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Abstract

Background: Recently, several adaptive one-arm two-stage designs have been developed by fully using the
information from previous stages to reduce the expected sample size in clinical trials with binary endpoints as primary
outcome. It is important to compute exact confidence limits for these studies.

Methods: In this article, we propose three new one-sided limits by ordering the sample space based on p-value,
average response rate at each stage, and asymptotic lower limit, as compared to another three existing sample size
ordering approaches based on average response rate. Among the three proposed approaches, the one based on the
average response rate at each stage is not exact, and the remaining two approaches are exact with the coverage
probability guaranteed.

Results: We compare these exact intervals by using the two commonly used criteria: simple average length and
expected length. The existing three approaches based on average response rate have similar performance, and they
have shorter expected lengths than the two proposed exact approaches although the gain is small, while this trend is
reversed under the simple average criterion.

Conclusions: We would recommend the two exact proposed approaches based on p-value and asymptotic lower
limit under the simple average length criterion, and the approach based on average response rate under the
expected length criterion.

Keywords: Adaptive design, Clopper-Pearson approach, Exact one-sided interval, Response rate, Two-stage design

Background
To assess the activity of a new treatment in a cancer
clinical trial, Simon’s two-stage designs [1] are tradition-
ally used among the multi-stage designs. Simon’s two-
stage designs can be improved by allowing the second
stage sample size to depend on the number of responses
observed from the first stage, which is an adaptive two-
stage design [2–6]. Recently, Shan et al. [6] developed an
adaptive two-stage design that meets the non-increasing
relationship between the second stage sample size and
the number of responses from the first stage. This is an
adaptive one-arm two-stage design that allows the sec-
ond stage sample size to change with the number of
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responses observed from the first stage, and the second
stage sample size is a non-increasing function of the first
stage responses. This sample size monotonic constraint
is considered as an intuitive property in adaptive two-
stage designs: fewer participants are needed in the second
stage when more responses are observed from the previ-
ous stage. It should be noted that these adaptive designs
[6] often allow early stopping in the first stage due to futil-
ity or efficacy, while Simon’s design only allows stopping
for futility in the first stage. In these studies, the hypoth-
esis for testing the activity of the new treatment is often
one-sided.
Upon completion of an adaptive clinical trial, it is impor-

tant to provide statistical inference based on the number
of responses and the number of participants in each stage.
Recently, Zhao et al. [7] proposed a likelihood based
approach to construct confidence interval for a study
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that is designed by Simon’s two-stage method but with
unplanned second stage sample size [8, 9]. The likelihood
approach was shown to be associated with good perfor-
mance with regard to coverage probability and coverage
bias, but this interval is asymptotic. To guarantee the cov-
erage probability, Shan [10] proposed several new exact
confidence intervals based on exact binomial distribution
calculation. These intervals are developed for traditional
Simon’s two-stage designs whose second stage sample size
is considered as fixed regardless the number of responses
observed from the first stage as long as it is over the
threshold to move to the second stage.
In this article, we consider statistical inference for

adaptive two-stage designs whose second stage sam-
ple sizes depend on the first stage responses. Adaptive
designs are generally flexible and effective as compared
to the traditional Simon’s design, however they are often
computationally due to many design parameters in the
design. With the new adaptive designs being proposed,
it is important to develop statistical inference for these
designs. To preserve the nominal coverage probability, we
propose developing exact one-sided confidence intervals
for the response rate in an adaptive two-stage design set-
ting. Confidence intervals are computed by using exact
binomial distributions instead of asymptotic distributions.
The hypothesis for these trials is often one-sided and the
null hypothesis is rejected when a high response rate is
observed. For this reason, we focus our approach on exact
one-sided lower intervals. The interval is computed by
using the approach developed by Clopper and Pearson
[11], who proposed the commonly used exact one-sided
intervals for a binomial proportion. This approach has to
be used in the conjunction with a method to order the
sample space.
Multiple approaches have been proposed to order the

