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Addressing data privacy in matched studies
via virtual pooling
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Abstract

Background: Data confidentiality and shared use of research data are two desirable but sometimes conflicting goals in
research with multi-center studies and distributed data. While ideal for straightforward analysis, confidentiality restrictions
forbid creation of a single dataset that includes covariate information of all participants. Current approaches such as
aggregate data sharing, distributed regression, meta-analysis and score-based methods can have important limitations.

Methods: We propose a novel application of an existing epidemiologic tool, specimen pooling, to enable confidentiality-
preserving analysis of data arising from a matched case-control, multi-center design. Instead of pooling specimens prior
to assay, we apply the methodology to virtually pool (aggregate) covariates within nodes. Such virtual pooling retains
most of the information used in an analysis with individual data and since individual participant data is not shared
externally, within-node virtual pooling preserves data confidentiality. We show that aggregated covariate levels can be
used in a conditional logistic regression model to estimate individual-level odds ratios of interest.

Results: The parameter estimates from the standard conditional logistic regression are compared to the estimates based
on a conditional logistic regression model with aggregated data. The parameter estimates are shown to be similar to
those without pooling and to have comparable standard errors and confidence interval coverage.

Conclusions: Virtual data pooling can be used to maintain confidentiality of data from multi-center study and can be
particularly useful in research with large-scale distributed data.

Keywords: Data privacy, Matched case-control design, Conditional logistic regression, Specimen pooling, Distributed data
network

Background
Each year in the EU, Canada and elsewhere, regional and
federal governments and health care authorities collect an
immense amount of personal data on health care use, diag-
noses, risk factors and behaviors. The advent of personalized
medicine and the genomic revolution will result in the fur-
ther gathering of large quantities of very sensitive data for
large segments of the population. Although these data could
provide critical information for the management of the
health care system, for studying causation of diseases, prog-
nosis and the impact of treatment or prevention efforts, their
use is constrained by legitimate concerns about privacy.
While data confidentiality is not entirely a new issue, of late
it has attracted the attention of many epidemiologists, due
to the new EU General Data Protection Regulation effective

from 2018 [1]. After a fierce debate and legitimate push-
backs from the research community [1–9] the current ver-
sion of the regulation only requires broad consent in
“certain areas of research when in keeping with recognized
ethical standards” [10] and an exemption for medical re-
search carried out in “public interest” [7]. The prominence
of distributed data networks such as FDA Sentinel and
CNODES [11] has also brought the issue of data privacy into
the forefront of clinical and epidemiological research.
Most standard data analysis techniques require individual

data (also known as microdata) for estimation and infer-
ence; thus, they are not applicable in a setting where micro-
data cannot be shared without risking disclosure of
sensitive information. Frequently, data for research undergo
anonymization to remove identifying information. How-
ever, one may still be able to identify participants using
combinations of variables (e.g. if there is a unique person of
a certain age, diagnosis, body mass index, town of birth) or
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auxiliary information available from other sources [12, 13].
Sometimes the data are deliberately coarsened to obscure
individual identities, leading to loss of precision and statis-
tical power.
Privacy issues have plagued other fields as well, such as

survey research, resulting in the development of analytical
approaches that can extract valuable information from
microdata while protecting data privacy [14–16]. Privacy-
preserving statistical analyses strive to maintain a balance
between data usability and confidentiality. Privacy-
preserving methods have many uses, in particular for ana-
lysis of sensitive socio-economic, financial, infectious disease
and genetic/genomic data. Recently, agencies generating and
using “distributed data” such as disease registries or health-
care surveys where data are kept secured at the regional
level and not shared between regions (see Fig. 1 for a sche-
matic of distributed data), have been looking to adopt
privacy-preserving analyses to enable analysis of the merged
data while avoiding data sharing and identification of partici-
pants. Data privacy is also relevant for epidemiological re-
search, as epidemiologic studies use secondary data analysis
or reuse data for research that were collected for other pur-
poses, e.g., routine healthcare delivery, or enter into consor-
tial arrangements to improve power.
Current approaches to data analysis within a distributed

data setting include coarsening, aggregate data sharing,
distributed regression, meta-analysis based on data sum-
mary and score-based methods [17]. However, these
methods have many limitations, including analytical in-
flexibility, large analysis burden on nodes, inability to

