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Abstract

Background: When discussing results medical research articles often tear substantive and statistical (methodical)
contributions apart, just as if both were independent. Consequently, reasoning on bias tends to be vague, unclear
and superficial. This can lead to over-generalized, too narrow and misleading conclusions, especially for causal
research questions.

Main body: To get the best possible conclusion, substantive and statistical expertise have to be integrated on the
basis of reasonable assumptions. While statistics should raise questions on the mechanisms that have presumably
created the data, substantive knowledge should answer them. Building on the related principle of Bayesian
thinking, we make seven specific and four general proposals on writing a discussion section.

Conclusion: Misinterpretation could be reduced if authors explicitly discussed what can be concluded under which
assumptions. Informed on the resulting conditional conclusions other researchers may, according to their
knowledge and beliefs, follow a particular conclusion or, based on other conditions, arrive at another one. This
could foster both an improved debate and a better understanding of the mechanisms behind the data and should
therefore enable researchers to better address bias in future studies.

Keywords: Discussion, Conclusion, Writing, Bias, Causality, Mechanism, Assumptions, Statistician, Substantive
researcher, Bayes

Background
After a research article has presented the substantive
background, the methods and the results, the discussion
section assesses the validity of results and draws conclu-
sions by interpreting them. The discussion puts the re-
sults into a broader context and reflects their
implications for theoretical (e.g. etiological) and practical
(e.g. interventional) purposes. As such, the discussion
contains an article’s last words the reader is left with.
Common recommendations for the discussion section

include general proposals for writing [1] and structuring (e.
g. with a paragraph on a study’s strengths and weaknesses)

[2], to avoid common statistical pitfalls (like misinterpret-
ing non-significant findings as true null results) [3] and to
“go beyond the data” when interpreting results [4]. Note
that the latter includes much more than comparing an arti-
cle’s results with the literature. If results and literature are
consistent, this might be due to shared bias only. If they
are not consistent, the question arises why inconsistency
occurs – maybe because of bias acting differently across
studies [5–7]. Recommendations like the CONSORT
checklist do well in demanding all quantitative information
on design, participation, compliance etc. to be reported in
the methods and results section and “addressing sources of
potential bias”, “limitations” and “considering other rele-
vant evidence” in the discussion [8, 9]. Similarly, the
STROBE checklist for epidemiological research demands
“a cautious overall interpretation of results” and "discussing
the generalizability (external validity)" [10, 11]. However,
these guidelines do not clarify how to deal with the com-
plex bias issue, and how to get to and report conclusions.
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Consequently, suggestions on writing a discussion
often remain vague by hardly addressing the role of the
assumptions that have (often implicitly) been made
when designing a study, analyzing the data and inter-
preting the results. Such assumptions involve mecha-
nisms that have created the data and are related to
sampling, measurement and treatment assignment (in
observational studies common causes of factor and out-
come) and, as a consequence, the bias this may produce
[5, 6]. They determine whether a result allows only an
associational or a causal conclusion. Causal conclusions,
if true, are of much higher relevance for etiology, pre-
vention and intervention. However, they require much
stronger assumptions. These have to be fully explicit
and, therewith, essential part of the debate since they al-
ways involve subjectivity. Subjectivity is unavoidable be-
cause the mechanisms behind the data can never be
fully estimated from the data themselves [12].
In this article, we argue that the conjunction of sub-

stantive and statistical (methodical) knowledge in the
verbal integration of results and beliefs on mechanisms
can be greatly improved in (medical) research papers.
We illustrate this through the personal roles that a stat-
istician (i.e. methods expert) and a substantive re-
searcher should take. Doing so, we neither claim that
usually just two people write a discussion, nor that one
person lacks the knowledge of the other, nor that there
were truly no researchers that have both kinds of expert-
ise. As a metaphor, the division of these two roles into
two persons describes the necessary integration of know-
ledge via the mode of a dialogue. Verbally, it addresses
the finding of increased specialization of different study
contributors in biomedical research. This has teared
apart the two processes of statistical compilation of re-
sults and their verbal integration [13]. When this hap-
pens a statistician alone is limited to a study’s conditions
(sampled population, experimental settings etc.), because
he or she is unaware of the conditions’ generalizability.
On the other hand, a A substantive expert alone is prone
to over-generalize because he or she is not aware of the
(mathematical) prerequisites for an interpretation.
The article addresses both (medical) researchers edu-

