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analysis of longitudinal data
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Abstract

Background: Sample size planning for longitudinal data is crucial when designing mediation studies because
sufficient statistical power is not only required in grant applications and peer-reviewed publications, but is essential
to reliable research results. However, sample size determination is not straightforward for mediation analysis of
longitudinal design.

Methods: To facilitate planning the sample size for longitudinal mediation studies with a multilevel mediation model,
this article provides the sample size required to achieve 80% power by simulations under various sizes of the mediation
effect, within-subject correlations and numbers of repeated measures. The sample size calculation is based on three
commonly used mediation tests: Sobel’s method, distribution of product method and the bootstrap method.

Results: Among the three methods of testing the mediation effects, Sobel’s method required the largest sample size to
achieve 80% power. Bootstrapping and the distribution of the product method performed similarly and were more
powerful than Sobel’s method, as reflected by the relatively smaller sample sizes. For all three methods, the sample size
required to achieve 80% power depended on the value of the ICC (i.e., within-subject correlation). A larger value of ICC
typically required a larger sample size to achieve 80% power. Simulation results also illustrated the advantage of the
longitudinal study design. The sample size tables for most encountered scenarios in practice have also been published
for convenient use.

Conclusions: Extensive simulations study showed that the distribution of the product method and bootstrapping
method have superior performance to the Sobel’s method, but the product method was recommended to use in
practice in terms of less computation time load compared to the bootstrapping method. A R package has been
developed for the product method of sample size determination in mediation longitudinal study design.
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Background
Mediation analysis is a statistical method that helps
researchers to understand the mechanisms underlying
the phenomena they study. It has broad application in
psychology, prevention research, and other social
sciences. A simple mediation framework (see Fig. 1)
involves three variables: the independent variable,
dependent variable and mediating variable [4, 27]. The
aim of mediation analysis is to determine whether the

relation between the independent and dependent vari-
ables is due, wholly or in part, to the mediating variables.
Since the seminal work of Baron and Kenney [4], exten-
sive research has been conducted in mediation analysis,
including that of [7, 22, 25]; [34]; and [18], among
others. A comprehensive review of mediation analysis
can be found in the book by [27].
When planning a mediation study, the investigator

commonly determines the required sample size. An
appropriately chosen sample size is critical for the
success of the study. If the sample size is too small, the
study may lack adequate statistical power to detect an
effect size of practical importance, which leads the
investigator to incorrectly conclude that an efficacious
intervention is inefficacious. Reviews of the
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psychological literature suggest that insufficient statis-
tical power is a common problem in psychological
studies [1, 29, 30]. On the other hand, an unnecessar-
ily large sample size is wasteful and increases the dur-
ation of the study. Because of the importance of
sample size, funding agencies such as the National In-
stitutes of Health routinely require investigators to justify
the sample size for funded projects.
Unfortunately, sample size determination is not

straightforward for mediation analysis. No simple for-
mula is available to carry out this task. Using Monte
Carlo simulations, Fritz and MacKinnon [14] investi-
gated power calculations for the simple mediation model
and provided guidance in choosing sample sizes for me-
diation studies with independent data. Their results,
however, are not applicable to longitudinal studies, in
which data are correlated.
A longitudinal study design is common in psycho-

logical and social research [13]. Compared with a cross-
sectional study design, the longitudinal design requires
fewer subjects and allows investigators to study the tra-
jectory of each subject. In longitudinal studies, repeated
measures are collected from each subject over time.
Since measures collected from the same subject are
more likely to be similar when compared to those col-
lected from other subjects, data from the same subject
tend to be correlated. Analyzing such correlated data re-
quires special statistical methods, such as the multilevel
model [33]. In this article, assuming a multilevel medi-
ation model and using Monte Carlo simulation, we in-
vestigate sample size determination for longitudinal
mediation studies. Our objective is to provide practical
guidance and easy-to-use R software to help researchers
determine the sample size when designing longitudinal
mediation studies.

Methods
This section starts by formulating single-level mediation
model, then multilevel mediation model for longitudinal
data is described. We focus on lower-level multilevel
mediation model and relevant model assumptions are
discussed.

