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Performance comparison of first-order
conditional estimation with interaction
and Bayesian estimation methods for
estimating the population parameters
and its distribution from data sets with
a low number of subjects
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Abstract

Background: Exploratory preclinical, as well as clinical trials, may involve a small number of patients, making it
difficult to calculate and analyze the pharmacokinetic (PK) parameters, especially if the PK parameters show very
high inter-individual variability (IIV). In this study, the performance of a classical first-order conditional estimation
with interaction (FOCE-I) and expectation maximization (EM)-based Markov chain Monte Carlo Bayesian (BAYES)
estimation methods were compared for estimating the population parameters and its distribution from data sets
having a low number of subjects.

Methods: In this study, 100 data sets were simulated with eight sampling points for each subject and with six
different levels of IIV (5%, 10%, 20%, 30%, 50%, and 80%) in their PK parameter distribution. A stochastic simulation
and estimation (SSE) study was performed to simultaneously simulate data sets and estimate the parameters using
four different methods: FOCE-I only, BAYES(C) (FOCE-I and BAYES composite method), BAYES(F) (BAYES with all true
initial parameters and fixed ω2), and BAYES only. Relative root mean squared error (rRMSE) and relative estimation
error (REE) were used to analyze the differences between true and estimated values. A case study was performed
with a clinical data of theophylline available in NONMEM distribution media. NONMEM software assisted by Pirana,
PsN, and Xpose was used to estimate population PK parameters, and R program was used to analyze and plot the
results.

Results: The rRMSE and REE values of all parameter (fixed effect and random effect) estimates showed that all four
methods performed equally at the lower IIV levels, while the FOCE-I method performed better than other EM-based
methods at higher IIV levels (greater than 30%). In general, estimates of random-effect parameters showed significant bias
and imprecision, irrespective of the estimation method used and the level of IIV. Similar performance of the estimation
methods was observed with theophylline dataset.
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Conclusions: The classical FOCE-I method appeared to estimate the PK parameters more reliably than the BAYES method
when using a simple model and data containing only a few subjects. EM-based estimation methods can be considered
for adapting to the specific needs of a modeling project at later steps of modeling.

Keywords: Estimation methods, Few subjects, First-order conditional estimation with interaction, Markov chain Monte
Carlo Bayesian, NONMEM,
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Background
Exploratory preclinical (as well as clinical) trials may in-
volve a low number of subjects (around 6 subjects). This
is because in the early stages of drug development, statis-
tical approaches are difficult to apply, potentially leading
to bias when predicting population mean and distribution
of parameters and/or all sources of variability. In addition,
different aspects of the study design are not considered
when calculating the number of subjects. As a result, it
can be difficult to calculate and analyze the pharmacoki-
netic (PK) parameters, especially if the PK parameters
show very high inter-individual variability (IIV).
Population analysis is a set of statistical techniques that

can be used to study the average response (clinically mea-
sured event of any biomarker) in a population, as well as
the IIVs in responses arising from different sources [1].
NONMEM is the gold standard software for population
analysis that allows for mixed-effect modeling of PK/phar-
macodynamic data while accounting for both unexplained
inter-subject, inter-occasion, and residual variability (ran-
dom effects), as well as measured concomitant effects
(fixed effects). It can also be useful for analyzing data
obtained from a low number of subjects involved in a study
[2]. A list of estimation methods is available in NONMEM,
including classical estimation methods [first-order
conditional estimation with interaction (FOCE) and
second-order approximation (LAPLACE)] and max-
imum likelihood expectation maximization (EM)-based
estimation methods [iterative two-stage (ITS), import-
ant sampling EM (IMP), important sampling EM
assisted by mode a posterior (IMPMAP), stochastic
approximation expectation maximization (SAEM), and
Markov chain Monte Carlo Bayesian (BAYES)]. There-
fore, it is important to understand the performance of
different approach-based methods for handling data
with a low number of subjects.
Classical estimation methods like FOCE-I, including

