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Informative graphing of continuous safety
variables relative to normal reference limits
Christopher D. Breder1,2,3

Abstract

Background: Interpreting graphs of continuous safety variables can be complicated because differences in age,
gender, and testing site methodologies data may give rise to multiple reference limits. Furthermore, data below the
lower limit of normal are compressed relative to those points above the upper limit of normal. The objective of this
study is to develop a graphing technique that addresses these issues and is visually intuitive.

Methods: A mock dataset with multiple reference ranges is initially used to develop the graphing technique.
Formulas are developed for conditions where data are above the upper limit of normal, normal, below the lower
limit of normal, and below the lower limit of normal when the data value equals zero. After the formulae are developed,
an anonymized dataset from an actual set of trials for an approved drug is evaluated comparing the technique
developed in this study to standard graphical methods.

Results: Formulas are derived for the novel graphing method based on multiples of the normal limits. The formula for
values scaled between the upper and lower limits of normal is a novel application of a readily available scaling formula.
The formula for the lower limit of normal is novel and addresses the issue of this value potentially being indeterminate
when the result to be scaled as a multiple is zero.

Conclusions: The formulae and graphing method described in this study provides a visually intuitive method to graph
continuous safety data including laboratory values, vital sign data.

Keywords: Scaling, Multiples, Multiplicative inverse, Reference range

Background
Graphic presentations have long been recognized as a
useful method to present clinical trial data [1, 2]. This is
particularly true for safety data because clinical studies
are not typically designed to inferentially test safety and
tolerability data. The International Conference on
Harmonization (ICH) guidance to industry on Statistical
Principles for Clinical Trials recommends graphic in-
spection for safety and efficacy, data, including dose-
response relationships [3].
Accurately interpreting the graphs of safety data may

be challenging because of differences in laboratory refer-
ence ranges between testing sites, genders, and age
groups. For example, the reference range for plasma

alkaline phosphatase concentrations varies between age,
gender, and testing center. The reference ranges of many
pediatric laboratories and vital sign tests vary consider-
ably, particularly before adolescence, so interpretation of
the graphical display from a clinical trial of one or more
year’s treatment duration in the very young can be par-
ticularly challenging. Graphing the actual values can also
result in a misleading mixture of normal and abnormal
results in the regions of the upper and lower limits of
normal because of overlapping differences in these
ranges. These differences are sometimes due to variances
in assay techniques or demographics of the reference
population between sites.
Several studies recognize these issues and suggest

using multiples of the reference range limits instead of
the actual values, although these descriptions are typic-
ally limited to demonstrating values relative to the upper
limit of normal (ULN). When this approach is applied to
data with abnormal values above and below normal
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range, the normal and abnormal low values are ‘com-
pressed’ between 1 and 0 multiples of the ULN, while
the abnormal high values have, at least theoretically, no
upper limit [4]. This is not usually concerning when
working with data from biomarkers of cell injury, such
as lactate dehydrogenase (LDH), which can have multi-
ples in the thousands over the ULN and where a low
value is not clinically concerning. However, other ana-
lytes, such as serum glucose or hematocrit, often have
abnormal values higher than the ULN and below the
LLN. One approach to the problem of displaying values
above and below the normal range is to plot the stand-
ard deviations of the sample mean; however, one is often
testing a sample where almost all of the subjects have
abnormal values, and so the result would look almost
the same as if a similarly homogeneous population of
normal subjects was tested.
The objective of this study is to develop a method of

graphing continuous safety data in a manner so as to ad-
dress the issue of compression, particularly with datasets
having large numbers of data below the LLN and for
data with abnormal values both above the ULN and
below the LLN. The problems encountered with graph-
ing the actual values using standard techniques are first
demonstrated and then formulas are derived to graph
data in a manner that addresses scalability above and
below the normal range and to produce graphs that are
visually intuitive.

