower bound
is then necessarily zero.
The analytical investigation therefore supports the use

of α2 >> α1 as suggested by our four examples, but
also strongly discourages the use of α2 = 0.05 despite
the empirical results. Motivated by our examples and our
analytical investigation we will therefore explore three
possibilities in the simulation studies that follow: i) the
conventional ‘equal tails approach’ α1 = α2 = 0.025; ii)
the unequal (but fixed in advance) ‘α-split’ of α1 = 0.01
and α2 = 0.04; and iii) the possibility of presenting the
W-optimal interval as a confidence interval. The last two
possibilities are presented as possible ways to reduce the
confidence interval width.

Simulation study
As explained above, the results from our four examples
and the analytical results in the Additional file 1 sup-
port the use of unequal tails when computing confidence
intervals for τ 2. However these results may not generalise
to other settings, and there may also be adverse conse-
quences from adopting this strategy. We will therefore
perform some simulation studies to further examine the
issues.

The optimum value of α2

Here meta-analyses of k studies are simulated from the
random-effects model (1). In each case the σi are gen-
erated from a Uniform(0.2,0.5) distribution and μ=0 (its
value is irrelevant). The between-study variance τ 2 is var-
ied between 0.05 and 0.4, giving rise to meta-analyses with
mean I2 values ranging from 30 to 75 %. These values of τ 2
were chosen in order to reflect a realistic range of τ 2 and
I2 where the random effects model is likely to be applied in
practice. Fifty thousand simulations were used in all simu-
lation runs. Figure 3 shows how the average optimal value
of α2 when calculating 95 % confidence intervals for τ 2

varies as a function of study size and the amount of het-
erogeneity present. For realistically sized meta-analyses
of less than 30 studies, the the optimum α2 lies between
around 4.3 % and 5 % and is a decreasing function of τ 2.
Furthermore, equal–α splits remain sub-optimal even for
fanciful meta-analyses of 1000 studies, with an average
optimal α2 of around 0.03. The simulation study reas-
sures us that the conclusions made previously generalise
to other settings.
We next investigate two secondary issues: presenting

theW-optimal interval as a confidence interval and inves-
tigating whether or not the same principles apply to
Jackson’s [8] method. In order to keep the size of the
simulation study manageable, and also investigate situa-
tions where the random-effects model is reasonably well
identified but there is not an implausibly large number of
studies, we restrict further investigations to k = 15. This
number of studies is half way between the two smallest
sample sizes explored in Fig. 3.

Presenting theW-optimal interval as a confidence interval
Given the very wide confidence intervals for τ 2 generally
obtained in application, and the potential gain in using
alternative values of α2, it is tempting to consider present-
ing the W-optimal interval as a confidence interval. As
emphasised above, the theory described above provides
no reassurance that the repeated sampling properties of
the W-optimal interval make it suitable as a confidence
interval. Furthermore, presenting the W-optimal interval
in this way is open to criticism such as ‘cherry picking’ or
‘cheating’, because it may be seen as presenting the best
results from a series of statistical analyses of the same data.
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However, provided it is stated in advance of looking at
the data that the W-optimal interval will be presented as
a confidence interval, the repeated sampling properties,
and so the coverage probability, of the W-optimal inter-
val can be assessed via simulation study. Hence we will
now present the W-optimal as a confidence interval and
investigate its repeated sampling properties.
We simulate under the same data generating model for

meta-analyses as in the previous section but now with
k=15 studies. For each value of τ 2 we calculate the empir-
ical coverage of the three ways of choosing α1 and α2. The
estimated coverage probabilities of these three approaches
are shown in Fig. 4. As dictated by theory, the conven-
tional Q profile method (α1 = α2 = 0.025) maintains the
nominal coverage across all simulation scenarios. Also as
dictated by theory, the unequal but fixed α-split of α1 =
0.01 and α2 = 0.04 also has the correct coverage. The
W -optimal approach, as might be expected, has a cover-
age below the nominal level. However, its sub-optimality
is very small (of the order of 0.5 %).
The simulation study suggests that the coverage proba-