FO, FOCE and Laplace, approximate the likelihood by
taking Laplace transformation and Taylor linearization
[3]. These methods are known to perform well when
models structure are simple and low in dimension. Here,
the model with higher number of random-effect parame-
ters (IIVs) are referred as of high dimensions. Further-
more, the classical estimation methods known to
provide highly reproducible values, and short run-times
for simple PK models [4]. However, these linearization
methods fail to converge and estimate parameters pre-
cisely with significant bias with increase in model com-
plexity. The EM based methods calculate the exact
likelihood (with approximation) by sampling and sum-
ming through the probability density function space,
which is theoretically expected to approach the true like-
lihood as the sampling reaches infinity. It is due to this
sampling step EM based methods have longer run-time
compared to the classical methods for simple PK models
[5]. In case of complex PK/PD problems, EM based
methods are faster than FOCE-I due to their efficient
maximization step [4].
Some previous studies have compared available esti-

mation methods with different objectives, identifying
various desirable traits of estimation methods. The most
desirable property of a given estimation method is its
precision and accuracy as they are the basis of the reli-
ability of the obtained estimates. Other expected features
of the estimation methods are low sensitivity to priors
and short runtime. However, no previous study has com-
pared estimation methods for estimating population PK
parameters from a small number of subjects. Therefore,
the objective of this study was to compare precision and
accuracy of estimation methods for estimating popula-
tion mean and distribution of PK parameters from a
small number of subjects and explore options to
minimize bias with a classical method and a maximum
likelihood EM-based method.

Methods
An outline of this study is provided in Fig. 1; details
are given in the following subsections. In this study,
100 data sets were simulated with eight sampling
points for each subject and with six different levels of
IIV (5%, 10%, 20%, 30%, 50%, and 80%) in their PK
parameter distribution. The main reason for creating
data sets was to describe close to real situations and
minimize potential data set-dependent bias.

Stochastic simulations and estimations
A stochastic simulation and estimation (SSE) study was
performed using a one-compartment PK model. The
estimation options in the model were varied to assess
the performance of a classical estimation method –



128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169 T1
170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

f1:1 Fig. 1 Scheme of the study design. Different steps of the study are outlined in the figure
f1:2

Pradhan et al. BMC Medical Research Methodology  (2017) 17:154 Page 3 of 9
FOCE with the interaction option (FOCE-I), which al-
lows for interaction between IIV(η) and residual variabi-
lity(ε), and an EM-based estimation method – BAYES
estimation method in NONMEM version 7.3.0 [6]
assisted by Pirana (ver. 2.9.0), PsN (ver. 4.2.0), and Xpose
(ver. 4.4.1) [7]. For statistical analysis of the results and
generating different plots of the results, R (ver. 3.1.3)
program was used [8].

Population model and simulated data sets
The population model, specifically a one-compartment
open model with first-order absorption and elimination
rate constants, was used for simulation and estimation.
The model consisted of three systematic PK parameters
as fixed effects describing the absorption rate constant
(Ka), apparent volume of distribution (Vd/F), and appar-
ent clearance (CL/F), two random-effect parameters (η)
describing the IIV on Vd/F and CL/F [Eqs. (1, 2 and 3)],
and a proportional error (ε) model (Eq. 4):

Ka ¼ θKa ; ð1Þ
Vd=F ¼ θVd=F ∙ eηVd=F ; ð2Þ
CL=F ¼ θCL=F ∙ eηCL=F ; ð3Þ
Cij ¼ Cpred;ij 1þ εij

� �
; ð4Þ

where Cij indicates the j-th observations of i-th individual,
Cpred, ij indicates the model-predicted Cij, and εij indicates
the proportional residual error.
The following equations [Eqs. (5) and (6)] describe the

rate of change in drug amount in a one-compartment
system:

dAd

dt
¼ −KaAd; ð5Þ

dAc

dt
¼ KaAd−

CL=F
Vd=F

Ac; ð6Þ

where Ad and Ac are the drug amounts in the depot and
central compartments, respectively, and t denotes the
time.
The data set used for simulation consisted of six indi-

viduals with eight sampling points within 24 h after dos-
ing for each individual. The population mean of PK
parameters were assumed to be 2 L/h, 40 L, and 10 L/h
for Ka, Vd/F, and CL/F, respectively and their IIV levels
(variance parameter ω2) were assumed to be 5%, 10%,
20%, 30%, 50%, and 80% coefficient of variance (CV%)
(Eq. 7).