cated in basic statistics and research methods and statis-
ticians who cooperate with them. Throughout the paper
we exemplify our arguments with the finding of an asso-
ciation in a cross-tabulation between a binary X (factor)
and a binary Y (outcome): those who are exposed to or
treated with X have a statistically significantly elevated
risk for Y as compared to the non-exposed or not (or
otherwise) treated (for instance via the chi-squared inde-
pendence test or logistic regression). Findings like this
are frequent and raise the question which more pro-
found conclusion is valid under what assumptions. Until
some decades ago, statistics has largely avoided the

related topic of causality and instead limited itself on de-
scribing observed distributions (here a two-by-two table
between D = depression and LC = lung cancer) with
well-fitting models.
We illustrate our arguments with the concrete ex-

ample of the association found between the factor de-
pression (D) and the outcome lung cancer (LC) [14].
Yet very different mechanisms could have produced
such an association [7], and assumptions on these
lead to the following fundamentally different conclu-
sions (Fig. 1):

a. D causes LC (e.g. because smoking might constitute
“self-medication” of depression symptoms)

b. LC causes D (e.g. because LC patients are
demoralized by their diagnosis)

c. D and LC cause each other (e.g. because the
arguments in both a. and b. apply)

d. D and LC are the causal consequence of the same
factor(s) (e.g. poor health behaviors - HB)

e. D and LC only share measurement error (e.g. because
a fraction of individuals that has either depression or
lung cancer denies both in self-report measures).

Note that we use the example purely for illustrative
purposes. We do not make substantive claims on what
of a. through e. is true but show how one should reflect
on mechanisms in order to find the right answer. Be-
sides, we do not consider research on the D-LC relation
apart from the finding of association [14].
Assessing which of a. through e. truly applies requires

substantive assumptions on mechanisms: the temporal
order of D and LC (a causal effect requires that the
cause occurs before the effect), shared factors, selection
processes and measurement error. Questions on related
mechanisms have to be brought up by statistical consid-
eration, while substantive reasoning has to address them.
Together this yields provisional assumptions for infer-
ring that are subject to readers’ substantive consideration
and refinement. In general, the integration of prior be-
liefs (anything beyond the data a conclusion depends on)
and the results from the data themselves is formalized
by Bayesian statistics [15, 16]. This is beyond the scope
of this article, still we argue that Bayesian thinking
should govern the process of drawing conclusions.
Building on this idea, we provide seven specific and

four general recommendations for the cooperative
process of writing a discussion. The recommendations
are intended to be suggestions rather than rules. They
should be subject to further refinement and adjust-
ment to specific requirements in different fields of
medical and other research. Note that the order of
the points is not meant to structure a discussion’s
writing (besides 1.).
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Recommendations for writing a discussion section
Specific recommendations

(1) Start the discussion with the conclusion your design
and results unambiguously allow
Consider the example on the association between D
and LC. Rather than starting with an in-depth
(causal) interpretation a finding should firstly be
taken as what it allows inferring without doubt:
Under the usual assumptions that a statistical model
makes (e.g. random sampling, independence or cer-
tain correlation structure between observations
[17]), the association indicates that D (strictly
speaking: measuring D) predicts an elevated LC risk
(strictly speaking: measuring LC) in the population
that one has managed to sample (source popula-
tion). Assume that the sample has been randomly
drawn from primary care settings. In this case the
association is useful to recommend medical doctors
to better look at an individual’s LC risk in case of
D. If the association has been adjusted for age and
gender (conveniently through a regression model),
the conclusion modifies to: If the doctor knows a
patient’s age and gender (what should always be the
case) D has additional value in predicting an ele-
vated LC risk.