bility of the W-optimal interval may be sufficiently good
to present this interval as a confidence interval. However
there are two important caveats. Firstly, further investi-
gation is needed into its use before it can be safely rec-
ommended. Secondly, if the W-optimal interval were to
be presented as a confidence interval, it would be impor-
tant to present it as such rather than leave it unclear

whether or not the α split was specified in advance.
Figure 5 highlights how the average confidence interval
width ratio (between the equal-α split confidence inter-
val and W-optimal interval) varies with the extent of
the between-study heterogeneity. We see that the biggest
gains from presenting the W-optimal interval as a confi-
dence interval are when this heterogeneity is small, which
is consistent with previous findings. Figure 5 also shows
that the average optimal choice of α∗

2 is always between
4.5 % and 5 %, which again is consistent with our other
results.
Figure 6 shows the estimated reduction in mean con-

fidence interval width of the W-optimal interval and the
α1 = 0.01,α2 = 0.04 split confidence intervals, each com-
pared to the conventional equal α split as a function of τ 2.
Clearly, a considerable average 95 % confidence interval
width reduction can be obtained by choosing a fixed but
unequal α split and the further improvement afforded by
the W-optimal is quite modest. The α1 = 0.01,α2 = 0.04
split appears to be quite an attractive option given that it
also achieves nominal coverage and is immune to the nat-
ural concerns that accompany presenting the W-optimal
interval as a confidence interval.

Jackson’s method
Jackson [8] proposed the competing method to the Q
profile method described above. Jackson [8] shows that,
unless there is substantial heterogeneity present, some
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τ2

Fig. 4 Coverage of the three confidence interval approaches

simple choices of ai yield confidence intervals with a
shorter width than the Q-profile approach.
Tables 3 and 4 show simulation study results (under

the same data generating model for meta-analyses as in
the previous section with k=15 studies but with different

simulated datasets) the estimated average 95 % confi-
dence interval for τ 2 width and coverage of the Q-
profile approach and Jackson’s generalised Q-statistic
using Jackson’s proposal of ai = 1/σi. In general
the performance of Jackson’s Generalised Q statistic is
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highly similar to that of the Q-profile approach. However,
Jackson’s method tends to yield slightly narrower con-
fidence intervals when the between-study heterogeneity
is small. This is consistent with the findings reported in
Jackson [8] who assumed a different distribution for the
within-study variance. These simulation studies suggest
that similar recommendations for values of α1 and α2 can
be made for both the Q profile and Jackson’s method.

Table 3 Confidence interval width of the Q-profile and Jackson’s
Generalised Q statistic approaches under equal, optimal and
0.01:0.04 split strategies; k=15

τ 2 I2 CI width CI width ratio (wrt equal α)

Equal α W-opt 0.01:0.04 split

Q-profile Gen-Q Q-profile Gen-Q Q-profile Gen-Q

0.05 28.49 0.305 0.296 0.777 0.778 0.844 0.846

0.09 39.93 0.393 0.385 0.811 0.811 0.865 0.867

0.13 48.82 0.478 0.470 0.834 0.834 0.878 0.879

0.17 55.47 0.558 0.551 0.849 0.849 0.886 0.887

0.21 60.85 0.638 0.633 0.860 0.861 0.891 0.892

0.24 65.21 0.718 0.714 0.868 0.868 0.894 0.895

0.28 68.60 0.796 0.793 0.873 0.874 0.896 0.897

0.32 71.40 0.873 0.871 0.877 0.878 0.898 0.899

0.36 73.77 0.949 0.949 0.879 0.880 0.899 0.900

0.40 75.74 1.030 1.030 0.881 0.882 0.900 0.900

Conclusions from the simulation study
To summarise the findings from the simulation study, we
find that considerably shorter 95 % confidence intervals
for τ 2 can be obtained by using α2 >> α1. Jackson’s
method appears to respond to the use of unconventional
choices of α1 and α2 in a similar way to the Q profile
method. Hence we suggest that the same conventions
be used for all methods based on generalised hetero-
geneity statistics. We conclude that the W-optimal inter-
val appears to have satisfactory coverage probabilities,
despite theoretical objections and the natural concerns
that accompany it, and its use as a confidence interval
deserves further investigation and consideration.