Simple single-level mediation model
Let Y denote the dependent (or outcome) variable, X de-
note the independent variable, and M denote the medi-
ating variable (or mediator). A single-level mediation
model (Fig. 1) can be expressed in the form of three re-
gression equations:

Y ¼ β01 þ βcX þ ε1 ð1Þ
Y ¼ β02 þ βc0X þ βbM þ ε2 ð2Þ
M ¼ β03 þ βaX þ ε3; ð3Þ

where βc quantifies the relation between the independ-
ent variable and dependent variable (i.e., the total effect
of X on Y); βc0 quantifies the relation between the inde-
pendent variable and dependent variable after adjusting
for the effect of the mediating variable (i.e., the direct ef-
fect of X on Y adjusted for M); βb quantifies the relation
between the mediating variable and dependent variable
after adjusting for the effects of the independent vari-
able; βa measures the relation between the independent
variable and mediating variable; β01, β02, and β03 are in-
tercepts; and ε1, ε2, and ε3 are error terms that follow
normal distributions with mean 0 and respective vari-
ances of σ2

1; σ
2
2, and σ23.

The mediation effect can be defined by two ways:
βc − βc' and βaβb [16, 17, 27]. For the single-level me-
diation model, the two definitions of the mediation
effect are equivalent [28], but they are generally dif-
ferent in the multilevel mediation models we will
describe.

Multilevel mediation model for longitudinal data
For correlated longitudinal data, the simple mediation
model, which assumes independence of observations, is
not appropriate. Using the single-level mediation model
for longitudinal data leads to biased estimates of stand-
ard errors and confidence intervals [3].
Multilevel mediation modeling is a powerful technique

for analyzing mediation effects in longitudinal data. Multi-
level models assume that there are at least two levels in
the data, an upper level and a lower level. The lower-level
units (e.g., repeated measures) are often nested within the
upper-level units (e.g., subjects). Assuming that the lower-
level units are random, also known as random effects,
multilevel models appropriately account for correlations

Fig. 1 Path diagram for simple single-level mediation model
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among the observations from the same subject, and yield
valid statistical inference. For a comprehensive coverage
of multilevel modeling techniques, see the book by
Raudenbush & Bryk [33].
The multilevel mediation model is much more

complex than the single-level model because mediation
effects can occur at the different model levels. Two
kinds of mediation, upper-level mediation and lower-
level mediation, can be distinguished in the context of
multilevel mediation models [5]. In upper-level medi-
ation, the initial causal variable for which the effect is
mediated is an upper-level variable. In lower-level medi-
ation, the mediator is a lower-level variable. Krull [21]
and MacKinnon [22] offered examples of upper-level me-
diation, while [18] studied lower-level mediation, in which
the mediation links varied randomly across the upper-level
units. In this study, we focus on a specific type of lower-
level mediation model (Fig. 2) that is appropriate for ana-
lyzing longitudinal studies. In this model, an initial variable
X is mediated in the lower level (i.e., measurement level),
but the mediator M and outcome Y are affected by upper-
level (i.e., subject level) variations. A simple scenario for
this model is a longitudinal experimental study in which
subjects are randomly assigned to a treatment (time-invari-
ant) or the multiple treatments can be assigned to a same
subject in cross-over design (i.e., initial variable X, in this
paper, variable X is treated as time-varying), and mediating
variable M, such as a psychosocial measure, is believed to
change individual behavior (i.e., dependent variable Y) over
time.

The lower-level mediation model
Let Xij, Yij, and Mij denote the independent variable,
dependent variable, and mediating variable, respectively,
for the ith observation from the jth subject. The lower-

level mediation model in Fig. 2 can be expressed in the
form of the following two-level regression equations,