Methods
Datasets used for methods development and analyses
Methods for graphing were developed using a mock labs
data set (MDLD.JMP) generated in the software program
JMP® (v.13, SAS Institute). Lab values were produced
using a formula-based random numbers generator be-
tween numeric ranges seen with actual testing of an ana-
lyte that may have abnormal high and low values, such
as transferrin. Additional values of 0 (zero) were
substituted for demonstration purposes. Demographic
column variables such as unique subject identifier
(USUBJID), Testing Site (SITE), Planned Treatment

(TRTP), and Visit sequence (VISIT) are also included in
the dataset. The mock dataset is constructed so that
subjects assigned to be tested randomly at each of the
four sites during the course of the trial. Columns are
created for the ULN and lower LLN limit of normal ref-
erence ranges for each value (RESULT) based on the
testing site at the time of the laboratory blood draw
based on those publically available for transferrin from
the 4 testing sites (SITE) (Table 1). An abnormal flag
column (ABNFL) is added to the dataset to designate
the RESULT as being normal (N), abnormally high (H),
or abnormally low (L).

Graphical display of untransformed lab datasets
Graphs are first created for the untransformed data
using the variable for time (e.g., VISIT in MDLD.JMP)
as a continuous variable for the X-axis. The RESULT is a
continuous dependent variable on the Y-axis. For the
purposes of demonstration, lines for the normal refer-
ence limits are added to the Y-axis designating the ULN
and LLN for each of the laboratory testing sites. Colored
row states are created designating H as blue + signs, N
as orange dots, and L as black inverted triangles.

Results
Graphic inspection of untransformed data
Figure 1 is a presentation of RESULTS from the MDLD
dataset by visit month with site-specific reference lines
for the ULN and LLN. At the lower magnification, one
can appreciate that values below the LLN are relatively
compressed compared to those above the ULN (Fig. 1a).
One can appreciate at higher magnification that the re-
gion of the LLN reference limits contains a mixture of
normal and abnormally low values (Fig. 1b); this may be
seen at the level of the values around the ULN lines as
well. These issues may be exacerbated in trials with mul-
tiple sites (e.g., if sites use different assays), with
pediatric patients, and where both genders are repre-
sented (e.g., if there are gender-specific reference ages).

Table 1 Reference Limits for Plasma Transferrin used in the Analysis of the Mock Laboratory Dataset

Site # / Name Source Upper Limit of
Normal (mg/dL)

Lower Limit of
Normal (mg/dL)

1 / Quest Diagnostic Center,
Baltimore site (QBA)

http://www.questdiagnostics.com/testcenter/
BUOrderInfo.action?tc=891X&labCode=QBA

341 188

2 / University of Kentucky
Health Care

http://app.mc.uky.edu/pathology/refsearch/details.asp?id=541 360 200

3 / University of Utah Health
Sciences Library

http://library.med.utah.edu/WebPath/EXAM/LABREF.html 360 212

4 / University of California,
San Francisco Clinical Laboratories

http://labmed.ucsf.edu/labmanual/db/data/tests/576.html 360 182

Abbreviations: mg/dL milligrams per deciliter
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Derivation of formulas to transform data for graphing
The formulae needed to graph the possible scenarios
(L, N, H) are found in the following set of equations:
Equation 1 Multiples of ULN (xULN in the MDLD

dataset) for graphing “H” values – This is the standard
formula for ULN

xULN ¼ RESULT
ULN

Equation 2 – Normal results (NLRES), for graphing
values equal to or falling between the ULN and LLN.
This is a standard formula for scaling or normalizing,
results between 2 numbers [5, 6], that has been
adapted for this case where the boundaries are the
ULN and LLN

NLRES ¼ RESULT−LLN
ULN−LLN

� �
� 2

� �
− 1

Fig. 1 Graphical View of the Untransformed RESULT Values in the MDLD dataset. a Graphical View of RESULT Values Versus Time. b Spatial
Blending at the Level of the Lower Limits of Normal of the Four Testing Sites. Mock data from the MDLD dataset (RESULT variable) are plotted on
the Y-axis. Time (VISIT variable) is assigned to the X-axis. Values above the ULN are marked by a blue “+”, RESULT values below the LLN are marked by
a black “▼”, and values between and inclusive of the LLN and ULN are designated by an orange “ ”. Reference ranges for the four sites are provided
as (___) Site 1, (…..) Site 2, (_ _ _) Site 3, and (.._.._) Site 4. Note the orange dots signifying normal values are intermixed with the black inverted triangles
that represent values lower than normal (see black arrows). Abbreviations – ABNFL, abnormal flag; H, abnormally high RESULT, L, abnormally low result;
mg/dL, milligrams per deciliter; N, normal RESULT
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Equation 3 - Multiples of LLN (xLLN) for graphing
“L” values – This is the ‘multiplicative inverse’ of the
ULN-type formula, so the results graphically fall below
− 1, where the LLN is situated