CV %ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
eω2−1

p
� 100%: ð7Þ

Data sets were simulated 100 times for each level of
IIV (total of 600 data sets) and tested to compare esti-
mation performance in NONMEM.

Estimation methods
The population model was fitted to each of the simu-
lated data sets using estimation methods with different
estimation options and open or fixed ω2 values, as sum-
marized in Table 1.
The FOCE-I method is a classical estimation method

that is applied by most users and has a short run-time
for estimation of population mean and distribution for
simple models [9, 10]. The BAYES method is a newly
introduced method in NONMEM and is more suitable
for estimation of population mean and distribution for
complex PK/PD models [10]. In this study, the other
estimation methods such as ITS, IMP, IMPMAP, and
SAEM were not tested because these methods were
expected to perform similar or below the performance
of BAYES as these methods are based on EM algorithms.
EM algorithms consist of an expectation (E) and a
maximization step (M), where these methods differed in
the way step E was performed, which involves the
approximation of likelihood. Additionally, the BAYES
method creates a large sample of probable parameters,
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t1:1 Table 1 Estimation methods and their conditions for initial parameters and estimation optionsQ3

t1:2 Estimation method

t1:3 Methods FOCE-I BAYES(C) BAYES(F) BAYES

t1:4 First-order conditional
estimation with interaction

FOCE-I and BAYES
composite method

BAYES with ω2 value fixed
to true value

Markov chain Monte
Carlo Bayesian

t1:5 Conditions

t1:6 Initial parameters THETAs & OMEGAs:
Open true values

THETAs & OMEGAs:
Open true values

THETAs: Open true values
OMEGAs: Fixed true values

THETAs & OMEGAs:
Open true values

t1:7 Estimation options SIG = 3 For FOCE-I,
SIG = 3
For BAYES,
CTYPE = 3
NBURN = 4000
NITER = 10,000
SIGL = 8
NSIG = 2

CTYPE = 3
NBURN = 4000
NITER = 10,000
SIGL = 8
NSIG = 2

CTYPE = 3
NBURN = 4000
NITER = 10,000
SIGL = 8
NSIG = 2
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unlike other EM-based methods that attempt to obtain a
single “most likely” set of estimates.
In this study, true parameter values, i.e., the parameter

values used in the simulation step, were established as
initial estimates in all estimation methods. In NON-
MEM, convergence criteria for a FOCE-I are based only
on the parameter estimation gradient and are tested by
default. The number of significant digits for the estima-
tion of each parameter was set to three (SIG = 3) for the
FOCE-I method. In the BAYES estimation method, the
convergence test type was set to 3 (CTYPE = 3), where
changes in objective function value, THETAs, OMEGAs,
and SIGMAs, are accessed. The number of significant
digits to which the objective function was evaluated was
set to 8 (SIGL = 8). In the BAYES methods, the max-
imum number of iterations for which to perform the
burn-in phase was set to 4000 (NBURN = 4000), and the
number of iterations for which to perform the stationary
distribution for BAYES analysis was set to 10,000
(NITER = 10,000), both of which are default values in
NONMEM. The former option ensured that all parame-
ters and objective functions did not appear to move in a
specific direction, but appeared to instead move around
a stationary region, and the latter provides a large set
(10,000) of likely population parameters.

Assessment and comparison of estimation methods
The estimation methods were assessed by relative root
mean squared error (rRMSE) and relative estimation
error (REE) for fixed-effect as well as random-effect pa-
rameters to calculate and visualize the magnitude of dif-
ferences between the true value and the estimated value.
The rRMSE [Eq. (8)] provides a combined measure of
bias and precision.

rRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP Pest−Ptrueð Þ2
Ptrue

n2

s
ð8Þ

where Pest is the estimated parameter value, Pest is the
true parameter values used at the simulation step, and n
is the number of simulations for each set of Ptrue (n =
100).
REE was calculated [Eq. (9)] and plotted as box plots;

the plot represents the relative bias by the median of the
REE values and precision by distribution of REE about
zero.