detect subgroup associations, etc. One of the limitations
of meta-analysis arises due to heterogeneity [18–20].
When the patient subpopulations differ from node to
node leading to a potential interaction between the expos-
ure of interest and nodes, meta-analysis is unsuitable to
detect the interaction. A similar issue arises for detection
of subgroup association under heterogeneity. Further-
more, modification of the statistical model to include or
exclude covariate(s) or to modify the functional form re-
quires each of the nodes to follow the new protocol afresh.
As a result, exploratory analyses are difficult to perform with
multi-node meta-analysis. Consequently, procurement of in-
dividual patient data for meta-analysis has become a strong
trend in recent research [21–24]. In a meta-analysis setting,
a coordinating center is usually in charge of standardizing
the statistical analysis and the protocol. However, statistical
analyses still pose significant burden on the nodes because
analyzing the data locally as required by meta-analysis
necessitates that a team capable of performing statistical
analysis be present at each node. We argue that though
meta-analysis is relatively straightforward to perform, with-
out the needed statistical knowledge and know-how, it can
be dangerous to run statistical analysis as a black box.
We propose a novel application of an existing epidemio-

logic tool, specimen pooling, for confidential analysis of
data arising from distributed data networks [25]. We con-
sider the situation where multiple agencies or nodes are
each responsible for a subset of the analytical dataset and
are unable or unwilling to combine the data together for
statistical analysis due to privacy concerns. The goal is to
devise a way to merge the data for statistical analysis that
efficiently uses the information from all the agencies with-
out sharing individual-level data.
In this manuscript, we show how specimen pooling can

be adapted to pool and analyze confidential data from a
matched case-control study. Matching is very common in
observational studies and provides great confounder con-
trol [26]. A different distribution of confounders among
subjects with a disease outcome (“cases”) versus those
without the outcome (“controls”) can lead to biased asso-
ciation estimates between the primary exposure of interest
and the outcome. In a matched design, one or more con-
trols are matched to one (or more) case(s) to reduce the
effect and the resulting bias due to the presence of con-
founders. When one control is matched to a single case
the design is called a 1:1 matched design. More generally,
when M controls are matched to N cases, the design is
called N:M matched design. There are several other varia-
tions of matching, e.g., frequency matching, counter
matching, etc. Our focus here is to employ pooling in a
matched design setting as a privacy-preserving analytical
strategy and demonstrate the feasibility of our approach.
We use the term “pooling” in two different contexts:

“physical” pooling or mixing of biospecimens and “virtual”

Fig. 1 Models of horizontally and vertically partitioned data as
adapted from Karr, et al. (2007). Each row is for one subject, and
columns are for covariates. (a) Horizontally partitioned data. Data
subjects are partitioned among database owners or nodes. (b)
Vertically partitioned data. Covariates are partitioned among nodes
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pooling of individual data or microdata (microaggrega-
tion), both giving rise to aggregate levels (sums) of covari-
ate values. The idea of specimen pooling prior to assay
originated during World War II [27] and has been devel-
oped extensively for infectious disease settings [28]. We
focus on data pooling (rather than specimen pooling) for
estimating an exposure OR using a logistic regression
model for a binary disease outcome [29, 30]. Because
pooling or variable aggregation masks individual data, the
strategy preserves privacy. [25] We use simulations to
demonstrate data pooling for analysis of matched case-
control design or a matched design with a binary end-
point. The idea of specimen pooling in this context is
similar to a privacy-preserving technique called microag-
gregation, which has been used frequently for estimating
parameters of a linear regression model [25].
The rest of the manuscript is organized as follows. In

the methods section, we outline specimen pooling for a
matched case-control study and show how it can be
adapted for data pooling. We provide simulation results
and a real data example in the results section and con-
clude with a discussion of the strengths and limitations
of the proposed approach.

Methods
It has been shown that for a matched case-control de-
sign [26], specimen pooling and pooled conditional lo-
gistic regression model can be used to estimate
parameters of an individual-level conditional logistic
model [30]. For a continuous exposure U and a disease
of interest D (1 for cases and 0 for controls), the contri-
bution of the ith matched pair (1:1 matched design) is
given by the following conditional logistic model:

eβu
1
i

eβu
1
i þ eβu

0
i

ð1Þ

where u1i denotes the observed exposure for case and
u0i denotes the observed exposure for control. Here, β de-
notes the log odds ratio (OR) associated with unit increase
in exposure. Additional covariates including effect modi-
fiers (EMs) as well as multiple controls per case can be
accommodated. Standard statistical software1 can be used
for parameter and standard error (SE) estimation.
To estimate β based on a matched case-control design