Lower : Y ij ¼ β01j þ βcXij þ ε1ij ð4Þ

Upper : β01j ¼ γ1 þ u1j ð5Þ

Lower : Y ij ¼ β02j þ βc0Xij þ βbMij þ ε2ij ð6Þ

Upper : β02j ¼ γ2 þ u2j ð7Þ

Lower : Mij ¼ β03j þ βaXij þ ε3ij ð8Þ

Upper : β03j ¼ γ3 þ u3j ð9Þ

where at the lower (or within-subject) level, similar to the
simple single-level mediation model, βc measures the total
effect of the independent variable on the dependent vari-
able; βc' measures the direct effect of the independent vari-
able on the dependent variable, adjusted for the mediating
variable; βb measures the effect of the mediating variable
on the dependent variable, adjusted for the independent
variable; βa measures the effect of the independent vari-
able on the mediating variable; and β01j, β02j, and β03j are
subject-specific intercepts that differ from subject to sub-
ject, as reflected by the subscript j in these parameters.
These subject-specific intercepts are also known as ran-
dom intercepts. The terms ε1ij, ε2ij, and ε3ij are lower-level
(or within-subject) error terms that follow normal distri-
butions with a mean of zero and respective variances σ2

1;

σ22 , and σ23 . At the upper (or between-subject) level γ1, γ2,
and γ3 are overall or population average intercepts; and
u1j, u2j, and u3j are upper-level (between-subject) error
terms that follow normal distributions with a mean of
zero and respective variances τ21; τ

2
2, and τ23.

In the multilevel model, the upper-level errors induce
within-subject correlations. Let yij and yi0j denote the i-

Fig. 2 Pathway diagram for a 1–1-1 mediation model
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th and i′-th measures for the same subject j, then yij and
yi0j are correlated as

cov yij; ; yi0j
� �

¼ cov β02j þ βc0Xij þ βbMij þ ε2ij; β02j þ βc0Xi0 j þ βbMi0j þ ε2i′j
� �

¼ cov β02j; β02j
� �

¼ τ22

Such within-subject correlation is often measured by
the intraclass correlation coefficient (ICC), which is
defined as

ICC ¼ within‐subject covariance
overall variance

Under the above two-level mediation model, the value
of ICC for Y is given by

ICC ¼ τ22
σ22 þ τ22:

ð10Þ

Larger values of ICC represent strong within-subject
correlations, i.e., measures from the same subject are
more similar. When ICC = 0, measures from the same
subject are independent.
Due to the within-subject correlation, the two defini-

tions of the mediation effects, βc − βc' and βaβb, are gen-
erally not equivalent in multilevel models [21], although
they are equivalent in the single-level mediation model.
The different behaviors of multilevel and single-level
models are caused by the fact that the weighting matrix
used to estimate the multilevel model is typically not
identical to single-level equations. The non-equivalence
between βc − βc' and βaβb, however, is unlikely to be
problematic because the difference between the two esti-
mates is typically small and unsystematic and tends to
vanish at large sample sizes [21]. In this article, we focus
on βaβb as the measure of the mediation effect.

Test of the mediation effect
As the independence assumption is violated, conven-
tional statistical methods, such as the ordinary least
squares method, are not appropriate for estimating the
multilevel mediation model. Instead, maximum likeli-
hood methods and/or empirical Bayes methods are

typically used. Let β̂a and β̂b denote the maximum likeli-
hood estimates of βa and βb, respectively. Then, the
maximum likelihood estimate of the mediation effect is

given by β̂aβ̂b. To test whether the mediation effect βaβb
equals zero, three approaches can be taken.

Sobel’s method
Sobel’s method is a widely used test of the mediation ef-
fect, based on the first-order multivariate delta method

[35, 36]. In this approach, assuming β̂a and β̂b are inde-

pendent, the standard deviation of β̂aβ̂b is estimated by

ŝβaβb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2βa β̂

2
b þ ŝ2βb β̂

2
a

r
; ð11Þ

where ŝ2βa and ŝ2βb are the squared standard errors of β̂a

and β̂b , respectively. The 100(1-α)% confidence interval
(CI) of the mediation effect is given by

β̂aβ̂b−z1−α=2 ŝβaβb ; β̂aβ̂b þ z1−α=2ŝβaβb

� �
; ð12Þ

where z1 − α/2 is the (1 − α/2)th quantile of the standard
normal distribution. If α = 0.05, the familiar 95% CI re-
sults. If this CI does not contain zero, we reject the null
hypothesis and conclude that the mediation effect is
statistically significant.

