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Using bundle embeddings to predict daily
cortisol levels in human subjects
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Abstract

Background: Many biological variables sampled from human subjects show a diurnal pattern, which poses special
demands on the techniques used to analyze such data. Furthermore, most biological variables belong to nonlinear
dynamical systems, which may make linear statistical techniques less suitable to analyze their dynamics. The current
study investigates the usefulness of two analysis techniques based on nonlinear lagged vector embeddings:
sequentially weighted global linear maps (SMAP), and bundle embeddings.

Methods: Time series of urinary cortisol were collected in 10 participants, in the morning (‘night’ measurement)
and the evening (‘day’ measurement), resulting in 126 consecutive measurements. These time series were used to
create lagged vector embeddings, which were split into ‘night’ and ‘day’ bundle embeddings. In addition, embeddings
were created based on time series that were corrected for the average time-of-day (TOD) values. SMAP was used to
predict future values of cortisol in these embeddings. Global (linear) and local (non-linear) predictions were compared
for each embedding. Bootstrapping was used to obtain confidence intervals for the model parameters and the
prediction error.

Results: The best cortisol predictions were found for the night bundle embeddings, followed by the full embeddings
and the time-of-day corrected embeddings. The poorest predictions were found for the day bundle embeddings. The
night bundle embeddings, the full embeddings and the TOD-corrected embeddings all showed low dimensions,
indicating the absence of dynamical processes spanning more than one day. The dimensions of the day bundles were
higher, indicating the presence of processes spanning more than one day, or a higher amount of noise. In the full
embeddings, local models gave the best predictions, whereas in the bundles the best predictions were obtained from
global models, indicating potential nonlinearity in the former but not the latter.

Conclusions: Using a bundling approach on time series of cortisol may reveal differences between the predictions of
night and day cortisol that are difficult to find with conventional time-series methods. Combination of this approach
with SMAP may especially be useful when analyzing time-series data with periodic components.
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Background
Many biological variables that are sampled from human
subjects show a diurnal pattern, which may reflect a
rhythm innate to the responsible biological system or
synchronization of the measured marker with the in-
ternal biological clock [1]. For example, human cortisol
is known to increase in the morning – the so-called
morning awakening response [2]-, followed by a decay

over the rest of the day. When using conventional time-
series analysis techniques to predict future values of
such a variable, for example by fitting an autoregressive
(AR) model, complications can arise due to the presence
of the diurnal patterns. The estimated predictive
performance of an AR model would by default be over-
estimated, because the fixed diurnal pattern renders the
prediction error much smaller than the variance within
the data. To adjust for effects of diurnal patterns, a com-
mon approach is to subtract the average time-of-day
(TOD) value from the observed TOD value, either by
including dummy variables for the TOD in the linear AR
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model or by using the residuals from the detrended
series [3]. However, this approach may have some
disadvantages when the studied variable belongs to a
nonlinear dynamical system, which is the case for many
biological variables. First, detrending time series by
either subtracting a general linear trend or by subtrac-
ting the average TOD value is not necessarily allowed
for nonlinear time series, because the data cannot be de-
scribed as the linear sum of the values of independent
processes [4]. Second, many biological dynamical
systems are forced by external diurnal variables. When a
nonlinear dynamical system is forced by a periodically
oscillating variable, the dynamics of the forced system
may depend upon the phase of the forcing variable [5].
Applying a linear AR model (such as vector autoregres-
sive [VAR] models) to the system’s variables would not
take into account the possibility of having different
relationships between variables at different TOD values.
Linear models yield single coefficients that do not
change over time. Adding extra factors to account for
such differences in the relationships at different time
points is not suitable for nonlinear systems, because it is
impossible to add independent linear contributions. To
overcome the abovementioned disadvantages, the current
study was aimed to investigate an alternative approach,
based on the theory of periodically forced nonlinear
dynamical systems and lagged vector embeddings.
Central to the lagged-vector-embedding approach is

the representation of a system’s dynamics by a trajectory
through the system’s so-called phase space. Each dimen-
sion in a phase space corresponds to one of the relevant
variables of the system. Each point in the phase space
therefore corresponds to a different combination of the
variables’ values. An essential difference between phase
spaces and a classical time-series representation of the
progression of a system’s dynamics through time is that
a time-series representation – either univariate or multi-
variate – always has a ‘time’ axis. However, in a phase-
space representation, a ‘time’ axis is not included. In-
stead, time is implicitly included as follows: each point
in the phase space corresponds to a different moment in
time and by moving from point to point along the
phase-space path, the progression through time of the
system can be traced.
If time-series data is available for all relevant variables,