REE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pest−Ptrue

Ptrue
:

r
ð9Þ

Case study
The THEO data set available in the NONMEM distribu-
tion media was used as a case study. The estimated PK
parameters and IIV from the final model fitted to the
THEO data (called THEO model hereafter) was consid-
ered to be the population (true) mean values for PK pa-
rameters and IIV. SSE was performed using the THEO
model, where 100 data sets were simulated from the
model with six individuals in each data sets and four dif-
ferent estimation methods were used, listed in Table 1,
to estimate the PK parameters and their IIV from the
100 data sets.

Results
The rRMSE values of the estimated parameters (fixed-ef-
fect and random-effect) versus the level of IIV, stratified
based on the different PK parameters, are shown in
Fig. 2. The scale for each of the plots are adjusted to in-
clude all values. The analysis of all parameter rRMSE
values showed that all four tested estimation methods
performed equally at the lower IIV levels (5–30%), while
the performance degraded with an increase in IIV. The
FOCE-I method performed better than the other three
EM-based estimation methods; this was more apparent
at higher IIV levels (above 30%) for both fixed-effect and
random-effect parameters. Performance of both the
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BAYES(C) and BAYES methods were poor at an IIV
greater than 30% in terms of rRMSE. All parameter esti-
mates at 50% and 80% IIV had exceptionally high
rRMSE. The BAYES(F) performance was intermediary
between FOCE-I and BAYES(C)/BAYES estimation
methods in terms of rRMSE.
The REE of both fixed-effect and random-effect pa-

rameters versus the estimation methods, stratified by dif-
ferent levels of IIV, are shown in Fig. 3. The plots were
adjusted to include ±100% REE for the purpose of clar-
ity. In general, all estimation methods overestimated
fixed-effect parameters to some extent. At a lower level
of IIV (5–10%), all estimation methods estimated fixed-
effect parameters with negligible bias and reasonable
precision. However, the bias as well imprecision
increased with an increase in IIV variability. Overall,
FOCE-I estimated fixed-effect parameters with REE near
zero at all tested levels of IIV, while the distribution of
REE increased with an increase in IIV. The other
remaining three methods, BAYES(C), BAYES(F), and
BAYES, had comparatively higher REE with a wider dis-
tribution range compared with the FOCE-I method.
The estimation of random-effect parameters had pro-

nounced bias and imprecision, irrespective of the estima-
tion method used or the level of IIV (with the exception
of the BAYES(F) method, where the variance parameter
was fixed to the true value) as shown in Fig. 3. Both EM-
based methods, BAYES(C) and BAYES, performed poorly
with higher bias and impression. Across all tested levels of
IIV, BAYES(C) and BAYES methods had high bias and
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precision with skewed distribution of positive REE. The
FOCE-I method consistently performed better compared
with other methods with much lower and slightly negative
bias where the distribution of REE overlapped with the
zero value.
The overall stability of estimations were high with a

100% success rate of minimization and covariance step
for BAYES(C), BAYES(F), and BAYES methods. For the
FOCE-I method, the minimization step had a 100%
success rate, but the rate of the successful covariance
step was 52% at 5% IIV while other estimations had a
successful covariance step close to 100%.
The THEO data set used as a case study had 132