Sobel’s method relies on the assumption that β̂aβ̂b , the

product of two normal random variables β̂a and β̂b , is
normally distributed. However, several studies have
shown that the distribution of the product of two
normal random variables is not actually normal, but
skewed [23]. The violation of the normality assump-
tion compromises the performance of Sobel’s method
and leads to invalid CIs [26]. To address this problem,
[26] discussed several improved CIs that account for the

fact that β̂aβ̂b is not normally distributed, including the CI
based on the distribution of the product of two normal
random variables and the CI based on the bootstrap
method [6, 34].

Distribution of the product method

Instead of assuming the normality of β̂aβ̂b , the distribu-
tion of the product method proposed by MacKinnon
and Lockwood (2001) constructs the CI of the mediation
effect based on the distribution of the product of two
normal random variables. Although such a distribution
does not take a simple closed form, Meeker et al. [31]
provided tables of critical values for this distribution that
can be used to construct the CI. Alternatively, the crit-
ical values can also be obtained based on the empirical
distribution of the product of two normal random
variables through Monte Carlo simulations. Let δlower
and δupper denote critical values that correspond to the
lower and upper bounds of the CI, then the CI of the
mediation effect is given by

β̂aβ̂b−δlower � ŝβaβb ; β̂aβ̂b þ δupper � ŝβaβb

� �
: ð13Þ

Bootstrap method
Another approach for constructing the CI without im-

posing a normal assumption on β̂aβ̂b is the bootstrap
method [11]. The bootstrap method, based on resam-
pling, is useful for finding the standard error and form-
ing CIs for estimates when their sampling distributions
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are unknown. In this study, we use the percentile boot-
strap [6] to construct the CI for the mediation effect.
We repeatedly resample the original data with replace-
ment, obtaining the so-called bootstrap samples. For each
of the bootstrap samples, we estimate the mediation effect
using the maximum likelihood method. These estimates
form the empirical distribution of the mediation effect.
Let qα/2 and q1 − α/2 denote the (α/2)th and (1 − α/2)th
percentiles of this empirical distribution; then the
100(1 − α)% CI of the mediation effect is given by

qα=2; q1−α=2
� �

: ð14Þ

When conducting bootstrap resampling for the multi-
level mediation model, in principle, we should resample
both the upper-level (subjects) and lower-level (mea-
sures) units. However, in a multilevel context, we should
be careful of not breaking the structure of the dataset,
therefore, a resampling scheme for multilevel models
must take into account the hierarchical data structure.
There are three approaches can be applied to bootstrap
two-level models: the parametric bootstrap, the residual
bootstrap, and the cases bootstrap. We chose the cases
bootstrap since it requires minimal assumptions of hier-
archical dependency in the data being assumed to be
specified correctly. de Leeuw & Meijer [9] suggest that
when the number of lower-level units (measures) is
small, the approach of resampling only the upper level
and keeping the lower level intact yields more accurate
estimates. In our simulation, the number of lower-level
units is small (i.e., 2 to 5), thus we only resampled the
upper-level units. To be specific, the algorithm for cases
bootstrap is as follows:

1. Draw a sample of size J with replacement from the
upper level units; that is, draw a sample {jk� ; k ¼ 1;
⋯; J} (with replacement) of upper level numbers.

2. For each k, draw a sample of entire cases, with
replacement, from (the original) upper level unit j
¼ jk� . This sample has the same size nk� ¼ njk� ¼ nj
as the original unit from which the cases are drawn.
Then, for each k, we have a set of data {(Y ik� ;Xik� ;
Mik� ),i ¼ 1;⋯; nk� }.

3. Compute estimates for all parameters of the two-
level model.

4. Repeat steps 1–3 B times.

Simulation study
We conducted a simulation study to determine the sam-
ple size that is needed to achieve 80% power when using
Sobel’s method, the distribution of the product method,
and the bootstrap method for longitudinal mediation
studies. In our simulation, we varied three factors. The

first one is the effect size of the mediation effect β̂aβ̂b .