where specimens are pooled prior to the measurement of
U, a poolsize g is decided first [30]. Then N/g groups (or
pools) are formed at random by partitioning the N
matched strata into groups of g (assuming N is a multiple
of g). Then, biospecimens from each of the g cases in each
group are physically combined to obtain a single marker
or exposure measurement using the combined specimen.
Similarly, biospecimens from each of the g controls from
the same matched strata are physically combined to obtain

a single measurement for the combined specimen. After
the measurements are obtained for each pool, the pooled
level is used in an induced conditional logistic model:

eβv
1
k

eβv
1
k þ eβv

0
k

ð2Þ

where v1k denotes the pooled (aggregate or sum of) ex-
posure level (the measured level times g) from the kth

case pool and v0k denotes the pooled exposure level from
the corresponding controls. The above model can be ex-
tended to incorporate confounders and effect modifiers
(in limited capacity). It can be used to obtain maximum
likelihood estimate of relevant parameters and associated
SE. Consequently, standard statistical software can be
employed to analyze data from a matched case control
design with pooled exposure.
For a general model with multiple covariates U1, U2,

…, Uq and an outcome of interest D, the contribution of
the ith matched pair (1:1 matched design) is given by the
following conditional logistic model:

eβ1u1i1þ β2u2i
1 þ…þ βqu

1
qi

eβ1u1i1þ β2u2i
1 þ…þ βqu

1
qi þ eβ1u1i0þ β2u2i

0 þ…þ βqu
0
qi

ð3Þ
where u1ji denotes the observed value of the covariate Uj

for case and u0ji denotes the observed value of the covari-
ate Uj for control, j = 1, 2, …, q. Here, βj denotes the log
odds ratio (OR) associated with unit increase in the covar-
iate Uj. Denoting the pooled covariates as V1, V2, …, Vq

and k indicating the pool, the pooled model is given by:

eβ1v1i1þ β2v2i
1 þ…þ βqv

1
qi

eβ1v1i1þ β2v2i
1 þ…þ βqv

1
qi þ eβ1v1i0þ β2v2i

0 þ…þ βqv
0
qi

where v1jk denotes the pooled (aggregate or sum of) ex-

posure level (the measured level times g) from the kth

case pool and v0jk denotes the pooled exposure level from

the corresponding controls, j = 1, 2, q. The details can
be found in [30]. This approach is further clarified with
a concrete example in the next sections.
To formalize the application of pooling in distributed

data setting, we consider a horizontally partitioned data
network with multiple nodes and one analytical center. In
such a setting, each node holds covariate information of
only a subset of participants (Fig. 1) and confidentiality is-
sues prohibit data sharing and creation of a single analytical
file encompassing individual-level data from all nodes. Typ-
ically, nodes are allowed to share masked data including
summary tables, but not individual covariate combination
of participants even with the AC (Fig. 2). In the toy example
in Fig. 3, we show a horizontally partitioned structure with
three nodes and 10 matching strata. Suppose a conditional
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logistic regression model similar to eq. (1) is postulated to
assess association between a covariate U and a binary out-
come D. The relevant application of pooling in this setting
is in data aggregation or “virtual pooling” rather than pool-
ing of biospecimens. Aggregation masks individual covari-
ate combinations and hence could be utilized in this setting
for estimation of association OR of relevant exposure(s)
while protecting privacy of the participants. A direct appli-
cation of pooling would then require formation of pools of
size g across nodes. Following this, nodes will be required
to work together and aggregate covariates for subjects in
the pools and pass the pooled covariate levels to the AC.
The AC could then use the aggregated levels in a condi-
tional logistic regression model (similar to eq. (2)) to esti-
mate the relevant parameters.
Such a scheme is logistically problematic for distributed

data. Application of pooling to aggregate covariates [30] in
this setting would require formation of pools across nodes.
Consequently, data aggregation would not be possible
without additional confidentiality measures such as secure
computation [14]. Even with additional security measures,
this approach is at best, cumbersome, and at worst night-
marish, for creation of all necessary aggregates in a distrib-
uted data setting (column termed “Current” in Fig. 3).
Rather than such unconditional grouping of participants’

