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Abstract

Background: Prognostic tools for intracerebral hemorrhage (ICH) patients are potentially useful for ascertaining
prognosis and recommended in guidelines to facilitate streamline assessment and communication between
providers. In this systematic review with meta-analysis we identified and characterized all existing prognostic tools
for this population, performed a methodological evaluation of the conducting and reporting of such studies and
compared different methods of prognostic tool derivation in terms of discrimination for mortality and functional
outcome prediction.

Methods: PubMed, ISI, Scopus and CENTRAL were searched up to 15th September 2016, with additional studies
identified using reference check. Two reviewers independently extracted data regarding the population studied,
process of tool derivation, included predictors and discrimination (c statistic) using a predesignated spreadsheet
based in the CHARMS checklist. Disagreements were solved by consensus. C statistics were pooled using robust
variance estimation and meta-regression was applied for group comparisons using random effect models.

Results: Fifty nine studies were retrieved, including 48,133 patients and reporting on the derivation of 72
prognostic tools. Data on discrimination (c statistic) was available for 53 tools, 38 focusing on mortality and 15
focusing on functional outcome. Discrimination was high for both outcomes, with a pooled c statistic of 0.88 for
mortality and 0.87 for functional outcome. Forty three tools were regression based and nine tools were derived
using machine learning algorithms, with no differences found between the two methods in terms of discrimination
(p = 0.490). Several methodological issues however were identified, relating to handling of missing data, low
number of events per variable, insufficient length of follow-up, absence of blinding, infrequent use of internal
validation, and underreporting of important model performance measures.

Conclusions: Prognostic tools for ICH discriminated well for mortality and functional outcome in derivation studies
but methodological issues require confirmation of these findings in validation studies. Logistic regression based risk
scores are particularly promising given their good performance and ease of application.
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Background
Intracerebral hemorrhage (ICH) is a major cause of
death and disability, with an incidence rate of 24.6 per
100,000 person-years and a fatality rate of 40%. After
such event, only 12–39% of patients regain independ-
ence [1]. Contrary to ischemic stroke, medical care for
ICH remains mostly supportive, and few interventions
clearly demonstrated benefit in this population [2, 3].
Several prognostic tools have been proposed for mortal-
ity and functional outcome prediction in ICH. These
tools are potentially useful for ascertaining prognosis, fa-
cilitating communication between clinicians, characteriz-
ing and selecting patients for interventions, and for
benchmarking purposes in healthcare delivery [2, 4].
The aim of this study was to systematically identify, as-

sess and review the methodological conduct and report-
ing of studies deriving prognostic tools for the risk of
death and/or functional recovery after ICH and to evalu-
ate their overall discrimination according to the method
of derivation and type of outcome.

Methods
We have designed, developed and reported our system-
atic review and meta-analysis in accordance with recom-
mendations from the Cochrane Prognosis Methods
Group [5] and the PRISMA [6] and MOOSE [7] guide-
lines. For this purpose, we searched PubMed, ISI Web of
Knowledge, Scopus, and CENTRAL for all studies
reporting the derivation of prognostic tools for predict-
ing death and/or functional recovery after non-traumatic
ICH, using the broad and sensitive search query re-
ported Additional file 1. The search included articles
from database inception to 15th September 2016, with
additional articles identified from reference checking.
No language restrictions were applied. There is no
protocol available.

Study selection and inclusion criteria
Articles were included if they met the following cri-
teria: 1) were human studies; 2) were original articles;
3) were adult studies (≥ 18 years); 4) did not consist
of case reports/ case series; 5) enrolled non-traumatic
ICH patients; 6) were prognostic studies; 7) described
the application of a prognostic tool; and 8) were der-
ivation studies. Studies involving traumatic and/or
extra-axial bleedings were excluded. Study selection
was performed using a two-step process. In the first
step (screening), all abstracts were reviewed by two
authors independently applying the inclusion criteria.
This process was repeated in the second step again
by two authors working independently, applying the
same criteria to the full text of remaining studies.
Disagreements were resolved by consensus.