(2) Mention the conclusion(s) that researchers would
like to draw
In the above example, a substantive researcher
might want to conclude that D and LC are
associated in a general population instead of just

inferring to patients in primary care settings (a.).
Another researcher might even take the finding as
evidence for D being a causal factor in the etiology
of LC, meaning that prevention of D could reduce
the incidence rate of LC (in whatever target
population) (b.). In both cases, the substantive
researcher should insist on assessing the desired
interpretation that goes beyond the data [4], but the
statistician immediately needs to bring up the next
point.

(3) Specify all assumptions to interprete the observed
result in the desired (causal) way
The explanation of all the assumptions that lead
from a data result to a conclusion enables a reader
to assess whether he or she agrees with the authors’
inference or not. These conditions, however, often
remain incomplete or unclear, in which case the
reader can hardly assess whether he or she follows
a path of argumentation and, thus, shares the
conclusion this path leads to.
Consider conclusion a. and suppose that, instead of
representative sampling in a general population (e.g.
all U.S. citizens aged 18 or above), the investigators
were only able to sample in primary care settings.
Extrapolating the results to another population than
the source population requires what is called
“external validity”, “transportability” or the absence
of “selection bias” [18, 19]. No such bias occurs if
the parameter of interest is equal in the source and
the target population. Note that this is a weaker
condition than the common belief that the sample

a b c

d e

Fig. 1 Different conclusions about an association between D and LC. a D causes LC, b LC causes B, c D and LC cause each other, d D and LC are
associated because of a shared factor (HB), e D and LC are associated because they have correlated errors
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must represent the target population in everything.
If the parameter of interest is the difference in risk
for LC between cases and non-cases of D, the con-
dition translates into: the risk difference must be
equal in target and source population.
For the causal conclusion b., however, sufficient
assumptions are very strict. In an RCT, the
conclusion is valid under random sampling from
the target population, random allocation of X,
perfect compliance in X, complete participation and
no measurement error in outcome (for details see
[20]). In practice, on the other hand, the derivations
from such conditions might sometimes be modest
what may produce little bias only. For instance,
non-compliance in a specific drug intake (treat-
ment) might occur only in a few individuals to little
extent through a random process (e.g. sickness of a
nurse being responsible for drug dispense) and yield
just small (downward) bias [5]. The conclusion of
downward bias might also be justified if non-
compliance does not cause anything that has a lar-
ger effect on a Y than the drug itself. Another re-
searcher, however, could believe that non-
compliance leads to taking a more effective, alterna-
tive treatment. He or she could infer upward bias
instead if well-informed on the line of argument.

(4) Otherwise avoid causal language
In practice, researchers frequently use causal
language yet without mentioning any assumptions.
This does not imply that they truly have a causal
effect in mind, often causal and associational
wordings are carelessly used in synonymous way.
For example, concluding “depression increases the
risk of lung cancer” constitutes already causal
wording because it implies that a change in the
depression status would change the cancer risk.
Associational language like “lung cancer risk is
elevated if depression occurs”, however, would allow
for an elevated lung cancer risk in depression cases
just because LC and D share some causes
(“inducing” or “removing” depression would not
change the cancer risk here).

(5) Reflect critically on how deviations from the
assumptions would have influenced the results
Often, it is unclear where the path of
argumentation from assumptions to a conclusion
leads when alternative assumptions are made.
Consider again bias due to selection. A different
effect in target and source population occurs if
effect-modifying variables distribute differently in
both populations. Accordingly, the statistician
should ask which variables influence the effect of
interest, and whether these can be assumed to dis-
tribute equally in the source population and the