sample space for multi-stage designs [9, 12–18]. Four
orderings were discussed by Jennison and Turnbull [15]
after a group sequential design: stage-wise ordering, maxi-
mum likelihood estimate (MLE) ordering, likelihood ratio
(LR) ordering, and score test (Score) ordering. Lower and
upper confidence limits are used in the first ordering.
When the outcome is binary, the MLE ordering is equiv-
alent to the ordering by average response rate, which is
the number of responses divided by the total sample size
in the study. The last two orderings depend on aver-
age response rate and the number of sample size from
that stage.
In addition to the three aforementioned sample space

orderings for a study with binary endpoints, we propose
three new methods to order the sample space. The first
method is the one based on the response rates from the
first and second stages. We consider this is an intuitive
method for ordering the sample space based on the infor-
mation from both stages. However, we find that not all

sample points can be ordered by using this method. This
leads to the situation in which the nominal coverage prob-
ability is not guaranteed. Although the lower limits from
the first method are not exact, they can be used as a mea-
surement to order the sample space again. In the second
method, each sample point has a unique order number
based on the asymptotic lower limit from the first method.
The third method uses the p-value of each sample point
to create a new ordering of the sample space. We find that
the ordering based on the p-value has a very interesting
relationship with that from the first method.
In “Methods” section, we first introduce the basic set-

tings for adaptive two-stage designs, then propose three
new methods to order the sample space. When a study is
stopped in the first stage due to either futility or efficacy,
their ordering positions are the same in each method.
For this reason, we focus on the ordering for sample
points when a trial goes to the second stage. We then
investigate the coverage probability for each interval. In
“Results” section, we compare the performance of the
two proposed exact approaches and the three existing
approaches with regards to simple average length (AL)
and expected length (EL). These approaches are com-
pared by using the completed sample space. In addition
to that comparison, we also introduce a new subsample
space including the sample points whose second stage
response rate is within the confidence interval of the
first stage response rate. In other words, if a study’s first
stage response rate is very different from its second stage
response rate, the study population could be changed
(e.g., disease status, gender ratio), and other approaches
should be explored for such cases. For this reason, we also
utilize this new sample space in the performance compar-
ison among the exact intervals. Finally, we conclude our
research with a discussion in “Discussion” section.

Methods
To test the activity of a treatment in a two-stage design
compared to the historical response rate π0, the hypothe-
ses are often presented as

H0 : π ≤ π0,

against the alternative

Ha : π ≥ π1,

where π1 is the estimated response rate of the new
treatment. The null hypothesis is rejected for a high
response rate.
Simon’s two-stage design is traditionally used in clinical

trials to assess the activity of a new cancer treatment. In
Simon’s design, the second stage sample size n2(X1) is a
constant when a trial goes to the second stage, where X1
is the number of responses from the first stage. From an
adaptive perspective, a clinical trial could be much more
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flexible and effective when the second stage sample size is
allowed to change based on information gathered so far. It
is reasonable to assume that n2(X1) has a non-increasing
relationship with the number of responses observed from
the first stage: n2(X1) ≥ n2(X

′
1) when X1 < X ′

1. Shan et al.
[6] developed an adaptive optimal two-stage design with
the non-increasing sample size relationship respected.
This design is referred to be as the AdaptiveS design. The
design is given as

(n1, n2(X1), r(X1)),

where the number of possible responses out of n1 partic-
ipants in the first stage is X1 = 0, 1, 2, . . . , n1, and n2(X1)
and r(X1) are the second stage sample size and the criti-
cal value for the study given X1 responses from the first
stage, respectively. In this article, a study can be stopped in
the first stage due to futility when X1 ≤ r1( f ) or efficacy
when X1 ≥ r1(e). When the number of responses from
the first stage is between r1(f ) and r1(e), r1( f ) < X1 <

r1(e), the trial proceeds to the second stage with an addi-
tional n2(X1) participants and the final decision is made
by comparing the total number of responses (X1+X2) and
r(X1), where X2 is the number of responses out of n2(X1)
participants. The new treatment is considered effective
enough to proceed to the next phase when X1 + X2 ≥
r(X1). Otherwise, the new treatment is not promising for
further investigation.
Upon completion of an adaptive clinical trial, confi-