We considered four values of βa and βb: 0.14, 0.26, 0.39
and 0.59, respectively corresponding to smaller, medium,
halfway (between medium and large), and large effect
sizes. These values yielded 16 combinations of effect
sizes of the mediation effect. Another factor is the ICC.
We considered five values of ICC, 0.1, 0.3, 0.5, 0.7 and
0.9, to cover various within-subject correlations from
low to high. The last factor is the number of repeated
measures. We considered 2, 3, 4 and 5 repeated mea-
sures for each subject. For other parameters, we set the
overall interceptsγ2and γ3 as zero. Since there were no
repeated measurements in Fritz et al. [14] and the sam-
ples were all drawn from a standard normal distribution,
for fair comparisons, we set marginal variances of Yij
and Mij, that is, σ2

2 þ τ22 and σ23 þ τ23 , as 1. Based on the
definition of ICC, we haveτ22 ¼ τ23 ¼ ICC.
To simulate data, we first simulated the independent

variable X from the standard normal distribution, then
generated random intercepts β02j and β03j according to
eqs. (7) and (9). Conditional on the values of β02j and
β03j, we generated the dependent variable Y and mediat-
ing variable M according to eqs. (6) and (8).
To determine the power of the three test methods,

under each of the parameter settings, we generated 1000
simulated datasets, and applied the methods to each of
the datasets to test the mediation effect. We calculated the
power of the methods as the proportion of tests that
rejected the null hypothesis of no mediation effects, i.e.,
the CI excluded zero. For the bootstrap method, we based
the construction of the CI on 500 bootstrap samples.
To determine the sample size that yields 80% power,

we started with an initial guess of the sample size. If we
found the power achieved with that sample size to be
too low, we increased the sample size; and if we found
the power to be too high, we decreased the sample size.
We repeated this procedure until the sample size
allowed us to reach the level of power nearest to 80%.

Results
Tables 1, 2, 3, 4 and 5 show the sample sizes necessary
to achieve 80% power under five different ICCs (ICC =
0.1, 0.2, 0.4, 0.6, 0.9). For completeness, results with
other ICCs, say, 0.3, 0.5, 0.7, and 0.8, are also shown,
which can be found in the Additional file 1: Tables S1-
S4, respectively. In each table, the 16 mediation effect
sizes are denoted by two letters, with the first one refer-
ring to the size of βa, and the second letter referring to
the size of βb. We use S for small (0.14), M for medium
(0.39), L for large (0.59) and H for halfway (0.26) be-
tween large and medium effect sizes, e.g., the effect size
ML indicates βa= 0.39 and βb= 0.59.
Among the three methods of testing the mediation ef-

fects, Sobel’s method required the largest sample size to
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achieve 80% power. Bootstrapping and the distribution
of the product method performed similarly and were
more powerful than Sobel’s method, as reflected by the
relatively smaller sample sizes. For instance, when the
mediation effect size was medium (i.e., SM) and the ICC
was 0.2, with 4 repeated measures, Sobel’s method re-
quired 191 subjects to achieve 80% power, whereas the
distribution of the product and bootstrap methods re-
quired 188 and 185 subjects, respectively, to achieve the
same power.
For all three methods, the sample size required to

achieve 80% power depended on the value of the ICC
(i.e., within-subject correlation). A larger value of ICC
typically required a larger sample size to achieve 80%
power. For example, under the design with two repeated
measures and using the distribution of the product
method, to detect a small effect size of SS, a sample size
of 299 was needed when ICC = 0.1, while a sample size
of 420 was needed when ICC = 0.4.
Simulation results also illustrated the advantage of the

longitudinal study design. Compared with the results
reported by Fritz and MacKinnon [14] for the cross-
sectional study, the required sample size under the lon-
gitudinal design was substantially smaller. When the
ICC was low, such as 0.1, the required sample size under
the longitudinal study design was a fraction of that
under the cross-sectional design, and was approximately
equal to the sample size of the cross-sectional study

divided by the number of repeated measures. For ex-
ample, under the longitudinal design with three repeated
measures and using the distribution of the product
method, the sample size under the longitudinal design
was 215 to detect a small effect size of SS, which was ap-
proximately one-third of that required under the cross-
sectional design (667). Even when the ICC was relatively
high, we still observed dramatic sample size savings. For
example, when ICC = 0.6 and using the bootstrap
method, to detect the mediation effect size SM, the
cross-sectional design required 422 subjects, while the
longitudinal design with 4 repeated measures only re-
quired 351 subjects. This observation is in accordance to
findings in literatures [19].
Figure 3 shows the type I error rates for the sample