the phase-space trajectory can be constructed by taking
the value of each variable at a specific moment in time
and use these as the coordinates of a point in the phase
space. Then repeat this for subsequent moments in time
and connect the points. However, biological time-series
data may not be available for all relevant variables of the
system. Fortunately, according to the Takens theorem,
the time-series data of a single variable often contain in-
formation about the complete system [6]. This means

that the dynamical path can be reconstructed by con-
structing so-called lagged vector embeddings. If time-
series data of an observed variable x are represented by
(x1, x2,...,xN), where N is the number of observations,
then an e-dimensional lagged vector r, with lags of τ, at
time t, can be represented as: rt = (xt, xt-τ, xt-2τ,..., xt-(e-1)τ)
(see Fig. 1). At the optimal values of e and τ, the path
consisting of all points rt resembles the path in the space
of all variables of the system. To determine the optimal
parameters e and τ, several methods are available [7].
However, these methods may not be optimal in the pres-
ence of noise. In that case, it may be necessary to try a
range of parameter values.
In the case of periodically forced dynamical systems,

embedding construction is not as straightforward as
described above [5]. Instead of constructing a single

Fig. 1 Construction of an embedding. In this example, with e = 3
and τ = 1, three-dimensional coordinate vectors are produced from
time series x(t). The scalar components of each vector are obtained
by taking lagged values of x at time t, t-1 and t-2. The embedding E
is the set of all generated coordinate vectors. A dynamical path,
connecting subsequent vectors in the embedding, has been omitted
for the sake of clarity
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embedding, consisting of all vectors, the lagged vectors
are grouped according to the TOD value of the first sca-
lar component xt in rt. Each group of vectors forms a
separate embedding on its own, the so-called bundle em-
bedding. This way, the original set of vectors rt = (xt, xt-τ,
xt-2τ,..., xt-(e-1)τ) is now split into M subsets rmt = (xt, xt-τ,
xt-2τ,..., xt-(e-1)τ), where M is the number of measure-
ments per day and m is the TOD label (with m = t mod-
ulo M). Any analysis technique that is suitable for use
with normal embeddings can also be applied to these
bundle embeddings. In this way, periodically forced dy-
namical systems can be analyzed without having to apply
linear techniques to correct for the periodicity (e.g.
diurnal rhythms) in the values of its variables.
To predict future values in time-series data by means

of embeddings, the sequentially weighted global linear
map (SMAP [8]) is an elegant and flexible technique be-
cause it also provides information about the amount of
nonlinearity that may be present within the time series.
Furthermore, SMAP is a nonparametric technique,
meaning that no a priori assumptions need to be made
about the underlying nonlinear model. Although nonli-
near systems are governed by nonlinear mathematical
relationships, it is often possible to fit linear mathema-
tical models locally to an embedding. This means that at
each point in the embedding a linear model may cor-
rectly describe the behavior of the system in a small
neighborhood of that point. However, the parameter
values of such a linear model differ from the parameter
values at another position in the embedding. To fit a lin-
ear model to a particular neighborhood, only the vectors
from that neighborhood would be used. Ideally, that
neighborhood would be small and only very few vectors
would be needed. However, in the case of noisy data,
using more vectors (that is: increasing the size of the
neighborhood) may give more accurate estimations. In
the case of purely linear systems, the parameter values of
each local linear model would theoretically be the same.
In those cases it would be better to fit only one model and
use all vectors to estimate the model parameters. The
SMAP results would then be comparable to results ob-
tained by using a standard linear technique (for example:
vector autoregression) on the complete time series. The
SMAP method provides a flexible way of selecting the size
of the neighborhood by using a Gaussian weight function
on the embedding’s vectors. The width of the optimal
weight function provides extra information about the type
of system that is being studied. Small weight functions
suggest strong local behavior, which may be an indication
of a nonlinear underlying system. Broad weight functions
may indicate a purely linear system or the presence of
large amounts of noise.
Given an e-dimensional embedding E, SMAP predicts

the future time-series value xt + 1 by using the future

values of all neighbor vectors ri of the target vector
rt = [xt, xt-1,...xt-(e-1)]in the embedding (see Fig. 2). It
does so by fitting a linear model xt + 1 = c1xt + c2xt-
1 +… + cext-(e-1), to the neighbor vectors and their fu-
ture values, using a total least squares procedure.
When estimating the linear model, vectors close to
the target rt are assigned a greater weight than distant
ones. These weights are assigned on the basis of the
Gaussian function w(d) = exp(−θd/davg), where d is the
Euclidian distance to the target vector within the em-
bedding space, davg is the average Euclidian distance
between vectors, and θ controls the width of the
function. A θ value equal to zero results in a function
of infinite width, and equal weights are assigned to
each vector. This corresponds to the ‘global linear
case’, and the fitted model is comparable to a stand-
ard VAR model [9]. For values of θ greater than zero,
the fitted linear model becomes more local, suggesting
there is more nonlinearity in the underlying system. For
large values of θ the weight approaches zero rapidly, ef-
fectively limiting the neighborhood to the closest vectors
only.
The current study aimed to investigate the usefulness

of a combination of SMAP and bundle embeddings in
the analysis of biological time-series data that are known