Quality assessment, data extraction, analysis and
reporting
To inform quality assessment and data extraction
from individual studies, two reviewers independently
applied a spreadsheet based in the CHARMS checklist
[5] to the included studies, gathering information on
the following aspects of prognostic tool derivation: 1)
population, sampling and source of data; 2) outcome
timing and definition; 3) number and type of predic-
tors; 4) number of patients and events 5) handling of
missing data; 6) method for tool derivation and 7)
prognostic tool performance.
Prognostic tool performance was evaluated by deter-

mining its discriminatory capacity, i.e., its ability to de-
termine which patients will suffer the outcome of
interest. As a measure of this, we retrieved the c-statistic
along with its 95% confidence interval (CI). For studies
not reporting any of these parameters, we obtained them
by recreating the receiver operating characteristic (ROC)
curve from reported probability distributions; for studies
reporting the c-statistic but not its confidence interval,
we calculated the later using the method reported by
Hanley and McNeil [8], where the number of outcomes
was available. Standard errors were derived from the re-
spective CIs.
Given the fact that some authors derived more than

one tool from the same sample population, we pooled
c-statistics using robust variance estimation (RVE) to ac-
count for dependent effects, according to Tanner-Smith
et al. [9]. Specifically, we assumed correlated effect sizes
and used a random effects model with inverse variance
weights to estimate the overall mean c-statistic and
mean c-statistics for mortality prediction tools, func-
tional outcome prediction tools, logistic regression based
tools, and machine learning algorithms. Univariate
meta-regression was used to compare these groups and
p values < 0.05 were considered significant. Due to the
nature of the meta-analytical technique used, heterogen-
eity statistics such as Q-statistic and I-square are not
recommended, according to Tanner-Smith et al. [9].
However, the I2 statistic is reported for illustrative pur-
poses. Statistical analysis was performed using specific
macros [9] designed for R and SPSS® statistics v 24.0.

Results
Figure 1 depicts the study selection procedure. The
search query retrieved 15,613 references: after the
screening step, there were 263 references left for full text
review. The second step removed an additional 207 ref-
erences, leaving us with 56 studies reporting the deriv-
ation of at least one prognostic tool. Three additional
studies were identified through reference check, which
led to the final number of 59 studies involving 48,133
patients. Nine studies reported the derivation of more

Gregório et al. BMC Medical Research Methodology          (2018) 18:145 Page 2 of 17



than one prognostic tool, so the total number of prog-
nostic tools analyzed was 72. The summary description
of these tools is depicted in Table 1.

Population, sampling and source of data
The source population from which the patients were re-
cruited for prognostic tool derivation consisted on pri-
mary/spontaneous ICH patients for all tools except two
[10, 11], which focused on arteriovenous malformation
related hemorrhages (Table 1). However, several studies
included further specifications for patient inclusion
namely age [12], cerebral amyloid related angiopathy
[13], deep location [14–17], lobar location [18], supra-
tentorial bleeds [16, 19–33], presence of intraventricular
hemorrhage [16, 34, 35], African ethnicity [36],
non-comatose patients [22, 37], comatose patients [38],
medically treated patients [22–25, 27, 33, 38–40], surgi-
cally treated patients [21], oral anticoagulant related
bleeds [41], hypertensive patients [19, 36], and dialysis
patients [40]. The majority of studies (n = 40) recruited
patients from hospitals or emergency rooms [10–14, 16–
22, 26, 29–31, 36, 40–61] but nine studies recruited pa-
tients from intensive care units [24, 28, 32, 33, 35, 38,
62–64], three studies recruited patients from stroke
units [34, 37, 65], six studies recruited patients from
neurology/neurosurgery departments [15, 25, 27, 39, 66,
67], and one study recruited patients from both an

intensive care unit and a stroke unit [23]. Most prognos-
tic tools were derived from cohort studies, with the ex-
ceptions being registries [29, 30, 43, 51, 64], randomized
clinical trial data [14, 42], case-control studies [26], and
administrative databases [59]. Thirteen studies were
multicentric [13, 24, 29, 30, 35–37, 42, 43, 51, 55, 59,
62], with two studies involving more than two countries
[42, 55]. The sampling method was not reported or un-
clear for 18 studies [12, 15, 17, 21, 23, 24, 26, 29, 30, 32,
36, 42, 54, 61, 63, 66–68], being consecutive for all
others.