Sensitivity analyses for the average effect
Although we regard shorter confidence intervals for the
between-study variance as an important outcome in its
own right, this can also be beneficial when making infer-
ences about the average effect μ, which is usually the
parameter of primary interest. For example, in small sam-
ples Jackson and Bowden [32] suggest using a sensitivity
analysis, where we compute a confidence interval for τ 2

and then apply the random-effects model to make infer-
ences about the average effect using a range of values of
τ 2 that lie in this interval. The results using this proce-
dure for the NSCLC4 data are shown in Fig. 7, where we
show the range of results that are possible using the con-
ventional ‘equal α’ (α1 = α2 = 0.025)Q profile confidence
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Table 4 Coverage probability of the Q profile and Jackson’s Generalised Q statistic approaches under equal, optimal and 0.01:0.04 split
strategies; k=15

τ 2 I2 95 CI coverage (%)

Equal α W-opt 0.01:0.04 split

Q-profile Gen-Q Q-profile Gen-Q Q-profile Gen-Q

0.05 28.49 94.90 94.90 94.60 94.58 94.95 94.98

0.09 39.93 95.04 95.03 94.67 94.68 95.07 95.11

0.13 48.82 94.85 94.88 94.57 94.56 94.88 94.90

0.17 55.47 94.79 94.82 94.53 94.56 94.86 94.84

0.21 60.85 95.04 95.04 94.55 94.59 94.97 95.03

0.24 65.21 94.94 94.94 94.70 94.74 95.03 94.99

0.28 68.60 94.90 94.85 94.71 94.71 95.02 95.02

0.32 71.40 94.99 95.14 94.64 94.64 94.95 94.98

0.36 73.77 94.91 94.93 94.62 94.61 94.89 94.95

0.40 75.74 94.87 94.92 94.69 94.62 94.95 94.86

interval and also the corresponding W-optimal interval.
Graphical displays that are similar to this have previ-
ously been suggested [11, 33]. Using the DerSimonian
and Laird point estimate of τ 2 (see the triangular plotting
points in Fig. 7) we infer a borderline statistically signifi-
cant effect (indicating that the addition of chemotherapy
is benefical) when using the conventional method, but
this significance is lost when using the sensitivity analysis
and either confidence interval for τ 2. This is appropri-
ate because the conventional method does not take into
account the uncertainty in τ 2, which is quite considerable.
However the W-optimal interval, as a direct consequence
of it being shorter and having a smaller upper bound, pro-
vides a reduced range of possible inferences for the aver-
age effect compared to the standard Q profile confidence

interval. Since the estimated variance of the pooled effect
is increasing in τ̂ 2 under the random-effects model, we
can anticipate that this will usually be the case. This illus-
trative analysis shows that making better inferences for
one component of the random-effects model can have
beneficial consequences when making inferences from all
aspects of the the fitted model.