Fig. 2 The SMAP procedure. The SMAP procedure is illustrated for
the target vector at t = 6 and for e = 3. The other vectors in E are
now regarded as neighbors of this target. Each neighbor has an
associated future value of x at time t + 1. The set of neighbors and
their associated values is used to construct a local linear model with
3 parameters (c1, c2, c3). These parameters only apply to a
neighborhood of the target vector. When constructing this linear
model, each neighbor is assigned a weight depending upon its
distance to the target in embedding E, using a Gaussian function w.
The width of w depends upon parameter θ. The target’s future value
(x7) is computed using the linear model with scalar values from the
target vector. Thus, a separate model and prediction are generated
for each vector in E. The prediction performance is computed by
comparing the predicted values with the observed values
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to show a diurnal pattern. To this end, analyses were
conducted in urinary cortisol time-series data from 10
adult participants, who collected two batches per day of
their accumulated urine, during a period of 63 consecu-
tive days. For each of the resulting cortisol time series,
SMAP model predictions were estimated and prediction
accuracy was compared between models with full
embeddings (i.e. unbundled), bundled embeddings, and
embeddings based on TOD-corrected time-series data.
These analyses were conducted using a range of embed-
ding dimensions and values of the width parameter. A
bootstrap procedure was used to estimate prediction
standard errors to gain insight into estimation precision.

Methods
Participants
Urinary cortisol data were obtained from 10 participants
(7 women and 3 men), with ages ranging from 19 to
58 years, as part of a daily diary study, with a duration of
63 days [10]. Participants were recruited by poster
adverts in the city of Groningen, the Netherlands.
Excluded were subjects using medication other than oral
contraceptives or occasional acetominophen, and sub-
jects with a current somatic or mental illness. The study
was approved by the Medical Ethics Committee of the
University Medical Center Groningen. The participants
provided informed consent before enrollment.

Urinary cortisol
For each participant, two containers of urine were col-
lected per day. The ‘night’ container contained all urine
that was produced after the participant went to bed and
included the first morning void after awakening. The
‘day’ container was used to collect all urine that was pro-
duced during the day, up to and including the last void
before going to bed. Containers were collected every
three days. Until that time, the containers were stored at
room temperature at the participants home. After collec-
tion, samples were taken using 2 mL cups. These were
stored at a temperature of − 80 °C. After 63 consecutive
days, cortisol levels in all 126 samples of a single partici-
pant were determined in one run, using liquid chroma-
tography tandem mass spectrometry [11]. Lower range
intrarun coefficients of variation were 2.4%. The higher
range intrarun coefficients were 1.4%.

Embedding construction and bootstrapping
Before construction of the full embeddings and the
bundle embeddings, outliers having a deviation greater
than 2.5 standard deviations (SD) from the mean were
removed from the cortisol time series (see Table 1). After
this, first differences were taken to remove any long-
term linear trends [12], and the resulting time series
were standardized to zero mean and unit standard

deviation for each individual separately. Embeddings
with dimension e and lag size τ were constructed by
extracting e-dimensional coordinate-vectors from these
first-differenced standardized cortisol time series (x), and
by combining the points corresponding to these vectors.
To obtain a vector at time t, the values of (xt, xt-τ, xt-
2τ,...,xt-[e-1]τ) were taken from x.
For the current analysis, the lag value τ was limited to

1. Using greater lag sizes would result in vectors
spanning a broader part of the time series, and would
therefore decrease the number of available vectors,
which was not desirable given the relatively short length
of the time series.
For each participant, nine full embeddings, with di-

mensions ranging from 1 to 9, were extracted from the
time-series data and prediction accuracy was evaluated
for each resulting model. For each embedding, 5000
bootstrap embeddings were created by picking vectors
randomly from the original embedding, while keeping
the number of vectors per bootstrap embedding the
same as in the original embedding. The relative occur-
rence of ‘day’ and ‘night’ vectors – where a ‘day’ or
‘night’ vector is a vector where the first scalar value, xt,
is a ‘day’ or ‘night’ value respectively – was kept the
same as in the original embedding. To obtain the bundle
embeddings, the full embeddings were split into two
bundles each: the ‘day’ bundle, containing only ‘day’
vectors, and the ‘night’ bundle, containing only ‘night’
vectors.
To obtain the TOD-corrected embeddings, the mean

day and night cortisol values were calculated and sub-
tracted from the day and night values respectively (after
removal of the outliers). To facilitate comparison of the
results for the different embedding types, the resulting
time series were first-differenced and standardized. After