Outcome timing, definition and assessment
Of the 72 prognostic tools included in this review 46 fo-
cused on mortality [12, 21, 23, 24, 26–36, 38–41, 44, 45,
48–50, 53, 54, 56, 58–61, 63–68], 19 focused on morbid-
ity [10, 11, 15, 17–20, 22, 25, 37, 42, 43, 47, 51, 52, 55,
57], and seven were derived for a combined outcome
(mortality plus morbidity) [13, 14, 16, 46, 62].
Mortality prediction was mostly attempted at hospital

discharge or 1 month (Table 1); exceptions to this rule
were the studies by Grellier [66], Celik [68], Lei [13],
Cho [14], and Galbois [38], which analyzed death at 2
days, 10 days, 3 months, 6 months, and ICU discharge
respectively. Interestingly, Galbois focused on brain
death rather than the general concept of mortality used
in other studies. Functional status prediction was more

Fig. 1 Study selection flow chart
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Table 1 Summary description of prognostic tools
Author Year Population Tool Timing Variables AUC (SE)

Mortality prediction tools

Alsina [24] 2014 Supratentorial ICH
not submitted
to surgery

Equation 30 days IVH, hematoma size,
and midline shift.

0·933 (0·029)

Berwaerts [41] 2000 Oral anticoagulant
related ICH

Equation Discharge Hematoma diameter
and CT signs of ischemia.

–

Bhatia [65] 2013 Primary ICH Equation Discharge GCS, hematoma size, IVH,and
ventilatory requirement.

0·822 (0·033)

Broderick [44] 1993 Spontaneous ICH Equation 30 days GCS, hematoma size. 0·805 (0·036)

Broderick´ [44] 1993 Spontaneous ICH Equation 30 days Hematoma size, IVH volume,
GCS, and surgery.

–

Celik [68] 2014 Spontaneous ICH ANN 10 days Age, gender, hypertension,
diabetes, smoking, mean blood
pressure, Scandinavian Stroke
Scale score, pulse pressure,
localization of hemorrhage
(including infratentorial), volume
of hemorrhage, ventricular
drainage, and midline shift.

–

Cerillo [21] 1981 Operated
supratentorial ICH

Equation Discharge Age, mode of onset, site of
hemorrhage, level of
consciousness, time from
onset to surgery, congestive
heart failure/coronary artery
disease, and diabetes/uremia.

0·893 (0·033)

Chen [45] 2011 Nontraumatic ICH Score Discharge GCS, hematoma volume,
IVH, and diabetes.

0·867 (0·027)

Chiu [61] 2016 Spontaneous ICH CART+SVM 30 days GCS, hematoma size. –

Chuang [63] 2009 Spontaneous ICH Score 30 days Age, GCS, hypertension,
glucose and dialysis
dependency.

0·890 (0·026)

Edwards [28] 1999 Supratentorial ICH ANN Discharge Gender, race, hydrocephalus,
mean arterial pressure, pulse
pressure, GCS, IVH, hematoma
size, location (thalamic,
basal, lobal), cisternal
effacement, pineal shift,
hypertension,
diabetes, and age.

0·984 (0·020)

Edwards´ [28] 1999 Supratentorial ICH Equation Discharge Hydrocephalus, GCS,
gender, pineal shift

0·919 (0·043)

Fogelholm [31] 1997 Supratentorial ICH Equation 28 days Consciousness, mean
arterial pressure, subarachnoid
spread, midline shift,
glucose, and vomiting.

–

Frithz [12] 1976 ICH patients < 70 years Decision tree Discharge Consciousness, diastolic blood pressure. 0·943 (0·024)

Galbois [38] 2013 Spontaneous comatose
ICH not submitted
to surgery

Score ICU stay Brainstem reflexes, swirl sign. 0·850 (0·050)

Galbois´ [38] 2013 Spontaneous comatose
ICH not submitted
to surgery

Score ICU stay Corneal reflexes, swirl sign. 0·840 (0·051)

Grellier [66] 1983 Spontaneous ICH Score 2 days Age, gender, consciousness
(normal, changed, coma),
CV risk factors (alcohol, tobacco,
hypertension, dyslipidemia,
CV disease), and ICH location
(infratentorial, thalamic,
internal capsule, oval center, lobar).

–

Hallevi [34] 2009 Primary ICH with IVH Score Discharge GCS, total volume (ICH + IVH). 0·840a

Hemphill [48] 2001 Nontraumatic ICH Score 30 days Age, ICH volume, infratentorial
ICH, GCS, and IVH.

0·920 (0·020)

Ho [64] 2016 Primary ICH Score Discharge Age, creatinine, NIHSS,
heart disease, gender,

0·870 (0·018)
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Table 1 Summary description of prognostic tools (Continued)
Author Year Population Tool Timing Variables AUC (SE)

and systolic blood pressure.