dence interval for the response rate should be computed
and reported. The hypothesis for testing the activity of
the new treatment is often one-sided, and the confidence
interval and the hypothesis testing should be consistent
with each other. For this reason, we focus our interest on
one-sided lower intervals as the null hypothesis is rejected
when a high response rate is observed. When the signifi-
cance level is α, a 1 − α one-sided interval, (L, 1], should
be computed for statistical inference, where L is the 1 − α

lower limit.
The method by Clopper and Pearson [11] (CP) was used

to construct exact one-sided intervals for a binomial pro-
portion. It is exact because the coverage probability is
guaranteed to be at least 1 − α and the coverage prob-
ability is calculated by using the binomial probabilities,
not asymptotic distributions. We extend this approach for
the response rate in adaptive two-stage design settings.
This approach has to be used with a method to order
the sample space, which is often referred to as stochastic
ordering. The complete sample space can be divided into
three complementary sub-spaces,

� = {G1,G2,G3},
where G1 = {X1 : 0, 1, 2, . . . , r1(f )}, G3 = {X1 :
r1(e), r1(e)+1, . . . , n1}, andG2 = {(X1,X2) : r1(f ) < X1 <

r1(e),X2 ≤ n2(X1)}. Sets G1 and G3 contain the sample

points where a trial is stopped in the first stage due to futil-
ity and efficacy, respectively. Set G2 represents the sample
points that a trial goes to the second stage. It should be
noted that set G3 could be empty in some cases when the
optimal adaptive two-stage stops in the first stage only due
to futility, which often occurs in cases with a large π0 and
a large difference between π0 and π1 as seen in Shan et al.
[6]. The lower limits for sample points in set G1 are the
smallest, followed by sample points in set G2 and set G3.
Within sets G1 and G3, the lower limits for the sample
points are ordered by the number of their responses, and
they are the same as the CP lower limits for a binomial
proportion. For sample points in set G2, the second stage
sample size changes as the number of responses from the
first stage. For this reason, the second stage sample size
should be considered in the sample ordering. We propose
ordering the sample points in set G2 by response rates
(RR) in the first stage and the two stages combined,

L
(
X1
n1

,
X1 + X2

n1 + n2(X1)

)
≤ L

(
X ′
1

n1
,

X ′
1 + X ′

2
n1 + n2

(
X ′
1
)
)

if
X1
n1

≤ X ′
1

n1
and

X1 + X2
n1 + n2(X1)

≤ X ′
1 + X ′

2
n1 + n2

(
X ′
1
) .

This approach is referred to as the RR approach. This
ordering is motivated by the p-value calculation for a two-
stage study. The rejection region includes the extreme
outcomes whose first stage and second stage responses are
at least as large as the observed data [8–10, 15].
Another stochastic ordering is based on the p-value of

each sample point. Similar to the RR approach, the p-value
for sample points in setG1 is the largest, followed by sam-
ple points in set G2 and G3. A sample point with a large
p-value indicates week evidence against the null hypothe-
sis. In other words, it should have a large lower limit. For
a sample point (X1,X2) in set G2, its associated p-value is
calculated as

P(X1,X2)=
∑

(X′
1,X

′
2)∈�(X1,X2)

b
(
X

′
1, n1,π0

)
b

(
X

′
2, n2

(
X

′
1

)
,π0

)
,

where b(. . .) is the probability density function of a bino-
mial distribution, and �(X1,X2) is the tail area

�(X1,X2) =
{
G3 and

(
X

′
1,X

′
2

)
:
X1
n1

≤ X ′
1

n1
,

X1 + X2
n1 + n2(X1)

≤ X ′
1 + X ′

2
n1 + n2

(
X ′
1
)
}
.

The response rates are used to define the tail area in the
p-value calculation. Since the p-value is used to order the
sample space in this approach, we name this approach as
the PV approach. Although the p-value calculation may
not guarantee the type I error rate, it is still a valid mea-
surement to order the sample space. In this approach, we
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sort the sample points by the p-value from smallest to
largest. In the PV approach, every sample point has its
order number based on its p-value, from 1 to the size of
the sample space. In the RR approach, two sample points
from set G2 can be ordered only if one sample point
belongs to another’s tail area.
Once a stochastic ordering of the sample space is

defined, we use the CP method to compute the exact
one-sided lower limit as the collection of π

{
π : P

(
�ϕ(X1,X2)|π

)
> α

}
, (1)

where ϕ is an approach used to order the sample space
(e.g., PV, RR), �PV (X1,X2) =

{(
X ′
1,X

′
2

)
: P

(
X ′
1,X

′
2

)

≤ P(X1,X2)
}
, and �RR(X1,X2) =

{(
X ′
1,X

′
2

)
:
(
X ′
1,X

′
2

)

∈ �(X1,X2)
}
. Since the null hypothesis is rejected for

a large response rate, we focus on the one-sided lower
limit. The proposed approach to compute exact one-
sided lower limits can be readily applied to calculate exact
upper limits.