target population. The substantive researcher might
answer that the causal risk difference between D
and LC likely increases with age. Given that this is
true, and if elder individuals have been oversampled
(e.g. because elderly are over-represented in primary
care settings), both together would conclude that
sampling has led to over-estimation (despite other
factors, Fig. 2).
However, the statistician might add, if effect
modification is weak, or the difference in the age
distributions is modest (e.g. mean 54 vs. 52 years),
selection is unlikely to have produced large (here:
upward) bias. In turn, another substantive
researcher, who reads the resulting discussion,
might instead assume a decrease of effect with
increasing age and thus infer downward bias.
In practice, researchers should be extremely
sensitive for bias due to selection if a sample has
been drawn conditionally on a common consequence
of factor and outcome or a variable associated with
such a consequence [19 and references therein]. For
instance, hospitalization might be influenced by
both D and LC, and thus sampling from hospitals
might introduce a false association or change an
association’s sign; particularly D and LC may appear
to be negatively associated although the association
is positive in the general population (Fig. 3).

(6) Comment on all main types of bias and the
inferential consequences they putatively have
Usually, only some kinds of bias are discussed,
while the consequences of others are ignored [5].
Besides selection the main sources of bias are
often measurement and confounding. If one is
only interested in association, confounding is

Fig. 2 If higher age is related to a larger effect (risk difference) of D
on LC, a larger effect estimate is expected in an elder sample
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irrelevant. For causal conclusions, however,
assumptions on all three kinds of bias are
necessary.
Measurement error means that the measurement of
a factor and/or outcome deviates from the true
value, at least in some individuals. Bias due to
measurement is known under many other terms
that describe the reasons why such error occurs
(e.g. “recall bias” and “reporting bias”). In contrast
to conventional wisdom, measurement error does
not always bias association and effect estimates
downwards [5, 6]. It does, for instance, if only the
factor (e.g. depression) is measured with error and
the errors occur independently from the outcome
(e.g. lung cancer), or vice versa (“non-differential
misclassification”) [22 and references therein].
However, many lung cancer cases might falsely
report depression symptoms (e.g. to express need
for care). Such false positives (non-cases of
depression classified as cases) may also occur in
non-cases of lung cancer but to a lesser extent (a
special case of “differential misclassification”). Here,
bias might be upward as well. Importantly, false
positives cause larger bias than false negatives (non-
cases of depression falsely classified as depression
cases) as long as the relative frequency of a factor is
lower than 50% [21]. Therefore, they should receive
more attention in discussion. If measurement error
occurs in depression and lung cancer, the direction
of bias also depends on the correlation between
both errors [21].
Note that what is in line with common standards of
“good” measurement (e.g. a Kappa value measuring
validity or reliability of 0.7) might anyway produce
large bias. This applies to estimates of prevalence,
association and effect. The reason is that while
indices of measurement are one-dimensional, bias

depends on two parameters (sensitivity and specifi-
city) [21, 22]. Moreover, estimates of such indices
are often extrapolated to different kinds of popula-
tions (typically from a clinical to general popula-
tion), what may be inadequate. Note that the
different kinds of bias often interact, e.g. bias due to
measurement might depend on selection (e.g. meas-
urement error might differ between a clinical and a
general population) [5, 6].
Assessment of bias due to confounding variables
(roughly speaking: common causes of factor and
outcome) requires assumptions on the entire
system of variables that affect both factor and
outcome. For example, D and LC might share
several causes such as stressful life events or
socioeconomic status. If these influence D and LC
with the same effect direction, this leads to
overestimation, otherwise (different effect
directions) the causal effect is underestimated. In
the medical field, many unfavorable conditions may
be positively related. If this holds true for all
common factors of D and LC, upward bias can be
assumed. However, not all confounders have to be
taken into account. Within the framework of
“causal graphs”, the “backdoor criterion” [7]
provides a graphical rule for sets of confounders to
be sufficient when adjusted for. Practically, such a
causal graph must include all factors that directly or
indirectly affect both D and LC. Then, adjustment
for a set of confounders that meets the “backdoor
criterion” in the graph completely removes bias due
to confounding. In the example of Fig. 4 it is
sufficient to adjust for Z1 and Z2 because this
“blocks” all paths that otherwise lead backwards
from D to LC. Note that fully eliminating bias due