Table 1 Summary statistics for cortisol

Night Day

ID n mean sd n mean sd

1 60 23.8 11.9 58 46.7 18.8

2 61 15.2 3.7 61 17.1 4.8

3 61 10.3 6.2 61 50.6 15.2

4 62 30.3 14.1 61 61.6 23.7

5 62 18.1 9.0 62 99.8 38.5

6 62 31.6 19.4 60 78.3 23.3

7 60 17.5 12.7 61 80.3 29.7

8 61 26.8 19.5 60 68.4 32.0

9 60 20.2 18.1 63 58.7 25.6

10 59 23.4 12.7 59 79.1 24.5

Values were obtained after removal of outliers, but before first-differencing
and standardizing. Note: ID = subject ID, n = number of data points in the
time series, mean = mean value (nmol), sd = standard deviation (nmol)
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this, embeddings were constructed in the same way as
for the full embeddings, using the same bootstrap
procedure.

Local linear model prediction
When fitting the local linear SMAP models, a total least
squares (TLS) procedure was used to compute the
regression coefficients [13]. When computing the TLS
coefficients, the target vector itself was excluded from
the set of available neighbor vectors, effectively making
this a leave-one-out cross-validation procedure. Para-
meter θ, which controls the width of the weight func-
tion, was varied between 0 (producing a global linear
model) and 3 (producing a strongly local linear model),
with incremental steps of 0.2. The prediction accuracy of
the fitted model was computed at each value of θ and
for each bootstrap embedding and each day or night
bundle. In order to do this, the normalized root mean
square error (NRMSE) of the predicted values relative to
the observed values was computed. The NRMSE was ob-
tained by dividing the root mean square error (RMSE)
by the SD of the time series. An NRMSE smaller than
one indicates a better than chance performance of the
fitted model, while an NRMSE greater than one indi-
cates a worse than chance performance. Because the
time series of different participants showed different
standard deviations, a comparison of model fit across
participants, based solely on the (non-normalized)
RMSE, would be less informative.
To compute a model for a target in a specific bundle,

only vectors from the same bundle were used. The boot-
strap distribution of the regression coefficients was used
to estimate confidence intervals (CI) for these coefficients.
Finally, the prediction accuracy of the different types

of embedding (full, bundled, TOD-corrected) were
compared, by means of a Mann-Whitney U test on the
distributions of the computed NRMSEs.

Results
Guide to reading the tables and figures
Based on the NRMSE of the predictions, an optimal em-
bedding was selected for each participant and for each
analysis (full, Table 2; bundled, Table 3; TOD corrected,
Table 4). Information about the precision and variation
of the computed coefficients of the linear models was
obtained from their distribution functions. These are
shown in Fig. 3. The zeroth coefficient (the intercept) of
each model, which corresponds to the average value of
the time series, peaked sharply around zero in all
analyses, due to the standardization that was carried out
beforehand. Therefore, it has been omitted from the
figures and tables. An interpretation of the distributions
of the remaining coefficients is not straightforward, since
the coefficients may vary within an embedding, due to

local linearity, and between bootstrap embeddings, due
to the influence of noise and influential points. An
approximation of the shape of the first coefficient’s dis-
tribution within the embeddings was obtained by com-
puting the average value over the bootstrap embeddings
for each target’s first coefficient. The distribution of
these averages is shown in Fig. 4 for the global models,
and Fig. 5 for the optimal models. Table 5 contains an
overview of the statistical properties of these distribu-
tions. The width of these distributions reflects the vari-
ation of this coefficient within the embedding, where
global models are expected to show sharp distributions,
and local models to show wider distributions. For the

Table 2 SMAP results for the full embedding

ID dim n nrmsemin Δnrmse θ

1 1 107 0.689 0.001 0.2

2 1 114 1.015 0.000 0.0

3 1 112 0.323 0.021b 1.0

4 1 115 0.762 0.004b 0.2

5 1 119 0.385 0.045b 1.0

6 1 112 0.538 0.014b 0.6

7 3 101 0.426 0.080b 0.8

8 1 111 0.560 0.002a 0.2

9 1 116 0.584 0.007b 0.4

10 1 110 0.410 0.006b 0.6

Note: ID = subject ID, dim = dimension of the embedding, n = number of
vectors in the embedding, nrmsemin = minimum of the NRMSE, Δnrmse =
difference between the minimal NRMSE (θ > = 0) and the NRMSE at θ = 0 (the
global linear case), θ = value of θ where the NRMSE was minimal
aSignificant at the 0.05 level
bSignificant at the 0.01 level