sizes corresponding to 5 examples of zero mediation ef-
fects when ICC = 0.3 for three repeated measures. A par-
ameter combination of zero/zero (ZZ) had error rates
around zero for all numbers of observations and sample
sizes across the mediation tests. The distribution of the
product method had the most precise rates; whereas
Sobel’s method had less type I error probability and
bootstrapping inflated the error rates in the case of a
zero/0.59 (ZL) parameter, as with small sample sizes.
However, the rates approached 0.05 when the number of
sample sizes increased. Other scenarios taking various
ICCs and repeated measures showed results similar to
those in Fig. 3 and they are not shown in the paper.

Table 1 Estimated numbers of required subjects for 2, 3, 4 and 5 observations with ICC = 0.1

Observations

2 3 4 5

Effect sizea Sobel Product Bootstrap Sobel Product Bootstrap Sobel Product Bootstrap Sobel Product Bootstrap

SS 365 299 304 257 215 215 207 163 169 169 136 142

SH 272 235 237 194 172 180 151 140 150 133 126 131

SM 248 226 230 188 188 200 146 144 145 132 126 130

SL 238 248 251 176 176 176 148 147 149 124 126 128

HS 238 201 209 161 138 143 123 104 108 99 83 85

HH 109 88 94 78 65 69 61 50 57 51 42 40

HM 87 77 99 58 55 57 49 42 52 42 40 40

HL 74 72 73 57 51 25 47 46 20 40 38 39

MS 215 200 209 138 134 140 110 102 105 86 83 85

MH 79 65 69 54 46 46 42 35 36 35 29 31

MM 51 41 44 38 30 33 29 23 28 24 21 23

ML 40 36 38 29 27 28 24 22 25 20 18 20

LS 204 206 204 139 132 140 105 101 103 83 82 82

LH 65 60 69 44 41 40 34 31 32 28 24 24

LM 36 31 33 25 22 24 19 17 18 17 15 15

LL 24 20 22 17 16 15 14 13 12 12 11 11
aEffect size: The first letter is the size of βa, the second letter is the size of βb; S is small (0.14), M is medium (0.39), L is large (0.59) and H is halfway (0.26) between
large and medium effect sizes
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Discussion
Assuming a two-level mediation model and using Monte
Carlo simulations, we determined the sample sizes re-
quired to achieve 80% power for longitudinal mediation
studies under various practical settings. The simulation
results provide guidance for researchers when choosing

appropriate sample sizes in the design of longitudinal
mediation studies. Our simulations also show that the
distribution of the product and bootstrap methods are
more powerful than Sobel’s method for testing the medi-
ation effect. In addition, the required sample size is
closely related to the ICC. A high ICC generally requires

Table 2 Estimated numbers of required subjects for 2, 3, 4 and 5 observations with ICC = 0.2

Observations

2 3 4 5

Effect size Sobel Product Bootstrap Sobel Product Bootstrap Sobel Product Bootstrap Sobel Product Bootstrap

SS 408 330 341 291 244 234 239 204 201 201 169 175

SH 301 282 283 231 226 230 201 185 190 177 163 160

SM 294 287 279 226 220 218 191 188 185 163 166 170

SL 282 267 278 223 213 211 188 182 182 166 163 164

HS 240 206 224 166 137 139 129 107 107 108 89 84

HH 120 97 104 87 72 79 71 59 58 61 53 60

HM 95 87 90 74 65 68 61 56 60 56 49 52

HL 88 85 85 72 65 70 61 57 54 51 49 48

MS 213 194 202 148 138 141 112 102 111 90 81 85

MH 81 68 73 59 49 53 47 39 37 39 32 30

MM 56 46 50 40 33 33 34 27 28 28 25 23

ML 47 38 37 32 31 28 29 27 23 25 24 24

LS 215 189 204 136 136 140 105 103 108 85 82 85

LH 66 60 65 45 39 40 36 32 34 30 26 28

LM 38 32 33 27 24 24 21 18 18 19 16 14

LL 25 22 22 19 17 15 16 14 12 14 12 13

Table 3 Estimated numbers of required subjects for 2, 3, 4 and 5 observations with ICC = 0.4