Fig. 3 If hospitalization (H) is a common cause of D and LC,
sampling conditionally on H can introduce a spurious association
between D and LC ("conditioning on a collider")

Fig. 4 Causal graph for the effect of D on LC and confounders Z1,
Z2 and Z3
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to confounding also requires that the confounders
have been collected without measurement error [5,
6, 23]. Therefore, the advice is always to concede at
least some “residual” bias and reflect on the
direction this might have (could be downward if
such error is not stronger related to D and LC than
a confounder itself ).
Whereas the statistician should pinpoint to the
mathematical insight of the backdoor criterion, its
application requires profound substantive input and
literature review. Of course, there are numerous
relevant factors in the medical field. Hence, one
should practically focus on those with the highest
prevalence (a very seldom factor can hardly cause
large bias) and large assumed effects on both X and Y.
If knowledge on any of the three kinds of bias is
poor or very uncertain, researchers should admit
that this adds uncertainty in a conclusion:
systematic error on top of random error. In the
Bayesian framework, quantitative bias analysis
formalizes this through the result of larger variance
in an estimate. Technically, this additional variance
is introduced via the variances of distributions
assigned to “bias parameters”; for instance a
misclassification probability (e.g. classifying a true
depression case as non-case) or the prevalence of a
binary confounder and its effects on X and Y. Of
course, bias analysis also changes point estimates
(hopefully reducing bias considerably). Note that
conventional frequentist analysis, as regarded from
the Bayesian perspective, assumes that all bias pa-
rameters were zero with a probability of one [5, 6,
23]. The only exceptions (bias addressed in conven-
tional analyses) are adjustment on variables to
hopefully reduce bias due to confounding and
weighting the individuals (according to variables re-
lated to participation) to take into account bias due
to selection.
If the substantive investigator understands the
processes of selection, measurement and
confounding only poorly, such strict analysis
numerically reveals that little to nothing is known on
the effect of X on Y, no matter how large an observed
association and a sample (providing small random
error) may be [5, 6, 23]). This insight has to be
brought up by the statistician. Although such an
analysis is complicated, itself very sensitive to how it
is conducted [5, 6] and rarely done, the Bayesian
thinking behind it forces researchers to better
understand the processes behind the data. Otherwise,
he or she cannot make any assumptions and, in turn,
no conclusion on causality.

(7) Propose a specific study design that requires less and
weaker assumptions for a conclusion

Usually articles end with statements that only go
little further than the always true but never
informative statement “more research is needed”.
Moreover, larger samples and better measurements
are frequently proposed. If an association has been
found, a RCT or other interventional study is usually
proposed to investigate causality. In our example, this
recommendation disregards that: (1) onset of D
might have a different effect on LC risk than an
intervention against D (the effect of onset cannot be
investigated in any interventional study), (2) the
effects of onset and intervention concern different
populations (those without vs. those with
depression), (3) an intervention effect depends on the
mode of intervention [24], and (4) (applying the
backdoor criterion) a well-designed observational
study may approximatively yield the same result as a
randomized study would [25–27]. If the effect of “re-
moving” depression is actually of interest, one could
propose an RCT that investigates the effect of treat-
ing depression in a strictly defined way and in a
strictly defined population (desirably in all who meet
the criteria of depression). Ideally, this population is
sampled randomly, and non-participants and drop-
outs are investigated with respect to assumed effect-
modifiers (differences in their distributions between
participants and non-participants can then be ad-
dressed e.g. by weighting [27]). In a non-randomized
study, one should collect variables supposed to meet
the backdoor-criterion with the best instruments
possible.

General recommendations
Yet when considering 1) through 7); i.e. carefully reflect-
ing on the mechanisms that have created the data, dis-
cussions on statistical results can be very misleading,
because the basic statistical methods are mis-interpreted
or inadequately worded.