Theorem 1 For any given response rate π ,
P
(
�PV (X1,X2)|π

) ≥ P
(
�RR(X1,X2)|π

)
is always true.

Proof For sample points from set G1 and set G3, it is
easy to show that P (�PV (X1,X2)|π) is always equal to
P (�RR(X1,X2)|π). For a given sample point

(
X ′
1,X

′
2

)
∈

�RR(X1,X2) where sample points (X1,X2) and
(
X ′
1,X

′
2

)
are from setG2, the relationship between their tail areas is

�(X1,X2) ⊇ �
(
X

′
1,X

′
2

)
.

Thus, the p-value of (X1,X2) is not less than that of(
X ′
1,X

′
2

)
: P(X1,X2) ≥ P

(
X ′
1,X

′
2

)
. It follows that the

sample point
(
X ′
1,X

′
2

)
belongs to �PV (X1,X2). There-

fore, P (�PV (X1,X2)|π) is always greater than or equal to
P (�RR(X1,X2)|π)

From Theorem 1 and the construction of the exact one-
sided interval in Eq. (1), we see that the exact one-sided
lower limit based on the RR approach is always greater
than or equal to that based on the PV approach.
Coverage probability is defined as

P
(
π ∈ (L(X1,X2), 1]

)
= P

(
(X1,X2) : L(X1,X2) < π |π

)
.

(2)

A confidence interval is called exact if P(π ∈ (L
(X1,X2), 1] ) ≥ 1 − α is satisfied for any π ∈ [0, 1].
We present the coverage probability plots for the adap-
tive design with design parameters (π0,π1,α,β) =

(20%, 40%, 0.05, 0.2) [6] in Fig. 1. It can be seen that the PV
approach is exact with the coverage probabilities being at
least 95%. However, the RR approach is not exact, as the
coverage probability could be as low as 90.5% at the nomial
level of 95% in this configuration. One reason for the non-
exactness of the RR approach is that the sample points can
not be completely ordered. To overcome this issuee, we
use the non-exact lower limits from the RR approach to
order the sample space again. A new stochastic ordering is
created by using the calculated limits. This new ordering
can be viewed as a two-step ordering because the order-
ing is generated after the non-exact limit calculation. This
approach is referred to as the RR-A approach.
The following three existing approaches to order the

sample space have been discussed in the literature [15].
Sample space can be ordered by the average response rate
from the study,

X1 + X2
n1 + n2(X1)

.

This approach is referred to as the RR-B approach. It
should be noted that this sample size ordering is equiv-
alent to the ordering by using the MLE in a one-sample
problem [15]. Another existing sample size ordering is
based on the LR method, which is given as

X1 + X2
n1 + n2(X1)

√
n2(X1),

named as the RR-LR approach. Similar to the RR-LR
approach, Rosner and Tsiatis [14] discussed another
ordering based on the score test:

X1 + X2
n1 + n2(X1)

n2(X1).

This approach is referred to be as the RR-Score
approach. In general, we would expect a significant num-
ber of ties when only the response rate is used to order
the sample space in traditional two-stage designs. How-
ever, the number of ties could be reduced in adaptive
design settings as the second stage sample size n2(X1) is a
non-increasing function of X1, not a constant.