Observations

2 3 4 5

Effect size Sobel Product Bootstrap Sobel Product Bootstrap Sobel Product Bootstrap Sobel Product Bootstrap

SS 479 394 395 363 300 334 313 269 276 282 251 253

SH 379 351 564 305 299 298 276 266 270 290 244 254

SM 376 350 351 307 301 302 269 251 253 282 238 232

SL 360 361 361 293 302 305 271 276 275 283 251 264

HS 258 215 219 181 153 159 149 120 134 137 106 111

HH 143 117 123 108 90 92 91 80 88 93 72 75

HM 116 109 111 96 88 88 85 79 81 88 72 78

HL 112 109 110 93 86 90 84 79 85 86 73 74

MS 217 210 212 152 132 141 116 105 118 100 83 85

MH 88 72 81 65 54 59 56 45 48 54 39 40

MM 64 54 55 49 45 47 42 37 38 42 35 33

ML 54 49 50 45 41 44 39 38 38 41 35 40

LS 209 198 204 143 138 140 105 96 108 85 81 87

LH 68 61 63 49 42 49 40 33 37 35 28 29

LM 41 34 36 32 25 26 25 22 21 24 19 19

LL 29 24 26 23 20 23 20 18 19 20 17 18
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a larger sample size to detect a given effect size. The
simulation results show that when the ICC is high,
above 0.8 for instance, the required sample sizes in these
scenarios are close to the values provided in Fritz et al.
[14], suggesting that we should choose cross-sectional
studies instead of longitudinal studies since the former is

relatively easy to conduct but does not lose power. How-
ever, in real studies, especially in psychotherapy clinical
trial studies, a meta-analysis of ICCs found that ICCs
varied widely, ranging from 0 to 0.729, with an average
around 0.08 [8]. Similar results have been found in
clinical trial data [12, 20] and clinical practice data

Table 4 Estimated numbers of required subjects for 2, 3, 4 and 5 observations with ICC = 0.6

Observations

2 3 4 5

Effect size Sobel Product Bootstrap Sobel Product Bootstrap Sobel Product Bootstrap Sobel Product Bootstrap

SS 551 467 477 438 378 385 400 326 333 351 326 326

SH 451 426 453 376 369 370 363 349 350 332 326 334

SM 451 438 451 380 377 380 357 346 351 326 323 333

SL 454 444 445 385 376 380 344 326 340 326 313 324

HS 289 234 239 200 171 179 171 136 157 145 120 127

HH 156 132 130 127 111 122 111 101 108 104 93 96

HM 142 125 132 115 111 113 107 102 105 100 98 98

HL 133 131 127 115 111 112 102 97 97 100 97 99

MS 226 194 202 157 145 148 129 108 118 106 88 85

MH 99 80 91 76 62 73 63 52 60 57 48 52

MM 72 62 70 61 51 53 54 47 48 49 46 48

ML 63 59 61 53 52 52 49 49 49 47 46 46

LS 211 201 204 138 132 135 117 105 108 91 79 87

LH 72 62 65 52 45 49 43 36 38 37 31 32

LM 45 38 39 35 29 34 30 24 28 26 23 24

LL 33 31 32 28 24 25 25 24 25 23 21 23

Table 5 Estimated numbers of required subjects for 2, 3, 4 and 5 observations with ICC = 0.9

Observations

2 3 4 5

Effect size Sobel Product Bootstrap Sobel Product Bootstrap Sobel Product Bootstrap Sobel Product Bootstrap