Table 3 SMAP results for the bundled embeddings

Night bundle Day bundle

ID dim n nrmsemin Δnrmse θ dim n nrmsemin Δnrmse θ

1 1 54 0.799 0.001 0.2 2 52 1.254 0.009a 0.2

2 1 57 0.877 0.000 0.0 3 53 1.246 0.005 0.2

3 1 56 0.454 0.002 0.2 1 56 1.505 0.000 0.0

4 2 55 0.802 0.006a 0.2 2 56 1.455 0.000 0.0

5 2 58 0.329 0.001 0.2 1 59 2.353 0.000 0.0

6 1 57 0.842 0.000 0.0 7 40 1.620 0.004 0.2

7 1 55 0.578 0.024b 0.6 3 51 1.307 0.033 0.4

8 1 56 0.680 0.001 0.2 3 52 0.744 0.005b 0.4

9 1 57 0.722 0.046b 0.6 3 56 1.136 0.069b 0.6

10 2 53 0.625 0.006b 0.4 1 55 2.292 0.000 0.0

Note: ID = subject ID, dim = dimension of the embedding, n = number of
vectors in the embedding, nrmsemin = minimum of the NRMSE, Δnrmse
difference between the minimal NRMSE (θ > = 0) and the NRMSE at θ = 0 (the
global linear case), θ = value of θ where the NRMSE was minimal
aSignificant at the 0.05 level
bSignificant at the 0.01 level
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between-embedding distributions, an approximation of
the first coefficient’s distribution shape was obtained by
aligning the centers of the bootstrap distributions per
target and taking averages over all targets, thereby re-
moving the intra-embedding variation. Table 6 contains
an overview of the corresponding statistical properties.

An estimate for the width of these distributions was ob-
tained by computing the root mean square difference
(RMSD) of all values relative to the average value of
their respective targets. These distributions contain
information about the precision of the computed coeffi-
cients. The results for each analysis are described in the
next sections.

Full embedding
In nine out of ten participants, the optimal embedding, ac-
cording to the NRMSE, had a dimension of 1 (Table 2). In
eight out of ten subjects, local models performed better
than global models, as shown by a θ greater than 0 and a
significant difference between the NRMSE bootstrap dis-
tribution of the global model (θ = 0) and the NRMSE
bootstrap distribution of the optimal model. The average
NRMSE of all participants was 0.569.
An examination of the overall distribution of coefficient

1 in the optimal models (Fig. 3) showed sharp distribu-
tions in all participants, except for participant 7, whose
first coefficient showed a wide bimodal shape. The within-
embedding distributions of coefficient 1 in the global
models showed sharp peaks for all participants, as was

Table 4 SMAP results for the TOD corrected embedding

ID dim n nrmse

1 1 107 1.007

2 1 114 1.064

3 1 112 0.872

4 2 111 1.052

5 1 119 1.001

6 1 112 1.055

7 2 106 0.983

8 1 111 0.826

9 1 116 0.913

10 1 110 0.981

Note: ID = subject ID, dim = dimension of the embedding, n = number of
vectors in the embedding, nrmse = value of the NRMSE (at θ = 0, the global
linear case, local linear models were not applied)

Fig. 3 Coefficient overall distributions for the optimal embeddings. The overall distributions of the coefficients of the fitted (local) linear models are
shown for the optimal embeddings of the three different analyses (full, bundled, TOD-corrected) and for each subject (ID). The densities of narrow
distributions have been cut off at a value of 0.07. The number of coefficients (1 to 7) per embedding depended upon the number of embedding
dimensions. The distributions of the intercepts (coefficient 0) were omitted from the plots because they all showed a high and narrow peak around 0
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expected (Fig. 4, Table 5). In the optimal embeddings
(Fig. 5, Table 5), these distributions were wider, indi-
cating differences between the coefficient values per
target within the embedding, which is in line with the
expected outcome in the case of the presence of local
behavior. Furthermore, most of these optimal distri-
butions showed bimodal features, most probably due
to the presence of day and night vectors in the same
embedding. Interestingly, the width of the bootstrap
distribution of the first coefficient in the optimal
models (Table 6) was wider than the width of the intra-
embedding distribution (Table 5), except for participant 7,
who showed a wider intra-embedding distribution. There-
fore, the wide overall shape for this participant may largely
be attributed to the intra-embedding variation of the coef-
ficient, while for the other participants, the shape of the
overall distribution may mainly be determined by the
bootstrap variation.