NLRES ¼ LLN
RESULT

� �
� − 1

Equation 4 - Multiples of LLN (MI) for graphing “L”
values where the RESULT is equal to 0 – A special case
of the xLLN formula is needed because the RESULT is
in the denominator of the MI formula and in the case
where the result is 0, the MI would be undefined, or ∞.
The Multiplicative Inverse to be used when the result
equals 0 is designated as MI0; the final formula is pre-
sented below and its derivation follows

MI0 ¼ MImax � LLN
LLN−RESULTmax

� �
� −1

MI0 will be some distance MIA→0 beyond MImax, the
multiplicative inverse of the abnormal value, A, with the
greatest distance from its LLN (see Eq. 3). The variables
in this last statement may be represented as

MImax ¼ B
A

¼ LLN
RESULTmax

� �
� − 1 ð4:1aÞ

MIA→0 ¼ B
B−A

¼ LLN
LLN−RESULTmax

� �
ð4:1bÞ

When these are added together, they equal the multi-
plicative inverse of 0.

MI0 ¼ B
A

þ B
B − A

� �
X −1 ð4:2Þ

Equation 4.2 simplifies algebraically to the following:

MI0 ¼ B2

A B − Að Þ
� �

X −1 ⇒
B
A

� �
� B

B−A

� �� �
� −1

ð4:3Þ
Substituting back the terms for A and B, the final for-

mula is demonstrated.

MI0 ¼ MImax � LLN
LLN−RESULTmax

� �
� −1

ð4:4Þ

Formulae needed to graph transformed lab datasets in JMP
Graphs are created for the transformed data using the
methodology described for the untransformed data ex-
cept that the continuous dependent variable on the
Y-axis is a conditional formula (e.g., If, Then…) contain-
ing the formulae for the following:

� Multiple of the ULN for RESULTS that are
abnormally high,

� Normal RESULTS scaled between 1 and − 1,
� Multiple or multiplicative inverse of the LLN for

RESULTS that are abnormally low but greater than
0, and for the

� Multiple or multiplicative inverse of the LLN for
RESULTS that are abnormally low but equal to 0.
Reference lines are added to the Y-axis at (0, 1) and
(0, − 1) to designate 1× multiple of the ULN and
LLN, respectively.

Figure 2 presents these formulae as they appear in the
JMP Formula Editor. The steps necessary to arrive at the
formula for the MI0 in the JMP dataset include:

1. Create columns for the RESULT and
corresponding LLN

Fig. 2 Formulae to Graph the Transformed RESULTS Y-Axis Data as they Appear in the JMP Formula Editor Box. Abbreviations – ABNFL, abnormal
flag column; COL, column; H, abnormally high RESULT, L, abnormally low result; LLN, lower limit of normal; Max M, maximal value of the multi-
plicative inverse of the LLN; N, normal RESULT; ULN, upper limit of normal
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2. Create a Column MI using the formula
LLN ÷ RESULT

3. Create a Column Max M using the formula Col
Maximum(M). This is done using Col Maximum
from the Statistical function of the Functions
(grouped) dialogue box and designating Column M
as the variable of operation.

4. A column (Row of Max M) with the conditional
formula, IF [M] = [MAX M]→ [ROW()] specifies
the row containing the maximum M for the next
step. All of the cells in this column will appear to
be missing values, except the rows corresponding to
the maximum M value.

5. The formula for MI0 is written as one of the
scenarios (last line, Fig. 2) for the conditional
function that will be graphed on the Y Axis. The
MIo formula makes use of Subscript from the Row
function of the Functions (grouped) dialogue box to
exclusively use the RESULT and LLN of the
maximum multiple of the LLN.

Graphical display of transformed data
Figure 3 displays the results when graphing continuous
variables where values that are both abnormally low and
high are presented with a similar scale. Normal values
are displayed in a linear distribution between the ULN
and LLN. The black arrows pointing to purple inverted
triangles indicate the locations where the multiplicative
inverse of the LLN is located for RESULTS of zero based

on the equation in Eq. 4.3. The black arrow pointing to
the light blue inverted triangle indicates the location of
the multiplicative inverse, MImax, described in Eq. 4.1a.
This is the point that is used to derive the position of
the MI0, as demonstrated in Eq. 4.