Results
We first compare the performance of the existing three
approaches (RR-B, RR-LR, RR-Score) for sample size
orderings. The sample space is first ordered by these
approaches, then the CP method is used to obtain exact
one-sided limits. Figure 2 shows the interval length com-
parison among the three approach for the adaptive two-
stage design with design parameters (π0,π1,α,β) =
(30%, 50%, 0.05, 0.1), where the interval length is defined
as [1 − L(X1,X2)] for each sample point (X1,X2) from the
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Fig. 1 Coverage probability for 95% one-sided lower intervals of the four approaches for the AdaptiveS two-stage design with design parameters
(π0,π1,α,β) = (20%, 40%, 0.05, 0.2). RR approach: top left; PV approach: top right; RR-A approach: bottom left; RR-B approach: bottom right

sample space. The overall average is almost identical for
these three approaches. It can be seen from the figure
that their interval lengths are very close to each other.
Given the simplicity of the RR-B approach, we would rec-
ommend that to be used in practice as compared to the
RR-LR approach and the RR-Score approach.
We present the coverage probability for the adaptive

design with design parameters (π0,π1,α,β) = (20%, 40%,
0.05, 0.2) in Fig. 1. It can be seen that the RR-A approach,

the RR-B approach, and the PV approach guarantee the
coverage probability while the RR approach does not. For
this reason, the RR approach is not going to be included
in the following performance comparision. We have illus-
trated that these three approaches are exact with cover-
age probability guaranteed. Two criteria, simple average
length and expected length, are used to compare the per-
formance of these exact limits. As aforementioned, set G1
and set G3 represent a study being stopped in the first
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Fig. 2 Confidence interval length comparison for each sample point from the adaptive two-stage design with design parameters
(π0,π1,α,β) = (30%, 50%, 0.05, 0.1) when the AdaptiveS design is used. The RR-B approach, the RR-LR approach, and the RR-Score approach are
compared



Shan et al. BMCMedical ResearchMethodology  (2017) 17:22 Page 6 of 11

stage due to futility or efficacy, respectively. Their lower
limits are the same for the three approaches, and actually,
they are the exact intervals based on the CP method for
a binomial proportion. For this reason, we exclude these
sample points in the performance comparison.
The sample space for set G2 is given as G2 ={

(X1,X2) : r1(f ) < X1 < r1(e), 0 ≤ X2 ≤ n2(X1)
}
, and the

size of this set is

M =
r1(e)−1∑

X1=r1(f )+1
(n2(X1) + 1) .

The simple average length is defined as

AL =

∑
(X1,X2)∈G2

[
1 − L(X1,X2)

]

M
.

We use 16 different adaptive optimal two-stage designs
with π0 from 5 to 70%, π1 = π0 + 20%, 80% or 90% power,
and α = 0.05 from Shan et al. [6], in the perfomrance com-
parison among the three approaches. For each adaptive
two-stage design, we first calcualte the exact one-sided
lower limits for each sample point in the sample space
G2, then the AL value is computed. The AL comparison
among the three approaches for the 16 configurations is
presented on the left side of Fig. 3. An approach with a
shorter average length is preferable. Thus, the approach
on the y-axis performs better than the approach on the
x-axis when a point is below the diagnoal line. Each
point in the plot represents the AL values for an adap-
tive design. It can be seen that the RR-A approach and
the PV approach often have shorter average lengths than
the RR-B approach, and the RR-A approach and the PV
approach are generally comparable. We also investigate
another 16 configurations with π1 = π0 + 15% as in Shan
et al. [6], and we observe similar conclusions.We compute
the overall average of AL values for these 32 configura-
tions. The RR-A approach has the shortest overall average
length (0.6057), followed by the PV approach (0.6069), and
the RR-B approach (0.6273).
It should be noted that some sample points in set G2

may not be practically possible, for example, a sample
point with a relatively very low or high estimated sec-
ond stage response rate as compared to the first stage
response rate. From a practical perspective, it would be
reasonable to expect a study with similar response rates
from each stage. For this reason, we create a new subset
of G2 to compare the perform again, and the new subset
includes the sample points whose second stage response
rates are within the 95% confidence interval of their first
stage response rates. The confidence interval of the first
stage response rate is computed by the function exactci

from R package PropCIs [19]. The CP method is used in
the function exactci to obtain exact two-sided intervals for
a binomial proportion. The new subset of G2 is defined
as G2(CI)