Huang [40] 2008 Spontaneous
medically treated
ICH in hemodialysis
patients

Score 30 days GCS, age, and systolic
blood pressure.

0·745 (0·048)

Li [50] 2012 Spontaneous ICH Equation Discharge Age, GCS, glucose, and
white blood cell count.

0·923 (0·020)

Li´ [49] 2011 Primary ICH Score Discharge Age, Glucose, LDH,
and white blood cell count.

0·745 (0·025)

Lukic [33] 2012 Primary supratentorial
medically treated ICH

Equation Discharge Level of consciousness, GCS
verbal response, age,
gender, and pulse pressure.

0·856 (0·018)

Lukic´ [26] 2012 Spontaneous
supratentorial ICH

ANN Discharge Age, gender, pulse pressure,
mean arterial pressure,
GCS (E/V/M), and consciousness.

0·883 (0.048)

Lukic´´ [26] 2012 Spontaneous
supratentorial ICH

Equation Discharge GCS, level of consciousness. 0·819 (0·030)

Masé [27] 1995 Primary supratentorial
medically treated ICH

Equation 30 days GCS, IVH spread,
and hematoma size.

–

Parry-Jones [53] 2013 Spontaneous ICH Equation 30 days Age, GCS, IVH extension,
and hematoma volume.

0·897 (0·010)

Peng [54] 2010 Spontaneous ICH Random Forrest 30 days Age, gender, hypertension,
diabetes, ischemic heart
disease, previous stroke,
anemia, dialysis dependency,
GCS, systolic/diastolic/mean
blood pressure, infratentorial
bleed, site of ICH, ICH volume,
IVH, pineal shift, hydrocephalus,
hemoglobin, and glucose.

0·870 (0·015)

Peng´ [54] 2010 Spontaneous ICH ANN 30 days Age, gender, GCS, site of ICH,
ICH volume, IVH, hypertension,
diabetes, anemia,
and previous stroke.

0·810 (0·020)

Peng´´ [54] 2010 Spontaneous ICH SVM 30 days Age, gender, GCS, site,
ICH volume, IVH, hypertension,
diabetes, anemia,
and previous stroke.

0·790 (0·020)

Peng´´´ [54] 2010 Spontaneous ICH Equation 30 days Anemia, age, GCS,
hypertension, and dialysis dependency.

0·780 (0·020)

Romano [56] 2009 Primary ICH Score 30 days GCS, hematoma volume,
and intraventricular spread.

0·915 (0·026)

Ruiz-Sandoval [58] 2007 Primary ICH Score Discharge Age, infratentorial bleed,
ICH size, GCS, and IVH spread.

0·880 (0·017)

Safatli [60] 2016 Primary ICH Score 30 days GCS, infratentorial bleed,
and hematoma volume.

–

Szepesi [32] 2015 Supratentorial ICH Equation 30 days Age, hematoma volume,
IVH, systolic blood pressure,
glucose, and potassium.

–

Tabak [59] 2007 Spontaneous ICH Equation Discharge Age, creatinine, glucose, pH,
CO2, O2, partial thromboplastin
time, prothrombin time,
platelets, white blood cells,
cancer, temperature, pulse,
systolic blood pressure,
respiratory rate,
and altered mental status.

0·890 (0·003)

Takahashi [67] 2006 Spontaneous ICH CART Discharge Japan Coma Scale,
ICH volume, and age.

0·853 (0·024)

Takahashi´ [67] 2006 Spontaneous ICH Equation Discharge Japan Coma Scale,
temperature, infratentorial
bleed, and ICH volume.

0·810 (0·033)

Tshikwela [36] 2012 Black hypertensive
primary ICH

Score Discharge GCS, ICH volume,
left hemisphere involved.

–

Gregório et al. BMC Medical Research Methodology          (2018) 18:145 Page 5 of 17



Table 1 Summary description of prognostic tools (Continued)
Author Year Population Tool Timing Variables AUC (SE)

Tshikwela´ [36] 2012 Black hypertensive
primary ICH

Score Discharge Gender, GCS, midline shift. –

Tuhrim [23] 1999 Primary supratentorial
ICH managed medically

Equation 30 days GCS, ICH volume, pulse
pressure, hydrocephalus,
and IVH volume.