data distributed over multiple nodes, we propose data pool-
ing with stratification on node. In our proposed approach,
instead of creating pools overall, each node creates their
own pools, by randomly partitioning their matched sets
into groups of size g and then aggregating the covariates
within each set. These aggregate (summed) values are then

sent to the AC for statistical analysis of the induced condi-
tional logistic model similar to eq. (1). Due to application of
within-node pooling, only aggregate covariate values are
shared outside the nodes. The analysis can be done as be-
fore using a conditional logistic regression modeling ap-
proach. However, as shown in Fig. 3 (column “New - 1”), a
limitation of this approach is that when nodes do not have
a common divisor, use of a single g could lead to exclusion
of multiple matched sets. This can be easily remedied by
using two distinct values for g as shown in Fig. 3 where
g = 2 and 3 were used (column “New - 2”).
The choice of the poolsize g is dictated primarily by the

privacy rules. For example, in CNODES, many provinces
require that the value of the descriptive statistics that is
based on fewer than 5 participants will not be revealed. In
such a situation, g > 5 is appropriate. On the other hand, a
large value of g would lead to reduction of statistical
power [30, 31]. Therefore, the choice of g should balance
the two issues of privacy restriction and realization of ad-
equate statistical power. There are no other restrictions.
Confounders can be accommodated by summing the

values within each of the pools (Table 1). However, in an
epidemiologic setting, inclusion of EMs is potentially
problematic [30–32]. In contrast, EMs can be handled eas-
ily in a distributed data setting because individual covariates
are available at the nodes. Beyond within-node outcome
stratification, we do not require additional stratification for
EMs. Simply conditioning on the outcome status within
nodes will allow us to treat the terms involving an EM as
confounder terms and enable us to estimate ORs that in-
volve EMs (both the main effect and the interaction). Simi-
lar to a stratum-specific confounder, one cannot estimate
the main effect of a stratum-specific EM, but the effects of
a subject-specific EM can be estimated using the proposed
approach for distributed data. Additionally, transformation
of variables can be handled easily by appropriately aggre-
gating the transformed variables. Derived variables, such
as body mass index and creatinine-corrected urinary
levels, can also be accommodated by calculating the index
and then summing across individuals. Similar to [30], our
approach for data privacy can also accommodate a 1:M
(M > 1) matched and N:M (N > 1, M > 1) design.
Thus, in a distributed data setting with a matched de-

sign, it is possible to assess association of the exposure
with the outcome using pooled covariate determina-
tions. The pooled model is simply a conditional logistic
regression model with pooled or aggregate covariate
levels instead of individual level covariates. Hence, in
addition to the parameter estimate, we can estimate the
SE, confidence interval and associated p-value for the
model covariates (including transformations), except
for stratum-specific variables. Consequently, model se-
lection involving confounders, different transformations
of the variables, and EMs will be possible. Two nested

Fig. 2 Schematic of distributed data. The analytical center is indicated
by dashed red square and the nodes are indicated by solid blue circles.
The arrows indicate the flow of information: the dashed red arrows
represent the flow of instructions from center to nodes and the solid
blue arrows represent the flow of aggregate data from the nodes to
the center. Since the aggregate data do not reveal individual-level
covariate combinations, and the center does not own microdata, the
information flow is preserves data confidentiality
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and competing models, fit using pooled data, can be
compared using a likelihood ratio test or AIC.

Results
Simulation example2

Our simulation is motivated by a recent study of incretin-
based drugs and congestive heart failure (CHF), which used
a matched case-control design [33] nested within a cohort.
In the study, the authors used data from United Kingdom’s
Clinical Practice Research Datalink [34] and matched 1118
cases to ≤ 20 controls per case for a total of 17,626 controls.
Matching factors were age, duration of treated diabetes, cal-
endar year, and time since cohort entry. For simplicity, we
considered a matched case-control design with 1020
matched sets, each matching 10 controls per case. To
mimic a horizontally portioned data, we assumed that there
are 5 nodes with 120, 180, 180, 240 and 300 matched sets,
respectively. We simulated 500 datasets for each parameter
combination and compared the proposed within-node
pooling with the standard conditional logistic regression
without pooling.