observations from 12 subjects, 11 observations per indi-
vidual after an oral dose of 320 mg theophylline. A one-
compartment PK model with first order absorption
described the data well and it was used as a final model.
The PK parameters from the THEO data set were: CL/F
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= 2.88 l/h, Vd/F = 33.01 l and ka = 1.46 1/h and IIV were
25.69%, 13.48% and 65.39%, respectively. The rRMSE
plots (Additional file 1) of the PK parameters from the
THEO model show that the performance of the four
estimation methods were similar for estimates of CL/F
and Vd/F both of which had lower IIV, below 30%.
Whereas, overall higher rRMSE for estimate of Ka was
observed, particularly from EM based methods. The esti-
mation methods followed similar pattern of performance
as indicated by rRMSE for estimation of random effect
parameters. Similarly, REE box plots (Additional file 2)
for estimated PK parameters show that CL/F and Vd/F
estimated by all four estimation methods were very close
to the true values, where both of them had true IIV
below 30%. For the estimate of Ka, FOCE-I method esti-
mated values were closes to the true value while esti-
mated values from other three EM based method were
positively biased (median REE above 25%) with low pre-
cision. Estimation of random effect parameters were
poor for all the estimation methods, but the FOCE-I
method performed relatively better in terms of bias and
precision.

Discussion
For an estimation method, the most desirable features
are a low bias and high precision. In this study, we used
rRMSE and REE to evaluate these features. The rRMSE
provides a single value that indicates both bias and pre-
cision. Moreover, rRMSE provides a way to compare
performance across parameters and models. However,
the REE allows for comparison of different parameters
with varying magnitudes in a single plot while acknow-
ledging bias and precision. For an estimation method to
be unbiased and precise, the REE should have a normal
distribution with a median of 0 and a narrow range of
values.
The FOCE-I method performed better among the four

methods tested based on the overall rRMSE. This per-
formance was supported by the REE plot, which did not
show any significant bias for any fixed effect parameters
at any given level of IIV. The median REE values for the
random-effect parameters were not greater than −17% at
any given level of IIV. A resembling result of negative
bias was observed with the FOCE-I algorithm in a simi-
lar studies comparing different estimation methods [9].
The FOCE-I method has been shown to work suffi-
ciently well for simple models when compared to other
EM based algorithms in previous studies. Furthermore,
when the IIV was low, the performance of classical esti-
mation methods and EM based methods were very close.
Similar results were observed in a previous study for
such simple model (1-compartment model), where the
performance of those estimation methods were found to
be nearly equal [5].
On the other hand, rRMSE values for the three BAYES-
based methods were significantly higher for both fixed-
and random-effect parameters at higher levels of IIV. The
higher rRMSEs were due to the wider spread of outliers,
more so at higher levels of IIV. A similar trend of rRMSE
of estimated parameters was observed using BAYES
methods by Johansson et al., where the highly distorted
rRMSE rendered the estimated parameters meaningless
[9]. The performances of the BAYES-based methods were
poor, with high bias and low precision. Even with the
utilization of true values for all initial parameters, the
BAYES(F) method was not able to estimate parameters
close to the true values. Similarly, the median REE for all
three methods based on the BAYES-method was com-
paratively higher for fixed-effect parameters and signifi-
cantly higher for random-effect parameters, compared
with those of the classical FOCE-I method. There was also
a general trend of an increase in REE (positive) with an
increase in IIV. These observations with BAYES-based
methods can be attributed to the way in which the BAYES
method estimates the parameters i.e., by generating a large
set of probable population parameters and variance
parameters that represent the distribution according to
their ability to fit the data [11]. Therefore, the limited
number of subjects used in the study may be the reason
for the poor performance of the three BAYES-based
methods. However, a previous study showed that the
BAYES method can provide robust estimates of complex
PK/PD models with rich data and reliable priors [10].
The classical estimation method, FOCE-I, and max-

imum likelihood EM-based BAYES method differ in
their convergence criteria, where the former is based on
changes in the parameter estimation gradient and are
tested by default, and the latter is based on changes in
objective function value and parameter estimates. The
BAYES method can also define the convergence test
type, and one can choose from no test, tests accessing
changes in objective function, thetas and sigmas only,
the addition of diagonals of omegas, or the addition of
all omegas. For these reasons, the convergence rate was
not included as a factor for comparison of estimation
methods. However, all four methods tested at any level
of IIV showed a 100% convergence rate. Additionally, in
all estimation methods, the default or generally used
values were used for options in the $ESTIMATION
block. It is possible to optimize the outcomes by chan-
ging the values for different options in $ESTIMATION
block [4]. However, this aspect of the estimation method
was not compared, as this study only explored the prac-
tice of most users.
In this study, FOCE-I, the classical method, performed