(8) Don’t mistake the absence of evidence as evidence for
absence
A common pitfall is to consider the lack of evidence
for the alternative hypothesis (e.g. association
between D and LC) as evidence for the null
hypothesis (no association). In fact, such inference
requires an a-priori calculated sample-size to ensure
that the type-two error probability does not exceed
a pre-specified limit (typically 20% or 10%, given
the other necessary assumptions, e.g. on the true
magnitude of association). Otherwise, the type-two
error is unknown and in practice often large. This
may put a “false negative result” into the scientific
public that turns out to be “unreplicable” – what
would be falsely interpreted as part of the
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“replication crisis”. Such results are neither positive
nor negative but uninformative. In this case, the
wording “there is no evidence for an association” is
adequate because it does not claim that there is no
association.

(9) Strictly distinguish between discussing pre-specified
hypotheses and newly proposed hypotheses from
post-hoc analyses
Frequently, it remains unclear which hypotheses
have been a-priori specified and which have been
brought up only after some data analysis. This, of
course, is scientific malpractice because it does not
enable the readership to assess the random error
emerging from explorative data analysis. Accord-
ingly, the variance of results across statistical
methods is often misused to filter out the analysis
that yields a significant result (“p-hacking”, [28]).
Pre-planned tests (via writing a grant) leave at least
less room for p-hacking because they specify a-
priori which analysis is to be conducted.
On the other hand, post-hoc analyses can be ex-
tremely useful for identifying unexpected phenom-
ena and creating new hypotheses. Verbalization in
the discussion section should therefore sharply sep-
arate between conclusions from hypothesis testing
and new hypotheses created from data exploration.
The distinction is profound, since a newly proposed
hypothesis just makes a new claim. Suggesting new
hypotheses cannot be wrong, this can only be ineffi-
cient if many hypotheses turn out to be wrong.
Therefore, we suggest proposing only a limited
number of new hypotheses that appear promising
to stimulate further research and scientific progress.
They are to be confirmed or falsified with future
studies. A present discussion, however, should yet
explicate the testable predictions a new hypothesis
entails, and how a future study should be designed
to keep bias in related analyses as small as possible.
Confidence intervals address the problem of
reducing results to the dichotomy of significant and
non-significant through providing a range of values
that are compatible with the data at the given confi-
dence level, usually 95% [29].
This is also addressed by Bayesian statistics that
allows calculating what frequentist p-values are
often misinterpreted to be: the probability that the
alternative (or null) hypothesis is true [17].
Moreover, one can calculate how likely it is that the
parameter lies within any specified range (e.g. the
risk difference being greater than .05, a lower
boundary for practical significance) [15, 16]. To
gain these benefits, one needs to specify how the
parameter of interest (e.g. causal risk difference
between D and LC) is distributed before inspecting

the data. In Bayesian statistics (unlike frequentist
statistics) a parameter is a random number that
expresses prior beliefs via a “prior distribution”.
Such a “prior” is combined with the data result to a
“posterior distribution”. This integrates both sources
of information.
Note that confidence intervals also can be
interpreted from the Bayesian perspective (then
called “credibility interval”). This assumes that all
parameter values were equally likely (uniformly
distributed, strictly speaking) before analyzing the
data [5, 6, 20].

(10)Do not over-interpret small findings. Statistical
significance should not be mis-interpreted as
practical significance
Testing just for a non-zero association can only
yield evidence for an association deviating from
zero. A better indicator for the true impact of an ef-
fect/association for clinical, economic, political, or
research purposes is its magnitude. If an association
between D and LC after adjusting for age and gen-
der has been discovered, then the knowledge of D
has additional value in predicting an elevated LC
probability beyond age and gender. However, there
may be many other factors that stronger predict LC
and thus should receive higher priority in a doctor’s
assessment. Besides, if an association is small, it
may yet be explained by modest (upward) bias. Es-
pecially large samples often yield significant results
with little practical value. The p-value does not
measure strength of association [17]. For instance,
in a large sample, a Pearson correlation between
two dimensional variables could equal 0.1 only but
with a p-value <.001. A further problem arises if the
significance threshold of .05 is weakened post-hoc
to allow for “statistical trends” (p between .05 and
.10) because a result has “failed to reach signifi-
cance” (this wording claims that there is truly an as-
sociation. If this was known, no research would be
necessary).
It is usually the statistician’s job to insist not only
on removing the attention from pure statistical
significance to confidence intervals or even Bayesian
interpretation, but also to point out the necessity of
a meaningful cutoff for practical significance. The
substantive researcher then has to provide this
cutoff.