Bundle embedding
The night bundles showed an optimal NRMSE at dimen-
sion 1, in seven out of ten participants, and at dimension
2 in three out of ten participants (Table 3). The average

NRMSE of all participants was 0.671. Only four out of
ten participants showed a significant difference between
the NRMSE of the global model (θ = 0) and the NRMSE
of the optimal model (θ > = 0). An examination of the
overall distribution of coefficient 1 in the optimal
models (Fig. 3) showed sharp distributions for all partici-
pants except participant 7 and 9. The within-embedding
distributions of coefficient 1 in the global models
showed sharp peaks for all participants, again as
expected (Fig. 4, Table 5). In the optimal embeddings
(Fig. 5, Table 5), these distributions were wide for par-
ticipant 7 and 9. Similar to the full embeddings, for these
two participants, the width of the overall distributions
seems to be determined mainly by the width of the
within-embedding variation of the coefficient, while for
the other participants, the width may mainly be deter-
mined by the bootstrap variation.
The dimensions of the day bundles showed more

diversity, with three participants having an optimal
NRMSE result at dimension 1, two participants at di-
mension 2, four participants at dimension 3, and one
participant at dimension 7. The average NRMSE of all
participants was 1.49. Only three out of ten participants

Fig. 4 Coefficient intra-embedding distributions for the global linear models. For each target vector, the average of the bootstrap distribution of
the coefficients of the corresponding global linear model (θ = 0) was computed. The distributions of these averages are shown for the three
different analyses (full, bundled, TOD-corrected), for each subject (ID) and for each model coefficient. The distributions of the intercepts
(coefficient 0) were omitted from the plots because they all showed a high and narrow peak around 0
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showed a significant difference between the NRMSE of
the global model (θ = 0) and the NRMSE of the optimal
model (θ > = 0). In general, the overall distributions of
all coefficients were wide for all participants (Fig. 3).
Furthermore, even in the global case, the within-

embedding distribution of coefficient 1 was wide (Fig. 4,
Table 5). This may be indicative of the presence of a
large amount of noise. In the day bundles, the width of
the bootstrap distribution of the first coefficient in the
optimal models (Table 6) was similar to the width of the

Fig. 5 Coefficient intra-embedding distributions for the optimal models. For each target vector, the average of the bootstrap distribution of the
coefficients of the corresponding optimal linear model (θ >= 0) was computed. The distributions of these averages are shown for two different
analyses (full, bundled), for each subject (ID) and for each model coefficient. The distributions of the intercepts (coefficient 0) were omitted from
the plots because they all showed a high and narrow peak around 0

Table 5 Intra-embedding distribution of coefficient 1

Global models Optimal models

Full emb. Night Day TOD Full emb. Night Day

ID val sd val sd val sd val sd val sd val sd val sd

1 − 0.98 0.008 − 0.77 0.014 − 2.25 0.071 −0.95 0.015 − 1.06 0.044 −0.84 0.040 −2.32 0.099

2 −1.02 0.020 −0.82 0.022 −2.11 0.101 − 1.03 0.022 −1.02 0.020 −0.82 0.022 −2.09 0.110

3 −0.98 0.003 −0.93 0.006 −1.06 0.347 −0.95 0.009 −1.11 0.104 −0.94 0.008 −1.06 0.347

4 −1.00 0.010 −0.68 0.013 −2.70 0.105 −1.18 0.029 −1.14 0.072 −0.69 0.017 −2.70 0.105

5 −1.00 0.004 −1.02 0.007 −0.45 0.818 −0.98 0.011 −1.19 0.126 −1.03 0.009 −0.45 0.818

6 −1.00 0.005 −0.90 0.020 −2.22 0.431 −1.08 0.017 −1.16 0.081 −0.90 0.020 −2.27 0.297

7 −1.84 0.035 −0.84 0.013 −3.43 0.156 −1.42 0.028 −2.15 0.649 −1.03 0.119 −3.64 0.308

8 −1.01 0.006 −0.81 0.011 −2.29 0.066 −1.02 0.009 −1.05 0.036 −0.84 0.020 −2.31 0.081

9 −0.99 0.006 −0.94 0.017 −2.35 0.084 −1.04 0.012 −1.12 0.073 −1.33 0.281 −2.50 0.218

10 −0.99 0.004 −0.87 0.013 −1.77 0.620 −0.98 0.014 −1.08 0.056 −0.94 0.049 −1.77 0.620

Note: ID = subject ID, val = average value of coefficient 1 per target, sd = standard deviation of coefficient 1 within an embedding, Night = night bundle, Day = day
bundle, TOD = TOD-corrected model
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within-embedding distribution (Table 5) for participants
3, 5, 9 and 10. In the night bundles, the bootstrap distri-
bution is wider than the within-embedding distribution
for all participants except for participant 5 and 10. This
may also be indicative of a large amount of uncertainty.

Time-of-day corrected embedding
The TOD-corrected embeddings showed an optimal
NRMSE at dimension 1 in eight out of ten participants
(Table 4). The other two participants showed an optimal
NRMSE at dimension 2. The average NRMSE was 0.975.
To optimally reflect the common TOD-corrected
(linear) method of analyzing time-series data, this
analysis was carried out using only a global estimator (θ
= 0). In all participants, the within-embedding distribu-
tion of coefficient 1 (Table 5) was considerably smaller
than the bootstrap distribution (Table 6), indicating that
the width of the overall distribution of this coefficient
(Fig. 3) was mainly determined by the presence of noise.