better with lower bias and higher precision compared
with other BAYES-based methods. Moreover, the FOCE-
I method is known to have a shorter run time that any
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other new methods [9, 12]. The work presented here
compares a classical estimation method, FOCE-I, and
BAYES method, with different options in the $ESTIMA-
TION block and fixed OMEGA values (BAYES(C),
BAYES(F), and BAYES) for population analysis of data
with a low number of subjects (n = 6). Moreover, the
models built had only one compartment, with basic PK
parameters and random effects on two PK parameters.
Therefore, it should be noted that the structure and
complexity of a model might vary (increase or decrease)
in different pharmacometric projects or within the same
project from the initial to final step. In contrast to our
study, other studies have shown that for complex models
with highly non-linear functions [12], highly skewed
count distributions [13, 14], and/or low variability or
very rare events [15], the classical methods exhibit
marked bias and impression. Additionally, the selection
of an estimation method for a particular modeling pro-
ject can depend on various aspects including bias, preci-
sion, robustness, runtime, data type, timeframe of
project, application of results etc. which are objective in
nature as well as subjective aspect such as preference for
particular estimation method based on knowledge and
previous experience. Ultimately, a pharmacometrician
needs to make a choice for an estimation method based
on multiple aspects.
The data sets used in this study, unlike real clinical

data, were simulated. IIV for all PK parameters were
assumed to be the same for an individual; i.e., IIV
was either 5%, 10%, 20%, 30%, 50%, or 80% for Ka,
CL/F, and Vd/F. In clinical scenarios, the CV may
vary widely among the PK parameters within an indi-
vidual. Therefore, to access the relevance of results
obtained from simulated data, a clinical data of theo-
phylline involving 12 subjects, THEO data set, was
used as a case study. The limitation of using real data
is that the expected true parameters value is un-
known. So, SSE was performed, where the parameter
estimates from final THEO model was considered to
be true parameters. And the parameter estimates
from different estimation methods were compared to
so-called true values for compare their performance.
Similarity in the performance of all four estimations
methods at lower IIV and better performance of
FOCE-I methods at higher IIV was demonstrated by
the rRMSE and REE of the estimated parameters.
This further supports the results from the simulated
data. Another limitation of this study is that only
FOCE-I and BAYES methods were tested and com-
pared. To further explore the best estimation method
when dealing with a low number of subjects, other
methods in NONMEM, such as LAPLACE, ITS, IMP,
IMPMAP, and SAEM should also be evaluated in
future studies.
Conclusions
The FOCE-I, a classical estimation method, yielded better
results in terms of bias and precision across all levels of IIV
in comparison to three variations of BAYES estimation
methods. The difference in performance between FOCE-I
and three BAYES estimation methods in estimating fixed-
effect parameters were significant only at the IIV level
greater than 30%. The bias and imprecision of random-
effect parameters were higher compared with fixed-effect
parameters, however, it was consistently lower for FOCE-I
method compared to those estimated using BAYES(C) and
BAYES methods. These results were further supported by
the results from the THEO data, where clinical data was
used to simultaneously simulate and estimate PK parame-
ters using FOCE-I and three BAYES estimation methods.
In conclusion, the classical FOCE-I method estimated

the PK parameters more reliably than the BAYES
method when using a simple model and data containing
only a few subjects. After the base modeling step is
complete and/or at the pivotal modeling step, use of
other EM-based estimation methods can be considered
for adapting to specific needs of the project.

Additional files

Additional file 1: rRMSE plot for THEO data set. Relative root mean
square error (rRMSE) of fixed-effect and random-effect parameters from
THEO data set using FOCE-I (●), BAYES(C) (▲), BAYES(F) (■) and BAYES
(┼) estimation methods. (PDF 6 kb)

Additional file 2: REE box for THEO data set. Box-plot of relative estima-
tion error (REE) of fixed-effect and random-effect parameters from THEO
data set using FOCE-I, BAYES(C), BAYES(F) and BAYES estimation methods.
(PDF 8 kb)
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