Conclusions
Generalised heterogeneity statistics offer straightforward
and direct ways of obtaining confidence intervals for the
between-study variance parameter in a random-effects
meta-analysis that have the correct coverage probability
under the random-effects model even when the num-
ber of studies is small. However the resulting confidence
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Fig. 7 Sensitivity analysis for the average effect using the NSCLC4 data. The W-optimal interval provides a shorter confidence interval than the
conventional approach
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intervals are usually very wide.We have found that assign-
ing unequal proportions of the allowable type I error
rate α to the lower and upper quantiles can dramati-
cally reduce the width of resulting confidence intervals,
enabling more precise inference. Given the potential gains
in taking larger values of α2 to provide shorter confidence
intervals, we present our results to the meta-analysis com-
munity and ask if larger values of α2 than the conventional
2.5 % should be used in application. Our motivation for
investigating this, and our reasons for our recommenda-
tions below, are based upon our desire to reduce the width
of confidence intervals without sacrificing their coverage
probability. We have retained the conventional 95 % cov-
erage probability because this is so enshrined in statistical
practice but another way to justify using larger α2 is to
present confidence intervals with a lower than conven-
tional coverage probability; perhaps we should also defy
this convention when presenting confidence intervals for
τ 2. Since τ 2 is not usually of primary inferential interest
this may also be acceptable to meta-analysts.
Meta-analysts should be aware that taking α2 > 0.025

and α1 < 0.025 results in smaller upper and lower confi-
dence bounds than in the conventional α1 = α2 = 0.025
interval. Hence our suggestion results in smaller τ 2 being
inferred. Given the extremely large values of τ 2 that are
often contained in conventional 95 % confidence inter-
vals, which are usually extremely asymmetric around the
point estimate, we feel that a modification that reduces
this asymmetry and infers smaller τ 2 is justifiable; see also
our previous discussion.
Our results for confidence intervals for τ 2 are not invari-

ant to non-linear transformations. Hence we also pro-
duced some results for τ . I2 and H2 statistics can be
conceptualised as functions of τ̂ 2 and the within-study
variances. Since the within-study variances are taken as
fixed and known in the random effects model, a ‘true’ I2
and H2 can be taken to be the corresponding function
evaluated at the true τ 2 for which confidence intervals can
be obtained. We have not however investigated the use
of unequal α splits when calculating confidence intervals
for I2 or H2 because in general they are used as descrip-
tive rather than inferential statistics by the meta-analysis
community.
The methods that we have presented are exact under

the random-effects model but are only approximate when
applied to real data, such as the four examples that we
use here. This is because the random-effects model, as
with any other statistical model, in general only provides
an approximation when applied to real data. In partic-
ular the random-effects model takes the within-study
variances as fixed and known and these can be quite
imprecisely estimated in practice. This means that the
random-effects model, and so the methods used here, can
be quite a crude approximation when applied to real data.

Kulinskaya and colleagues [34, 35] show that the distribu-
tion of quadratic forms in meta-analysis, when applied to
real data, differ from their theoretical distributions under
the random-effects model. We regard this as a serious
problem only when the studies are small, although this
can quite often be the case in application. Hence it is
important to recognise that the methods presented here
will rarely, if ever, be exact in application. Our motivating
examples involve estimated log hazard ratios, for which
it is hard to motivate the use of alternative distributional
assumptions, but these examples are subject to these same
concerns nonetheless. We investigated the use of methods
based on generalised heterogeneity statistics for the rea-
son described in the introduction, but see the recent and
very thorough review by Veroniki et al. [36] for a descrip-
tion of both these and alternative methods for making
inferences about the magnitude of τ 2.
The confidence intervals are justified by the inversion

of hypothesis tests and a further issue is that the use of
α1 �= α2 means that we are inverting an unusual and
unconventional type of hypothesis test. Some type of spe-
cial consideration would be needed to justify hypothesis
tests of this type and our use of α1 �= α2 is likely to
appear curious to those who interpret confidence inter-
vals in terms of their tautology with hypothesis testing,
where confidence intervals’ primary purpose is to describe
the parameter values that the hypothesis test does not
reject. The use of equal tails when computing confidence
intervals means that the confidence interval is based
upon inverting a conventional two tailed hypothesis test,
which eases interpretation because the tautology between
hypothesis testing and confidence intervals is then espe-
cially strong and clear; we suspect that this is a main
reason why equal tails are conventional when computing
confidence intervals. We however are content to present
confidence intervals with α1 �= α2 that provide the nom-
inal coverage probability and take confidence intervals’
primary purpose to cover the unknown true parameter
with this probability. Applied analysts who conceptualise
confidence intervals in terms of their coverage probabil-
ity in repeated sampling, rather than primarily in terms of
their tautology with hypothesis testing, should have little
conceptual difficulty in using confidence intervals that use
unequal tails.
Despite this, there is a further subtle point that should

not be neglected. The usual hypothesis test for the pres-
ence of heterogeneity is a one-tailed test, where we reject
the null hypothesis that the study effects are homoge-
neous if Q(0) is greater than χ2