Comparison of embeddings
A comparison of the NRMSE values (Tables 2, 3 and 4)
indicated the best prediction performance for the
bundled night embeddings, followed by the full em-
beddings, the TOD-corrected embeddings and the day
embeddings. Although the NRMSE indicated a better
than chance performance for the full embeddings
(average NRMSE = 0.569), it is important to note that it
contains no information about the individual NRMSE’s
of the morning and night values because the NRMSE for
the predictions are based upon a division of the RMSE
by the SD of the complete time series. Indeed, when
inspected separately, the average NRMSE of the night
bundles (0.671) indicated a better than chance prediction

whereas the average NRMSE of the day bundles (1.49)
indicated a worse than chance prediction. These
NRMSE’s are based upon a division of the RMSE by the
SD of the night and day observations respectively. The
average NRMSE for the TOD-corrected embeddings
(0.975) indicated a prediction performance that was only
slightly better than chance. This NRMSE was based
upon a division by the SD of the TOD-corrected time
series.
The average widths of the intra-embedding coefficient

distributions, as represented by the SD, were 0.13 for the
full embedding, 0.05 for the night bundles, 0.30 for the
day bundles, and 0.02 for the TOD-corrected models
(Table 5). In the case of the TOD-corrected models this
small width was expected, since it is based on a global
linear approximation. The smaller intra-embeding width
of the night bundles, when compared to the full embed-
dings, indicated a smaller proportion of local behavior in
the night bundles. This was also supported by the
smaller average value of θ, having a value 0.26 for the
night bundles and 0.50 for the full embeddings (Tables 2
and 3). The intra-embedding coefficient widths of the
day bundles were wider than the width in the full
embeddings. However, a smaller width was expected be-
cause coefficients in a bundle should be more similar to
each other than coefficients in a full embedding. Inter-
estingly, the bootstrap distributions of the coefficients in
the day bundle were also wider than the bootstrap distri-
butions in the full embedding.
The average widths of the bootstrap distributions

were 0.13 for the full embeddings, 0.13 for the night
bundles, 0.41 for the day bundles, and 0.27 for the
TOD-corrected models (Table 6). This indicated that
the uncertainty about the coefficient values was the
largest in the day bundles.

Discussion
This study aimed to evaluate the usefulness of a combin-
ation of SMAP and bundle embeddings in the analysis
of urinary cortisol time-series data. Comparison of the
NRMSEs of unbundled, bundled and TOD-adjusted
embeddings showed that the embeddings for the night
bundle best predicted future values of cortisol in the
time series, followed by the full embeddings. The TOD-
corrected embeddings performed only slightly better
than chance and the embeddings of the day bundle per-
formed worse than chance. Inspection of the coefficients
of the fitted linear models showed that the coefficient
distributions of the full embeddings best resembled
those of the night bundle embeddings, and it showed
that the number of dimensions needed to predict the
night values was less than the number needed to predict
the day values. Furthermore, in the bundled embeddings,
the best results were obtained by using almost global

Table 6 Bootstrap distribution of coefficient 1 for the optimal
models

Full embedding Night bundle Day bundle TOD corrected

ID val rmsd val rmsd val rmsd val rmsd

1 −1.06 0.10 −0.84 0.14 − 2.20 0.32 −1.18 0.23

2 −1.02 0.22 −0.82 0.16 −2.05 0.37 −1.38 0.34

3 −1.11 0.12 −0.94 0.05 −1.06 0.41 −1.28 0.23

4 −1.14 0.13 −0.69 0.10 −2.31 0.39 −1.28 0.25

5 −1.18 0.17 −1.03 0.05 −0.41 0.81 −1.13 0.17

6 −1.16 0.10 −0.90 0.15 −1.94 0.50 −1.32 0.28

7 −1.95 0.20 −1.03 0.14 −2.74 0.19 −1.74 0.30

8 −1.05 0.07 −0.84 0.09 −2.29 0.25 −1.33 0.18

9 −1.12 0.10 −1.29 0.31 −2.37 0.29 −1.54 0.31

10 −1.08 0.06 −0.94 0.10 −1.54 0.59 −1.60 0.39

Note: ID = subject ID, val = average value of coefficient 1, rmsd = root mean
square deviation of the coefficient values relative to the average of the
corresponding target
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linear models. The full embeddings showed the best
results when local linear models were used. Several in-
teresting aspects of these results are discussed in more
detail below.
To explain the results, it is important to compare the