SS 638 576 581 544 495 523 499 465 454 476 426 455

SH 551 545 550 499 468 473 462 463 464 458 440 465

SM 551 550 550 507 485 490 476 479 478 444 447 445

SL 568 576 577 512 499 500 461 466 466 447 425 435

HS 308 246 251 236 189 204 193 163 168 175 148 162

HH 195 165 170 159 144 149 144 139 142 143 129 134

HM 183 171 170 143 148 149 139 133 132 134 128 129

HL 167 164 166 154 145 148 134 134 132 134 129 131

MS 232 208 212 171 145 153 136 113 111 115 95 102

MH 109 92 102 90 74 85 79 66 70 71 65 67

MM 86 76 82 73 66 65 65 64 64 63 60 62

ML 82 74 77 70 65 66 63 63 63 65 61 62

LS 213 207 216 144 133 137 111 108 109 91 84 84

LH 77 64 76 56 48 54 49 40 48 43 36 40

LM 50 42 46 41 36 34 35 31 32 32 27 30

LL 41 34 37 33 31 33 31 29 30 30 28 30
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[24, 32, 37]. In studies in the field of education, small
ICCs are also common [15], with 0.20 as a median
value.
Another interesting finding for multilevel mediation

is that the power of testing the mediation effect de-
pends on not only the overall value of the mediation
effects βaβb, but also the values of the individual re-
gression coefficients βa and βb. For instance, the sam-
ple size required to detect the effect size of LS is
different from that required to detect the effect size
SL. In other words, the sample size depends on the

position of the effect sizes. Such a “positioning” effect
for testing the mediation effect in multilevel medi-
ation depends on the ICC. A high ICC leads to a
stronger positioning effect. For example, in Table 5,
when ICC = 0.9, detecting the effect size SL requires
568 subjects, while detecting the effect size LS only
requires 213 subjects. The positioning effect does not
appear in the single-level mediation model, which can
be viewed as an extreme case of the multilevel model
with ICC = 0. In the single-level mediation model, the
required sample size (or power) only depends on the

Fig. 3 Type I error rates of Sobel’s (black line), distribution of the product (red line), and bootstrap (blue line) methods under various sample sizes
with 3 repeated measures and ICC of 0.3
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value of βaβb, but not the individual values of βa and
βb [14]. For example, the number of subjects needed
to detect the effect size LS was equal to that required
to detect the effect size SL. The different behavior of
multilevel mediation compared to single-level medi-
ation is due to the within-cluster correlation in the
multilevel model. Therefore, when conducting power
calculations for longitudinal mediation studies, in
addition to the mediation effect βaβb, it is equally im-
portant to report the effect size of βa and βb.
Our simulation studies showed that the bootstrap

and the distribution of the product methods have
similar performance in testing the mediation effect.
However, as the bootstrap is much more computer-
intensive and time-consuming, we recommend using
the distribution of the product method in practice.
One limitation is that in the paper, coefficients βc, βa,
βb and βc′ in the model were treated as fixed-effects
coefficients only. More flexible model by treating
these as random-effects variables and two-level
random-slopes model can also be considered. Another
limitation is that in practice, effects size estimates are
just estimates, not the true values, so uncertainty
needs to be considered in the effect size estimates for
sample size planning. Interested readers can consult
the papers by [2, 10] for more information. There is
a recent paper [38] discusses power and sample size
for mediation model in longitudinal studies, however,
in their model, the mediator was assumed to be time-
invarying instead of time-variant in our research.

Conclusion
Mediation analysis using longitudinal data allows re-
searchers to investigate biological pathways and identi-
fies their direct and indirect contribution to interested
outcome variable. However, though this method is com-
mon in psychological and social research, sample size
determination is still a challenging problem. This paper
gives a way of using multilevel model for longitudinal
data to provide the sample size under various sizes of
the mediation effect, within-subject correlations and
numbers of repeated measures via simulations by using
three methods, Sobel, distribution of product and boot-
strap. We found that the bootstrap and distribution of
the product methods had comparable results and were
more powerful than the Sobel’s method in terms of rela-
tively smaller sample sizes. We recommend to use the
distribution of product method due to its less computa-
tional load. For the mediation model of longitudinal
data, the sample size depended on the ICC (i.e., the
intra-subject correlation), number of repeated measure-
ments, “position” of βa and βb. Sample size tables for
commonly encountered scenarios in practice were also
provided for researchers’ convenient use.

Additional file

Additional file 1: Estimated numbers of required subjects with ICC =
0.3, 0.5, 0.7 and 0.8. (DOCX 27 kb)
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