–

Tuhrim´ [30] 1991 Supratentorial ICH Equation 30 days Hematoma size, IVH,
GCS, pulse pressure,
and IVHaGCS interaction.

0·900 (0·027)

Tuhrim´´ [29] 1988 Supratentorial hemorrhage Equation 30 days GCS score, hematoma
size, and pulse pressure.

0·892 (0·042)

Ziai [35] 2015 Primary ICH with IVH Score Discharge Temperature, glucose,
intracranial pressure,
and Do-Not-Resuscitate orders

0·850 (0·030)

Zis [39] 2014 Non-operated primary ICH Score 30 days GCS, ICH size, INR, IVH
spread, and
infratentorial location.

0·920 (0·023)

Functional outcome prediction tools

Appelboom [10] 2012 AVM related ICH Score 3 months Age, IVH, infratentorial
bleed, GCS, and hematoma size.

0·914 (0·039)

Creutzfeld [47] 2011 Primary ICH Equation Discharge Age, GCS, heart rate,
mass effect, IVH, premorbid
level of function, and
systolic blood pressure.

0·930 (0·014)

Flemming [18] 2001 Lobar primary
supratentorial ICH

Tree based model Discharge GCS, septum pellucidum shift. 0·890 (0·045)

Flemming´ [18] 2001 Lobar primary
supratentorial ICH

Tree based model Discharge ICH size, GCS, and time to presentation. 0·921 (0·032)

Hallevy [25] 2002 Primary supratentorial
medically treated ICH

Score Discharge Age, limb paresis, level of
consciousness, mass effect,
hematoma size, and
intraventricular extension.

0·897 (0·023)

Ji [51] 2013 Spontaneous ICH Score 1 year Age, NIHSS, GCS, glucose,
infratentorial bleed,
ICH volume, and IVH.

0·836 (0·009)

Lisk [22] 1994 Primary supratentorial < 24 h Equation Discharge or 30 days Age, GCS, hemorrhage
volume, and gender.

–

Lisk´ [22] 1994 Primary supratentorial
< 24 h, GCS > 9, no surgery

Equation Discharge or 30 days Age, hemorrhage diameter,
and ventricular extension.

–

Neidert [11] 2016 AVM related ICH Score Unclear Age, GCS, hematoma size,
IVH, AVM size, diffuse nidus,
eloquence, and
deep venous drainage.

0·842 (0·046)

Misra [15] 1999 Primary putaminal ICH Equation 3 months GCS, pupillary change,
incontinence, and location
of hematoma
(cortical, subcortical,
medial or lateral).

–

Mittal [52] 2011 Primary ICH Score Discharge Age, infratentorial, ICH
size, GCS, cognitive
impairment, and FOUR score.

–

Portenoy [20] 1987 Nontraumatic
supratentorial
spontaneous ICH

Equation Unclear GCS, ICH size
(index), and IVH spread.

–

Poungvarin [55] 2006 Primary ICH Equation Discharge Fever, ICH size > 30,
GCS, and IVH spread.

–

Rost [57] 2008 Primary ICH Score 3 months Age, GCS, hematoma size,
location (infratentorial/deep/lobar),
and cognitive impairment.

0·879 (0·017)

Shah [17] 2005 Thalamic hemorrhage Equation 3 months Posterolateral ICH extension,
Canadian Neurological Scale.

–

Shaya [19] 2005 Hypertensive
supratentorial ICH

Score 6 months Focal neurological deficit,
hydrocephalus, ICH volume

–
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heterogeneous on the timing and method of assessment:
ten tools attempted to predict functional status at dis-
charge/ 1 month [18, 22, 25, 46, 47, 52, 55], eight tools
attempted to predict at 3 months [10, 13, 15, 17, 37, 42,
43, 57], five tools attempted to predict at 6 months [14,
16, 19, 62], and one tool attempted to predict at 1 year
[51]. The studies by Portenoy [20] and Neidert [11] were
unclear about the time of outcome assessment. The in-
strument for functional outcome evaluation also differed
between studies: ten studies used the modified Rankin
scale [10, 11, 13, 16, 22, 25, 46, 47, 51, 55], six studies
used the Glasgow Outcome scale [14, 18, 19, 52, 57, 62],
six studies used the Barthel index [14, 15, 17, 37, 42, 43],
and one study used a subjective assessment [20]. Only
six studies reported blinded outcome assessment [10, 13,
37, 43, 51, 52]. All outcomes were binary except in the
study by Shaya [19], where the outcome was ordinal.