Discussion
Advantages of graphic presentation of safety data
Graphic presentation of safety variables provides a
means to enhance the accuracy of signal detection.
Evidence for this has been reviewed in a recent publica-
tion by Michard [7]. Businesses, such as aeronautics,
have long known this, designing key displays with graph-
ics rather than numeric displays. The advantage of
graphical presentation has been systematically studied
with respect to vital sign data in the disciplines of cardi-
ology [8, 9], anesthesiology [10], and critical care medi-
cine [11]. Evaluation of clinical data in graphic form or a
combination of numeric and graphic data has been
shown to produce improved data interpretation speed
and accuracy in several clinical scenarios. In one study
of home blood pressure monitoring, this difference in
monitoring resulted in differences in patient manage-
ment, as measured by medications used. While definitive
evidence was not found that graphic display could have
a meaningful effect on mortality, several studies men-
tioned above have demonstrated significant improve-
ments in the detection of myocardial ischemia or acute
coronary syndrome, which can be fatal.

Fig. 3 Transformed RESULT values graphed versus Time. Values above the ULN are marked by a blue “+”, RESULT values below the LLN are
marked by a black “▼”, and values between and inclusive of the LLN and ULN are designated by an orange “ ”. Reference lines (___) are provided at
Y-Axis at (0, 1) for the ULN and (0, − 1) for the LLN. Black arrows points to the points corresponding to inverted purple triangles (“ ”) where the multiple
of the LLN for RESULTS of zero were imputed and to inverted light blue triangles representing the value of MImax, the abnormal low value furthest from
the LLN (“ ”). Abbreviations – H, abnormally high RESULT, L, abnormally low result; Max MI, maximal value of the multiplicative inverse of the LLN; N,
normal RESULT

Breder BMC Medical Research Methodology  (2018) 18:40 Page 5 of 8



An unmet need in graphical presentation of data
Potential discrepancies and deficiencies in standard nu-
meric reporting of clinical safety data values have been
long recognized. In the 1970’s, Duboff reported creatine
kinase values for members of a family with malignant
hyperthermia that differed based on the testing site [12].
In this same period of time, the College of American Pa-
thologists’ Enzyme Survey demonstrated that results of
liver enzyme tests varied by site, presumably because of
differences in instruments, reagents, and assay condi-
tions [13, 14]. The findings from these studies in the
1970’s coincided with a revolution in the use of graphical
presentation of data, prompted largely by the work of
Cleveland [1, 15, 16] and similar biometricians.
Recent attention to the use of graphics in the presenta-

tion of safety data has brought refinements [17, 18] in-
cluding the use of individual patient graphic profiles [19];
however, limitations and misperceptions still exist.
Rodbard discussed potential issues in perception when

viewing data graphed for analytes such as glucose, which
may have abnormal data that are both above the ULN
and below the LLN. Despite being potentially more crit-
ical in the acute setting, hypoglycemic values may be
overlooked when presented graphically because, in con-
trast, hyperglycemic values can be so relatively large that
the appearance of the low values does not appear mean-
ingfully different than those that are normal when
graphed using standard methods [20]. While the concept
of compression discussed by Bottger and Balzer [4] re-
lates more to distortions caused by two unequal stretch-
ing operations, the phenomenon described by Rodbard
et al., seems to describe compression of abnormally low
values relative to the scaling of those above the ULN.