Node Set id Current New - 1 New - 2

1 1 1 1 1

1 2 2 2 2

1 3 1 1 1

1 4 4 2 2

2 5 2 -- 3

2 6 3 3 3

2 7 5 3 3

3 8 3 -- 4

3 9 4 4 4

3 10 5 4 4

Fig. 3 Schematic of pooling strategy for a 1:3 matched case-control study with three nodes, numbered 1–3 and 10 matched sets distributed over these
nodes. For each matched set, case is indicated by filled red circle, three matched controls are indicated by shaded green circles. A line joins the case and
controls in each matched stratum. Boxes represent the nodes. In the table on the right hand side, the first column indicates the node number and the
second column indicates the matched set number. The 3rd column titled “Current” indicates the pool id if the current strategy of Saha-Chaudhuri and
Weinberg (2017) is applied directly. The 4th and 5th column indicates the pool ids for two variants of the proposed within-node pooling strategy. In “New
- 1” (4th column), poolsize g = 2 is used. The first two pools are formed within node 1, third pool is formed within node 2 and the fourth pool is formed
within node 3. Since g = 2 is used and nodes 2 and 3 have odd number of matched sets, within-node pooling leads to exclusion of one matched set each
from node 2 and node 3. In Scheme 2 (4th column, titled “New - 2”), poolsizes g = 2 and 3 are used. The first two pools are formed within node 1 (g = 2),
third pool is formed within node 2 (g = 3) and the fourth pool is formed within node 3 (g = 3). Consequently, all participant data were used for analysis.
Secure summation is not required for within-node stratified pooling as only the aggregate covariate levels are released from the nodes

Table 1 Pooled data passed from a node to the Analytical
Center. We assume a 1:1 matched design. Here V1i(1)
(V2i(1))denotes the pooled level of variable 1 (variable 2) for the
ith case pool and V1i(0) (V

2
i(0))denotes the pooled level of variable

1 (variable 2) for the ith control pool within the node, i = 1, 2,
…, k, where each pool consists of either g cases or g matched
controls

Pool id Pooled Covariate V1 Pooled Covariate V2 Pooled Covariate …

Case Control Case Control Case Control

1 V11(1) V11(0) V21(1) V21(0) ⋮ ⋮

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

i V1i(1) V1i(0) V2i(1) V2i(0) ⋮ ⋮

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

k V1k(1) V1k(0) V2k(1) V2k(0) ⋮ ⋮
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The primary exposure U was log normally distributed
and was assumed to be a confidential variable. The second-
ary exposure X was binary with a prevalence of 0.4 and in-
dependent of U. A confounder Z1 was distributed as
normal with a correlation of 0.35 with log(U). A continuous
EM Z2 was generated as standard normal independent of
U, X and Z1. Stratum-specific intercepts αi for the ith

matched sets were generated as normal with mean of −3.0
and SD of 2. Node-specific intercepts νk for the kth node
were generated from a standard normal distribution with
the assumption that the disease prevalence decreased with
the number of matched strata resulting in smallest node
with the highest baseline disease prevalence and largest
node with the lowest baseline prevalence.
Finally, for the, the following model was considered

for generating a binary disease outcome:

logit Pr Dkij ¼ 1j U ;X;Z1; ;Z2
� �

¼ αi þ υk þ β U þ γ X þ δ Z1 þ ω Z2

þ ϑ U Z2 ð4Þ

where Dkij denotes the outcome of the jth participant of
the ith matched set from the kth node.
It can be shown that the conditional logistic regression

model in this setting takes the form:

eβu
1
1þγx11þδz11

1 þωz12
1 þϑu11z12

1

eβu
1
1þγx11þδz11

1 þωz12
1 þϑu11z12

1 þPMþ1
J¼2 eβu

0
j þγx0j þδzj1

0 þωzj2
0 þϑu0j zj2

0

ð5Þ
where u11; x

1
1; z

1
11; z

1
12 denotes the covariate for the case

and u0j ; x
0
j ; z

0
j1; z

0
j2 denotes the covariates for the jth

matched control, j = 2, …, M + 1 (= 11).
To demonstrate feasibility of our approach, we compared

within-node pooled analysis with unpooled analysis. For
pooled analysis, we considered within-node pools of sizes:
g = 4, 6, 10 conditional on the outcome status, leading to
255, 170 and 102 matched strata. In contrast to the existing
methods for pooled analysis, for distributed data, continu-
ous effect modifiers can be included in the model as follows:
we treat each additional term involving the EM as con-
founders and aggregate the appropriate functions (e.g., ag-
gregate Z2 and U Z2 for the subjects in the same pool). The
resulting model for the pooled covariates is of the form:

where u11 kð Þ; x
1
1 kð Þ; z

1
11 kð Þ; z

1
12 kð Þ denotes the covariates for

the kth case in the pool (poolsize = g) and u0jðkÞ; x
0
jðkÞ;

z0j1ðkÞ; z
0
j2ðkÞ denotes the covariates for the jth matched

control, j = 2, 3, …, M + 1. Note that, in our proposed
approach, participants providing data in a pool belong to
the same node.
We considered several combinations of parameter

values and show the results for the following set: β = 0.3
(corresponds to OR = 1.35), γ = 0.2 (OR = 1.22), δ =
0.15 (OR = 1.16), ω = 0.09 (OR = 1.09) and ϑ = 0.05
(OR = 1.05). We compared the average parameter esti-
mate, average model-based SE (ModelSE), Monte Carlo
SE (EmpSE) and coverage probability out of 500 simula-
tions for unpooled (standard conditional logistic regres-
sion) and pooled conditional logistic regression with
g = 4, 6, 10 for each parameters in the model (5 and 6).
We define EmpSE as the standard deviation of the par-
ameter estimates over the 500 simulations and ModelSE
is the average of the 500 estimated SEs from the condi-
tional logistic regression model. The results are summa-
rized in Table 2.
We see that in general, pooled results are similar to

unpooled results, with a tendency to show slight bias
away from the null, especially with increasing pool size,
as expected given the reduction in the number of pool-
ing sets analyzed. The model-based SE for pooled ana-
lysis was also slightly inflated as compared to model-
based SE for unpooled analysis. However, the coverage
for the 95% confidence interval for pool sizes 4 and 6
was in line with the nominal level, although slightly
higher for poolsize 10.

Real data example
We demonstrate our approach by creating a matched
design to study the association of obesity (outcome of
interest) with diastolic blood pressure based on the
2009–2010 cycle of the National Health and Nutrition
Examination Study. The data (N = 5858 subjects with
complete records, with 877 obese individuals) has been
used for demonstration purposes [26] and is freely
available.3 In addition to variables collected for the
study, the dataset also includes a pseudo stratum vari-
able that was used as units for sampling to demonstrate

e
βðPk¼1

g u1ðkÞ
1 ÞþγðPk¼1

g x1ðkÞ
1 ÞþδðPk¼1

g z11ðkÞ
1 ÞþωðPk¼1

g z12ðkÞ
1 ÞþϑðPk¼1

g u1ðkÞ
1 z12ðkÞ

1 Þ
e
βð
P

k¼1
g u1ðkÞ

1 ÞþγðPk¼1
g x1ðkÞ

1 ÞþδðPk¼1
g z11ðkÞ

1 ÞþωðPk¼1
g z12ðkÞ

1 ÞþϑðPk¼1
g u1ðkÞ

1 z12ðkÞ
1 Þ þPMþ1

j¼2 e
βðPk¼1

g uiðkÞ
0 ÞþγðPk¼1

g xiðkÞ
0 ÞþδðPk¼1

g zi1ðkÞ
0 ÞþωðPk¼1

g zi2ðkÞ
0 ÞþϑðPk¼1

g uiðkÞ
0 zi2ðkÞ

0 Þ
ð6Þ
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survey-weighted logistic regression. The covariates used
for our analysis were gender, age at screening in years,
stratum, Diastolic Blood Pressure, can walk or bike to
work (yes/no), vigorous recreational activity (yes/no),
moderate recreational activity (yes/no) and moderate
work activity (yes/no). To mimic a distributed data, we
considered that strata are nodes (15 strata) and each
stratum cannot share the data of individual participant.
We created a matched case-control study by matching
877 cases with 877 controls with respect to age (≤
35 years, 31–60 years, 60 years and older), gender and
stratum. For pooled analysis, we created within-stratum
pools of size g = 4 and one stratum required the exclu-
sion of one matched pair, which we selected at random.
The results are displayed in Table 3.

The OR estimates based on the pooled conditional lo-
gistic regression model are in line with the unpooled es-
timate. The 95% CIs from the pooled model were similar
to those computed using the model based on individual-
level covariates. While it is perplexing to see that both
moderate and vigorous recreational activities are associ-
ated with obesity, the same conclusion holds whether
the pooled approach or the unpooled approach is used.
Moreover, an unmatched analysis accounting for simu-
lated clusters (stratum) and simulated survey-weights
also showed similar results [26].