1−α,k−1; Q(0) is equivalent
to adopting the weights wi(σ

2
i , τ 2) = 1/σ 2

i . In princi-
ple one could also test for extreme homogeneity [37] by
instead concluding the data are highly homogenous if
Q(0) is less than χ2

α,k−1. The conclusions from this pair
of hypothesis tests will be ensured to be consistent with
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the conclusions from the Q profile confidence interval (for
example, the null hypothesis that τ 2 = 0 is rejected by the
hypothesis test and τ 2 = 0 does not lie in the confidence
interval) if we take α1 = α2 = α. We could therefore
perform the two hypothesis tests at the conventional 5 %
significance level, and also calculate an equal tailed 90 %
Q profile confidence interval, to ensure consistent conclu-
sions. However alternative Q profile confidence intervals,
such as a 95 % confidence interval, or a 90 % confidence
interval with unequal tails, may or may not produce con-
sistent conclusions with the two hypothesis tests. More
generally, in order to ensure consistent conclusions for
Q profile confidence intervals with unequal tails and this
pair of hypothesis tests, we must use α1 as the significance
level of the conventional hypothesis test for the presence
of heterogeneity and α2 as the significance level for the
hypothesis test for extreme homogeneity. Similar com-
ments also apply when Jackson’s method is applied with
the weights wi(σ

2
i , τ 2) = 1/σ 2

i . However no such con-
sistency with the conventional hypothesis tests described
above is ensured when using Jackson’s method with alter-
native weights, including the proposed wi(σ

2
i , τ 2) = 1/σi.

To ensure consistency for the two types of hypothesis
test and the confidence interval using Jackson’s method,
the same set of weights would need to be used in all
Q statistics and equivalent significance levels and tail
probabilities would have to be adopted.
Our simulation study suggests that expressly present-

ing the W-optimal interval as a confidence interval only
results in coverage probabilities that are very slightly less
than the nominal level. Hence the use of the W-optimal
interval as a confidence interval warrants further inves-
tigation, especially in situations where the number of
studies is small. However it would be important to make
it clear that the use of the W-optimal interval as a con-
fidence interval had been chosen prior to analysis. How-
ever, a pre-specified unequal α-split, such as α1 = 0.01
and α2 = 0.04, can realise considerable average 95 %
confidence interval width reductions whilst retaining the
nominal coverage probability under the random-effects
model. As a concrete recommendation we suggest that, if
the reader is persuaded by the case for using unequal tail
probabilities when using the methods we investigate here,
then they should use the α1 = 0.01 and α2 = 0.04 split
to obtain 95 % confidence intervals. If the repeated sam-
pling properties of the W -optimal interval are confirmed
to be satisfactory in future simulation studies and ana-
lytical work then this would become our recommended
approach, but at this stage we wish to remain cautious in
this regard.
To summarise, we suggest that the meta-analysis com-

munity should consider the case for presenting confidence
intervals for τ 2 with α2 > α1 in the light of the results
that we present. In the web Additional file 2 we present

R code (the “AlphaPlot” function) that produces a figure
like that of Fig. 2 for an arbitrary dataset, so that analysts
can visualise the asymmetry of the Q profile statistic, the
implications of using unequal tail probabilities and also
theW optimal interval.

Additional files

Additional file 1: Analytical investigation. (PDF 177 kb)

Additional file 2: R code for the function “AlphaPlot”. R code and data.
(DOCX 19 kb)
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