Previous proposals for graphing safety data
Several authors have proposed alternative methodologies
for graphing. The most commonly used is based on mul-
tiples of the ULN. This method has the most utility for
monitoring plasma levels for enzyme biomarkers of
tissue damage such as AST, ALT, and CPK. One of the
original methods proposed “centrinormalized units” that
divide the ULN by 100 and scale all results by this factor
so the normal range would always be 100 (upper limit)
to LLN*100/ULN (lower limit) [21]. More recently, a
system based on the ULN has been proposed as the
method to evaluate drug-induced liver toxicity based on
‘Hy’s Law’ [22]. A closely related alternative method-
ology proposes to use both multiples of the ULN and
baseline in a statistical outlier technique to define the
critical boundaries of toxicity methods [23]. While the
ULN-based methods have value in certain analyses, this
methodology would not be useful when plasma analytes
or vital sign measurements have values below the lower
limit of normal. Normal values would also be scaled

based on the ULN, which would make these data diffi-
cult to interpret.
Methods of graphing based on the standard deviation

(SD) of data have also been proposed, where for example,
data falling outside of 2 [24] or 3 [25] standard deviations
of the mean would be considered abnormal. This method
has the advantage of being able to described data above
the ULN and LLN in a scale that is equivalent; however,
the utility of this method is limited because not all sample
populations are equivalent between hospital or lab testing
sites and the population that comprises the mean ± 2 SD
is not necessarily normal.
Rodbard [20] proposed use of a semilogarithmic plot

to triple the percentage of the vertical axis allocated to
values below the LLN, as is encountered in cases of
hypoglycemia, while at the same time compressing the
region of the graph containing hyperglycemic values.
This method has value in expanding the detail for values
below the LLN, yet it is not optimal for simultaneously
visualizing data containing low, normal and high values.

Scaling of values with the proposed method
The primary objective in developing this method was to
provide a means to graph data where values below the
LLN were scaled the same as those above the ULN. The
first step was relatively simple; transforming abnormally
high values above the ULN is typically done by dividing
the value by the ULN reference limit. The scaling of re-
sults below the LLN is not typically found in literature
and maintaining a scalar, visually intuitive display is not as
simple as the ULN. The multiple of LLN is multiplied by
− 1 in the last step before graphing so that it occupies a
position equidistant to normal values as those above the
ULN; this final value is termed the multiplicative inverse.
While the issue of zero in the denominator would not
exist if the formula was configured the same as that of the
ULN (e.g., RESULT/LLN), this relationship cannot be
used because zero values would result in a multiple equal
to zero, which would place the point in the middle of the
normal values, which are scaled between 1 and − 1.
The calculation of the multiples of the abnormal low

value below the LLN will be problematic when the
RESULT equals zero, since this would make the multi-
plicative inverse an undefined number using the equa-
tion LLN/RESULT. This situation is not typically found
with certain data, such as vital signs or chemistry labora-
tories, where having a result of zero is not typically
observed. However, there are laboratories where zero is
encountered (e.g., the absolute neutrophil count in pro-
found neutropenia) and so the issue must be addressed.
A RESULT of zero would intuitively have a multiple
greater than any non-zero value in the column. An add-
itional quantity would need to be added to the column
maximum of the greatest multiple of the LLN equal to a
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ratio that is based on the LLN and the value remaining
after the smallest result is subtracted from the LLN, as is
demonstrated in the derivation of Eq. 4.

Limitations and concerns
Transformation of data almost always has potential is-
sues with the audiences’ ability to comprehend the rela-
tionship of numbers when graphically displayed. Log
transformation is one of the procedures most often used
and it results in a display that may be uninterpretable by
those outside of the scientific field. The method pre-
sented in this study has the advantage that it is visually
intuitive; abnormal data of equal magnitude are equidis-
tant from the normal reference limits. Most who rou-
tinely work with data are so accustomed to compression
of results less than the lower limit of normal displayed
in the Cartesian system relative to that above the upper
limit of normal that visualization of the data in a more
naturally expanded state will require familiarization. The
advantage of this technique, particularly, the ability to
look at data with multiple reference ranges in the same
graph, will make such effort worthwhile. The method to
graph points with a value of zero is not likely to be used
often. Other techniques such as inclusion of a ‘zero-cor-
rector’ (such as the use of ½ when an incidence is zero
in the calculation of relative risk) may be simpler though
this introduces error in the visual display.

Conclusions
A method to graph continuous safety variables is pre-
sented. This method addresses the issues that arise when
graphing values that have different reference limits, such
as sometimes seen with differences in gender, age, and
testing site. The graphing method presents novel ap-
proaches to the plotting of normal values in graphs of
multiples of the reference limits based on a classic scal-
ing equation. The method also includes a novel ap-
proach to scaling the multiples of the abnormal low
value below the LLN when the result is zero.
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