Discussion
In this manuscript, we introduced an innovative applica-
tion of specimen pooling for analyzing confidential dis-
tributed data. Large epidemiologic studies often combine
data from various sources to study associations between
covariates and an outcome of interest. For example, to
examine post-marketing safety signal of marketed drugs,
multiple registries may be combined. Large datasets are
needed to assess associations of small magnitude as are
typical in observational settings. Full covariate sharing
between the nodes and AC would be ideal for analytical
flexibility, but is not possible when there are concerns
over data disclosure and identification of the partici-
pants. Existing policies and regulations often prohibit
data sharing beyond the owners of the nodes or regis-
tries. Alternate methods include an aggregate table ap-
proach, distributed regression, score-based methods and
meta-analysis [17]. However, many of these approaches
share limitations such as, modeling inflexibility, coll-
apsing of variables resulting in loss of information, large
potential statistical burden on nodes and analytical com-
plexity. In particular, meta-analysis, the most widely used
of these approaches, requires that each node conduct

Table 2 Parameter estimates between standard analysis and
pooled analysis with different pool sizes for a binary outcome with
a matched design. See Results section for detailed simulation
setting. In addition, model-based SE (ModelSE), the Monte Carlo
Standard Error (EmpSE) and coverage (nominal: 0:95) are also
shown

Parameters Unpooled Pooled

g = 4 g = 6 g = 10

β = 0.3

Estimate 0.301 0.303 0.307 0.336

EmpSE 0.014 0.022 0.028 0.077

ModelSE 0.014 0.022 0.029 0.060

Coverage 0.958 0.956 0.964 0.964

γ = 0.2

Estimate 0.202 0.204 0.207 0.234

EmpSE 0.077 0.101 0.128 0.219

ModelSE 0.076 0.100 0.122 0.199

Coverage 0.954 0.956 0.944 0.952

δ= 0.15

Estimate 0.149 0.150 0.150 0.165

EmpSE 0.037 0.049 0.062 0.104

ModelSE 0.037 0.049 0.060 0.098

Coverage 0.952 0.958 0.952 0.960

ω = 0.09

Estimate 0.088 0.088 0.091 0.104

EmpSE 0.050 0.067 0.080 0.134

ModelSE 0.049 0.063 0.076 0.123

Coverage 0.964 0.936 0.942 0.954

ϑ = 0.05

Estimate 0.050 0.051 0.051 0.054

EmpSE 0.013 0.018 0.023 0.039

ModelSE 0.013 0.018 0.022 0.037

Coverage 0.954 0.944 0.952 0.944

Table 3 Comparison between pooled analysis and unpooled
analysis of matched case-control study on obesity. The column
marked “Standard CLogit” displays results of a standard conditional
logistic regression analysis for the matched case-control study de-
sign. The column marked “Pooled CLogit” displays results of pooled
conditional logistic regression analysis with within-stratum pooling
and poolsize g = 4. The OR and 95% confidence interval (CI) for the
covariates are includes

Variable OR (95% CI)

Analysis Standard CLogit Pooled CLogit

DBP 1.007 (0.999, 1.016) 1.005 (0.996, 1.014)

Can walk or bike to work 1.349 (1.068, 1.702) 1.357 (1.055, 1.745)

Vigorous Recreational Activity 1.710 (1.263, 2.315) 1.955 (1.352, 2.827)

Moderate Recreational Activity 1.289 (1.043, 1.592) 1.270 (1.016, 1.586)

Moderate work activity 0.853 (0.693, 1.049) 0.813 (0.653, 1.013)
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their own analysis, imposing significant statistical burden
on the nodes. Moreover, analytical exploration is se-
verely limited for meta-analysis as post-hoc analyses are
difficult to carry out without requiring participating sites
to repeat analyses. Subgroup analysis is also operation-
ally difficult for meta-analysis.
In contrast, our proposed approach of within-node