variations of the non-differenced night values and the
non-differenced day values (Table 1). The day values
show more variation than the night values, making it
easier to predict the first-differenced night values than
the first-differenced day values. When fitting the linear
models, CIs for coefficients of models that are used to
predict the differenced night values will be narrower
than the CIs of models for the differenced day values. As
a consequence, the coefficients for the linear models that
are fitted to the full embeddings may predominantly re-
semble the linear models for the night bundles because
the coefficients of these night models have only little
freedom of variation during the fitting procedure. This
comparatively better performance of the night models
may also explain why the dimensions of the models for
the full embeddings are mostly similar to the dimensions
of the models for the night bundles (see Tables 2 and 3).
From a psychophysiological perspective, the lower

variance in the night values in comparison with the day
values may reflect the relative absence of external influ-
ences during the night as well as the absence of the in-
fluence of events that have occurred earlier in time.
Indeed it has been shown that cortisol levels can peak
quickly in response to psychosocial stressors [14], which
could explain the relatively high variance in cortisol
levels during the day, when exposure to (multiple) psy-
chosocial stressors of differing intensity is most likely.
Consequently, the night values may be better suited for
the investigation of long-term changes in the cortisol
system, although the values of the dimensions did not
seem to support the presence of such long-term
processes in the current data.
Inspection of the values of θ of the optimal Gaussian

weight curve showed better prediction performance for
the local predictors in the case of full embeddings, which
is also reflected by significant differences between the
prediction accuracy of the global and local models in 8
out of 10 embeddings. In the night and day bundles such
superior performance of local prediction was less evi-
dent. Possibly, the local behavior in the full embeddings
is mainly caused by the underlying diurnal pattern,
leading to better prediction with different local-linear
parameters for the night and day values. Once these
values are separated by means of the night and day
bundles, the necessity for local parameters may be
largely eliminated.
The absence of local behavior after the full embedding

is separated into bundles seems to indicate the absence
of nonlinear dynamical contributions on the timescale of

days. Although the cortisol system is expected to show
nonlinear behavior, it may be that such nonlinearity is
only measurable on a timescale of minutes to hours,
making it impossible to capture it with only two
measurements per day. In this light, it is interesting that
cortisol is known to show ultradian rhythms that consist
of one or more cortisol pulses within a time window of
several hours and occur up and above the regular diur-
nal pattern [15]. Another possibility is that long-term
nonlinear contributions are obscured by linear stochastic
contributions, measurement error and noise.
The current study used a nonlinear predictor (SMAP)

to find the dimensions of the optimal embeddings. How-
ever, the results showed that most of the local behavior
disappeared when bundle embeddings were used. This
may imply that the current time series could have been
analyzed equally well with regular time-series methods,
provided that these series would have been split in
different sets for different TODs in the same way as
used for the current bundling approach. That is, separate
linear models would have to be fitted for the night
values and the day values (whereby the night-value
models would still use day values in the predictor vector,
and vice versa). However, when there are influences that
have the same linear contributions in both TODs, it may
be that splitting up the data in this way would take away
the possibility to find these influences because of a
decrease of power due to the lower number of data
points per set.
Strengths of the current study are (1) the use of

SMAP, which allows to fit global as well as local lin-
ear models, and thus can capture any present nonlin-
ear influences; and (2) the use of bundle embeddings,
which allow for the use of nonlinear analysis methods
in the presence of coupled periodically varying exter-
nal variables (i.e. TOD). However, the study also has
some weaknesses. First, the current study may have
been limited by the fact that the time series had a
length of only 126 measurements and measurements
were conducted only twice per day. It may be that a
higher number of measurements per day would have
revealed the presence of intraday nonlinear behavior.
Second, urinary cortisol is a measure of accumulated
cortisol during an interval. Analysis of more instant-
aneous measurements (e.g. blood cortisol) could yield
different results. Third, although the power of the
analysis depends on the number of measurements per
person, due to the low number of participants,
generalizability of the results to the population at
large may be limited. Finally, the used analytical stra-
tegy may also have limitations. For instance, using
bundle embeddings may lead to a decrease of power
in the presence of similar linear contributions for
each TOD. In addition, the use of bootstrapping to
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estimate CIs for full and bundle embeddings can
make the analyses time-consuming. Considering the
abovementioned issues, suggestions for further
research include the use of longer time series, with a
higher number of measurements per day, and the use
of linear time-series models on datasets that are split
according to the bundling approach.

Conclusions
In conclusion, the current study showed that using a
bundling approach on time series of cortisol may
reveal differences between the predictions of night
and day cortisol that are difficult to find with conven-
tional time-series methods. Combination of this ap-
proach with SMAP may especially be of use when
analyzing time-series data that contain periodic com-
ponents, possibly due to coupling with an external
variable.
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