Number and type of predictors
The number of predictors for each prognostic tool ranged
from two to 20, with the mode being three (Table 2). The
five most frequently included predictors were consciousness

(n= 57), hematoma size (n = 43), age (n = 38), intraventricu-
lar blood (n = 32), and the presence of comorbidities (n =
16). Figure 2 stratifies the ten most frequently used variables
for mortality and functional outcome prediction.

Number of patients and events
The number of included patients varied between 38 [15]
and 29,775 [59] and the number of outcomes ranged
from 9 [22] to 6765 [59] (Table 2), with four studies not
reporting this item [14, 15, 34, 66]. The event per vari-
able (EPV) rate ranged from 1.4 [28] to 398 [59], with 21
derivations showing a rate < 10 [10–12, 16, 21–23, 28,
29, 32, 41, 46, 52, 54, 61, 63, 68].

Handling of missing data and loss to follow-up
Handling of missing data was not reported or unclear in
22 studies [11, 13, 17, 19–21, 23, 25, 27, 28, 36, 39, 45,
47, 52, 60, 63–68] (Table 2). Among studies reporting
this item, all of them except two used a complete case
analysis, with the exceptions using a missing cathegory
[37, 59]. Two studies failed to report the number of pa-
tients lost to follow-up [10, 15]: as for the others, the

Table 1 Summary description of prognostic tools (Continued)
Author Year Population Tool Timing Variables AUC (SE)

Weimar [42] 2009 Patients included
in ICH trials

Equation 3 months Age, NIHSS, and level of consciousness. 0·805 (0·020)

Weimar´ [37] 2006 Non-comatose
ICH patients

Equation 100 days Age, NIHSS. 0·861 (0·029)

Weimar´´ [43] 2006 Spontaneous ICH Score 100 days Age, NIHSS, and level
of consciousness.

0·913 (0·018)

Combined outcome prediction tools

Cheung [46] 2003 Nontraumatic ICH Score 30 days IVH, subarachnoid extension,
pulse pressure, NIHSS,
and temperature.

–

–

Cheung´ [46] 2003 Nontraumatic ICH Score 30 days Age, IVH, infratentorial bleed,
NIHSS, and hematoma size.

–

–

Cho [14] 2008 Basal ganglia
hemorrhage

Score 6 months GCS, ICH volume, and IVH. 0·897 (0·033)b

Barthel 0·884a

GOS 0·935ac

Godoy [62] 2006 Primary ICH Score 30 daysb Age, GCS, Graeb score,
ICH volume, and
APACHE2 score
comorbidities.

0·878
(0·028)b

6 monthsc 0.893 (0·025)c

Godoy´ [62] 2006 Primary ICH Score 30 daysb Age, GCS, Graeb score,
ICH volume, and
APACHE2 score
comorbidities.

0·869 (0·029)b

6 monthsc 0·895 (0·024)c

Lei [13] 2016 Cerebral amyloid
related ICH

Score 3 months Age, IVH, midline
shift, and GCS.

0·890
(0·038)b

0·810 (0·031)c

Stein [16] 2010 Supratentorial deep
ICH with secondary IVH

Score 30 daysb Age, GCS, hydrocephalus,
and ICH volume

0·890 (0.036)b

6 monthsc 0·848 (0·056)c

SE standard error, ICH intracerebral hemorrhage, IVH intraventricular hemorrhage, CT computerized tomography, GCS Glasgow Coma Scale, ANN artificial neural
networks, CART classification and regression tree, SVM support vector machine, ICU intensive care unit, CV cardiovascular, NIHSS National Institute of Health Stroke
Scale, LDH lactate dehydrogenase, INR International normalized ratio, AVM arteriovenous malformation, GOS Glasgow Outcome Score
aC-statistics were reported but standard errors were not reported, nor were the number of outcomes
bMortality
cFunctional outcome
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majority of them showed a 100% complete follow-up but
five studies showed a loss < 5% [30, 44, 46, 53, 56], two
studies showed a loss of 5–20% [51, 57] and two studies
showed a loss > 20% [37, 43].