G2(CI) = {
(X1,X2) : r1(f ) < X1 < r1(e), 0 ≤ X2 ≤ n2
(X1),X2 ∈ CI(X1, n1, 95%)} ,

where CI(X1, n1, 95%) is the 95% exact two-sided interval
for the response rate X1/n1. The simple average length for
sample points in set G2(CI) is computed as

AL =

∑
(X1,X2)∈G2(CI)

[
1 − L(X1,X2)

]

M(CI)
,

whereM(CI) is the size of sample spaceG2(CI). The three
approaches are also compared for the 16 adaptive designs
when the sample space is G2(CI), in Fig. 3. It should be
noted that G2(CI) is the same for the three approaches
as it only depends on the first stage response rate, not
on the approach. After removing the non-practical sam-
ple points, the three approaches have very close average
lengths. By using the total of 32 configurations as afore-
mentioned, the overall average length when using the
subsample space G2(CI) is 0.6018, 0.6028, and 0.6038
for the RR-A approach, the PV approach, and the RR-B
approach, respectively. It suggests that the RR-A approach
has the best performance when G2(CI) is considered. We
include the sample points whose second stage response
rate are within the 95% confidence interval of their first
stage response rates. If the current considered confidence
level of 95% is decreased to 80% or increased to 97.5%, we
observe similar results. When it is increased to 99% with
more sample points in the sample space, the results are
similar to these observed from the case when G2 is the
sample space. When the confidence level is increased to
100%, the sample space G2(CI) is the same as G2.
In addition to the average length comparison among the

three approaches, we also present the interval length com-
parison between all the sample points, [1 − L(X1,X2)],
in Fig. 4 for the adaptive two-stage design with design
parameters (π0,π1,α,β) = (30%, 50%, 0.05, 0.1). When all
sample points fromG2 are considered, the RR-B approach
has longer lengths than the other two approaches in gen-
eral. However, the three approaches are similar to each
other for sample points from the subset spaceG2(CI). The
advantage of the RR-A approach and the PV approach
over the RR-B approach is mostly due to the sample points
that are not practically possible. The RR-A approach and
the PV approach are comparable under either sample
space. Similar results are observed from other configura-
tions, and other existing adaptive two-stage designs that
do not meet the monotonic sample size property [20].
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Fig. 3 Average length comparison among the three exact approaches (the RR-A approach, the RR-B approach, and the PV approach), for the 16
different configurations with π1 = π0 + 20% when the AdaptiveS design is used. The sample space G2 (left side) and the subsample space G2(CI)
(right side) are used in computing the 95% one-sided exact lower limits. An approach with a lower average length is preferable

Under the simple average length criterion, each sam-
ple point’s interval length in the sample space is weighted
equally. It is also important to compare the performance
of exact limits by using the expected length criterion.
Under this criterion, each sample point’s interval length
is weighted by its associated probability at the response
rate π . Thus, the EL is a function of π . Specifically, the EL
is defined as

EL(π)=
∑

(X1,X2)∈G2

[1−L(X1,X2)] b(X1, n1,π)b(X2, n2(X1),π),

where b(X1, n1,π)b(X2, n2(X1),π) is the probability of
the observed data (X1,X2) with n1 and n2(X1) as the

first stage and the second stage sample sizes. For a
given π , we first compute the ELRR−A(π), ELRR−B(π),
and ELPV (π). Their differences are generally small, espe-
cially in cases where π is near the boundary. For
this reason, we use their ratios to compare them.
Figure 5 displays the EL ratio plots for the adaptive
two-stage design with design parameters (π0,π1,α,β) =
(20%, 40%, 0.05, 0.1). In general, these three approaches
are comparable with regards to the EL criterion, with
the EL ratio between 99.5% and 100.6%. When set G2
is the sample space, the RR-B approach has a shorter
expected length than the other two approaches when
π > 20%. When the sample space G2(CI) is used, the
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Fig. 4 Confidence interval length comparison for each sample point from the adaptive two-stage design with design parameters
(π0,π1,α,β) = (30%, 50%, 0.05, 0.1) when the AdaptiveS design is used. The RR-A approach, the RR-B approach, and the PV approach are
compared on the left side when the sample space G2 (left side) is used, and on the right side when the subsample space G2(CI) (right side) is used

RR-B appraoch generally performs better than the RR-A
approach and the PV approach, although the gain is small.
The RR-A approach has a shorter expected length than
the PV approach when π is near π0 = 20%. Similar results
are observed when other adaptive designs are used.