pooling for matched case-control design retains many
advantages of analyses with individual-level data. The
participating nodes are only required to aggregate the
covariates according to a given poolsize and using
outcome-stratification. Within-node pooling is also ad-
vantageous when nodes are considered as potential EM.
Once the aggregation is performed, the nodes can send
the aggregate covariates (summed covariate vectors) to
the AC without compromising data confidentiality and
without requiring any further statistical analyses on their
part. Even when a large set of models is considered for
analysis, the nodes are only required to do aggregation
and nothing more. Data analyses, including model selec-
tion (as possible based on the pre-determined models
and aggregated covariates), pre-defined subgroup ana-
lysis could be done without any statistical burden on the
nodes. As such, our approach is closest to analysis with
full covariate sharing as compared to the other methods,
and with added protection for data disclosure. In this
manuscript, we focused only on a matched case-control
design; however, the approach is also applicable for an
unmatched design [25, 29].
As shown in the simulation study, the proposed pool-

ing technique allows consistent estimation of effects as-
sociated with a primary exposure and confounders. In
addition, by recognizing that the terms involving the EM
can be treated as additional confounders, effects of EM
can be assessed. Furthermore, transformation of vari-
ables, such as log or polynomials, can be accommodated
and in each case, the relevant parameter(s) can be tested
using a Wald t-test or likelihood ratio test, allowing re-
searchers to perform model selection. Since the induced
pool-based model is a conditional logistic regression
model, analysis does not require any novel tool. Stand-
ard statistical software can be used for analysis. Beyond
aggregation of covariates, our approach does not impose
any computational burden on nodes with limited statis-
tical capability. This is in stark contrast to the existing
approaches [35, 36]. When, in addition to confidential
data, banked biospecimens are available for association
study, specimen pooling and data pooling can both be
incorporated in the study to protect confidentiality and
make effective use of valuable biospecimen and monet-
ary resources. However, researchers should be careful
about the design and the implications of specimen pool-
ing, in particular for estimating effect modification and/
or transformation of variables.

The approach does have limitations. While pooling
protects data privacy, there may be certain situations
where confidentiality may not be fully guaranteed using
our approach, especially when smaller pool size is used.
As an extreme example, if the microdata consists of all bin-
ary covariates, and a pool size of 2 is used, it is easy to de-
duce the individual covariate values, when all the pooled
covariate values are either 0 or 2. While a confidential
microdata with all binary covariate will be relatively rare,
other techniques can be adapted for analysis of such a data-
set [36]. When several pre-specified models are postulated
for the data, our approach can be used efficiently by requir-
ing that nodes send all relevant aggregate covariate values.
However, if a model is decided a posteriori, and the new
model includes any new covariates (including transforma-
tions and interactions), then nodes need to get involved
again to send the appropriate aggregate values back to the
AC. However, this is still relatively straightforward as com-
pared to using a new model for meta-analysis where node
would be required to redo the entire analysis. Another limi-
tation is that our proposed approach can be used only for
matched or unmatched case-control design with a logit
link. Currently no aggregation-based method exists for sur-
vival models. For the choice of poolsize, it is important to
balance logistical complexity and maximal data use. Based
on extensive simulations, we recommend the use of pool-
sizes between 3 and 6 and possibly use of two different
poolsizes for a study.

Conclusion
In summary, we have shown here that a specimen pool-
ing approach can be adapted successfully for virtual data
pooling as a privacy-preserving analytical tool for ana-
lysis of confidential data. Our proposed pooling ap-
proach uses only aggregated covariate information,
thereby making it impossible to link individual data to
individual participants. This general strategy can be used
in conjunction with data from either a matched or an
unmatched case-control study design [25, 29, 30]. In this
context, pooling is equivalent to microaggregation, which
has been used extensively as a statistical disclosure limita-
tion technique for linear models for confidential financial
and/or survey data, among others. [37–39] However,
microaggregation has not previously been proposed for lo-
gistic regression. We demonstrated the feasibility of this
technique for analysis of confidential data using simula-
tions and a real data example. Other pooling techniques
could also be adapted for analysis of confidential data, in
fact one of the primary use of specimen pooling is in
infectious disease setting where it has helped to protect
patient privacy. This approach could expand the capabil-
ities of epidemiologic research involving distributed, confi-
dential datasets.

Saha-Chaudhuri and Weinberg BMC Medical Research Methodology  (2017) 17:136 Page 8 of 10



Endnotes
1We have used the clogit function in the program-

ming language R to fit a conditional logistic regression
model to data from a matched case control design.

2All simulations and statistical analyses were per-
formed using the programming language R. The built-in
R function “clogit” was used to estimate parameters of
eq. (4) and eq. (5). R codes are available upon request
from the corresponding author.

3Available from: https://sites.google.com/site/paramita-
saharesearch/data/
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