(11)Avoid claims that are not statistically well-founded
Researchers should not draw conclusions that have
not been explicitly tested for. For example, one may
have found a positive association between D and LC
(e.g. p = .049), but this association is not significant
(e.g. p = .051), when adjusting for “health behavior”.
This does not imply that “health behavior”
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“explains” the association (yet fully). The difference
in magnitude of association in both analyses
compared here (without and with adjustment on
HB) may be very small and the difference in p-
values (“borderline significance” after adjustment)
likely to emerge from random error. This often
applies to larger differences in p as well.
Investigators, however, might find patterns in their
results that they consider worth mentioning for
creating hypotheses. In the example above, adding
the words “in the sample”, would clarify that they
refer just to the difference of two point estimates.
By default, “association” in hypotheses testing
should mean “statistically significant association”
(explorative analyses should instead refer to
“suggestive associations”).

Conclusions
Some issues of discussing results not mentioned yet ap-
pear to require only substantive reasoning. For instance,
Bradford Hill’s consideration on “plausibility” claims that
a causal effect is more likely, if it is in line with bio-
logical (substantive) knowledge, or if a dose-response re-
lation has been found [30]. However, the application of
these considerations itself depends on the trueness of as-
sumptions. For instance, bias might act differently across
the dose of exposure (e.g. larger measurement error in
outcome among those with higher dosage). As a conse-
quence, a pattern observed across dose may mask a true
or pretend a wrong dose-response relation [30]. This
again has to be brought up by statistical expertise.
There are, however, some practical issues that hinder

the cooperation we suggest. First, substantive re-
searchers often feel discomfort when urged to make as-
sumptions on the mechanisms behind the data,
presumably because they fear to be wrong. Here, the
statistician needs to insist: “If you are unable to make
any assumptions, you cannot conclude anything!” And:
“As a scientist you have to understand the processes that
create your data.” See [31] for practical advice on how to
arrive at meaningful assumptions.
Second, statisticians have long been skeptical against

causal inference. Still, most of them focus solely on de-
scribing observed data with distributional models, prob-
ably because estimating causal effects has long been
regarded as unfeasible with scientific methods. Training in
causality remains rather new, since strict mathematical
methods have been developed only in the last decades [7].
The cooperation could be improved if education in

both fields focused on the insight that one cannot suc-
ceed without the other. Academic education should
demonstrate that in-depth conclusions from data un-
avoidably involve prior beliefs. Such education should
say: Data do not “speak for themselves”, because they

“speak” only ambiguously and little, since they have been
filtered through various biases [32]. The subjectivity in-
troduced by addressing bias, however, unsettles many re-
searchers. On the other hand, conventional frequentist
statistics just pretends to be objective. Instead of accept-
ing the variety of possible assumptions, it makes the ab-
surd assumption of “no bias with probability of one”. Or
it avoids causal conclusions at all if no randomized study
is possible. This limits science to investigating just asso-
ciations for all factors that can never be randomized (e.g.
onset of depression). However, the alternative of Bayes-
ian statistics and thinking are themselves prone to fun-
damental cognitive biases which should as well be
subject of interdisciplinary teaching [33].
Readers may take this article as an invitation to read

further papers’ discussions differently while evaluating
our claims. Rather than sharing a provided conclusion
(or not) they could ask themselves whether a discussion
enables them to clearly specify why they share it (or
not). If the result is uncertainty, this might motivate
them to write their next discussion differently. The pro-
posals made in this article could help shifting scientific
debates to where they belong. Rather than arguing on
misunderstandings caused by ambiguity in a conclusion’s
assumptions one should argue on the assumptions
themselves.
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