Example
Since the considered adaptive two-stage designs are rel-
atively new, we do not expect to find a real data set
to be used. For this reason, we assume that a study
is designed by using the AdaptiveS design with design
parameters (π0,π1,α,β) = (30%, 50%, 0.05, 0.1). In the

first stage, X1 = 11 responses are observed among the
n1 = 22 patients. Then, the required number of patients is
n2(X1) = 35 for the second stage. At the end of the study,
we assume that X2 = 13 responses are observed from
the second stage. Thus, the total number of responses
is 11 + 13 = 24, and the average response rate is esti-
mated as 24/(22 + 35) = 42.1%. The 95% lower limit
for the response rate is calcualted as 0.320 for the PV
approach, 0.325 for the RR-A approach, 0.317 for the RR-B
approach, 0.317 for the RR-LR approach, 0.317 for the RR-
Score approach, and 0.344 for the RR approach. It can be
seen that the RR-B approach, the RR-LR approach, and the
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Fig. 5 Expected length comparison among the RR-A approach, the RR-B approach, and the PV approach, for the adaptive two-stage design with
design parameters (π0,π1,α,β) = (20%, 40%, 0.05, 0.1) when the AdaptiveS design is used. The sample space G2 (left side) and the subsample
space G2(CI) (right side) are used to compute the expected lengths

RR-Score approach have very similar lower limits, and
they are smaller than others. The RR approach has the
largest lower limit among these approaches.
We also use this example to explain the reason why the

RR approach is not exact. In the RR approach, the rejec-
tion region includes the extreme outcomes whose first
stage and second stage responses are at least as large as
the observed data. If the observed data is X1 = 11 and
X2 = 13, then the sample point (X1 = 12,X2 = 11)
does not belong to the observed data’s rejection region
since (12 + 11)/(22 + 35) < (11 + 13)/(22 + 35). By
using the RR approach, the calculated 95% lower limit for

(X1 = 12,X2 = 11) is 0.362, which is larger than that of
the observed data’s. It follows that

(X1= 12,X2 =11) /∈ {(X1,X2) : L(X1,X2) < π |π = 0.343}.

Thus, the sample point (X1 = 12,X2 = 11) does
not belong to the observed data’s confidence set, neither.
Therefore, the coverage probability at π = 0.343 could
be less than the nominal level. In other words, in a two-
stage design, inverting the p-value function is exact only
when the sample space can be ordered completely by a test
statistic or a measurement.
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Discussion
In addition to the proposed confidence interval for
adaptive two-stage designs to make statistical inference,
unbiased response rate estimate and exact p-value calcu-
lation are two important future research topics. Due to the
multi-stage nature of the design, the naive estimate that
divides the total number of responses by the total num-
ber of participants, is biased. Jung and Kim [21] proposed
an unbiased response rate estimate for traditional non-
adaptive two-stage designs where the second stage sample
size is a constant for a trial proceeding to the second stage.
In adaptive two-stage design settings, the second stage
sample size is a non-increasing function of the responses
from the first stage. We consider this as future work to
further develop an unbiased response estimate and exact
p-value calculations in adaptive two-stage design settings.

Conclusions
Multiple adaptive two-stage designs have been proposed
for use in practice, but these is limited research on ana-
lyzing the data once an adaptive study is finished. This
article proposes three approaches to construct one-sided
lower limits. Among these three new approaches, two
approaches guarantee coverage probability. We compare
these two exact intervals with another three existing
approaches with regards to the two commonly used crite-
ria: simple average length and expected length. The RR-A
approach and the PV approach have similar performance
with regards to these two criteria, although the RR-A
approach performs slightly better than the PV approach
under the AL criterion. The RR-B approach has a slightly
longer average length than the other two approaches
when all sample points are used in the calculation, and
their difference becomes negligible when the subsample
space G2(CI) is used. In addition, the RR-B approach
generally has a shorter expected length than the RR-A
approach and the PV approach by using the sample space
G2(CI) [22–25].
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