Methods used for tool derivation
Amongst the 72 prognostic tools encountered, 58 were
regression based [10, 13–17, 19, 20, 22–60, 62–65, 67],
11 were machine learning algorithms [12, 18, 26, 28, 54,
61, 67, 68], two were based on univariate analysis [11,
21], and one was unclear on the method of derivation
[66] (Table 2). Within the regression based tools, 51
were newly derived [13–17, 19, 20, 22–41, 44–51, 53–
60, 63–65, 67] and seven were model updates [10, 42,
43, 46, 52, 62]. Newly derived models preferentially used
automated methods (forward/backward stepwise) for
predictor selection during multivariate modelling (re-
ported in 30 derivation procedures [14–17, 19, 20, 22,
23, 25, 26, 28–31, 33, 35–37, 40, 41, 44, 46, 48, 49, 51,
54, 56, 63–65]), whereas the method was unclear for ten
[13, 24, 32, 38, 45, 55, 57, 58, 60]. Model updates con-
sisted in intercept recalibrations [42], modifications of
cut-off levels for specific variables [10], and removal or
introduction of new variables [43, 46, 52, 62]. Of the 58
regression based tools found, more than half (32) were
presented as scores [10, 11, 13, 14, 16, 19, 25, 34–36,
38–40, 43, 45, 46, 48, 49, 51, 52, 56–58, 60, 62–64, 66].
Machine learning methods employed were artificial
neural networks used in four tools [26, 28, 54, 68], deci-
sion trees used in four tools [12, 18, 67], support vector
machine used in one tool [54], random forests used in
one tool [54], and a hybrid approach (decision tree +
support vector machine) also used in one tool [61]
(Table 1). Internal validation methods were used in 19
derivations: bootstrapping was used in two [58, 59],
cross-validation was used in ten [35, 38, 54, 63, 67, 68]
and split sample was used in seven [13, 16, 26, 51, 56,
57, 61].

Prognostic tool performance
C-statistics and respective 95% confidence intervals were
retrieved from 38 mortality prediction tools and 15 func-
tional outcome prediction tools (Table 1). Forest plots
are depicted in Figs. 3 and 4. The lowest reported value
was 0.745 [49] and the highest reported value was 0.984
[28]. Table 3 depicts robust variance estimates of pooled
c-statistics for all tools combined and subgroup analysis
for mortality prediction tools, functional outcome pre-
diction tools, logistic regression based tools, and ma-
chine learning algorithms, along with comparisons using
metaregression. All subgroups showed values for pooled
c statistics > 0.80. Mortality prediction tools and ma-
chine learning algorithms showed higher pooled AUCs
but the differences were not statistically significant.

Other measures of discrimination reported include accur-
acy, reported for 22 tools [20, 24, 26–30, 33, 37, 40–42,
54–56, 63, 68], sensitivity and/or specificity, reported for
31 tools [10, 14, 16, 22, 24, 31, 34, 38, 39, 41, 43, 44, 46,
49–51, 54–56, 58, 62, 63, 68], and predictive values, re-
ported for 22 tools [10, 14, 31, 38, 41, 43, 44, 46, 51, 52,
54, 56, 58, 62, 63]. Calibration assessment was reported
using a calibration plot for three derivations [42, 59, 64],
the Hosmer-Lemeshow test for 14 derivations [20, 22, 24,
28, 32, 33, 39, 47, 51, 58, 60, 63] and the Le Cessie and
Howelingen test reported for one derivation [64].

Discussion
Prognostic models for ICH patients have demonstrated
good discrimination in derivation studies, regardless of
the outcome in question (mortality or functional out-
come). These tools have been derived in different ICH
populations, ranging from “general” ICH (i.e. primary or
spontaneous) to more specific populations (ex. arterio-
venous malformation related bleeds, dialysis patients, co-
matose patients). Cohort studies are the predominant
study design: this design is well suited for prognostic
tool derivations due to an optimal measurement of pre-
dictors and outcome [69]. Other sources of data used in-
cluded registries, case-control studies, randomized
clinical trial data and administrative databases. Of these,
the last two raise concerns about representativeness and
quality of data: on one side, clinical trials usually have
the highest quality of data, but restrictive inclusion and
exclusion criteria might hamper generalizability [70]; on
the other side, administrative databases might allow for
easy access to a large quantity of patient data, but they
are prone to errors in codification, data discrepancy, and
missing data [71]. A considerable number of studies (n
= 11) were multicentric, conceding a theoretical advan-
tage in terms of generalizability. The sampling method
was frequently not reported (n = 15) but was consecutive
for most studies, again assuring the representativeness of
the population and minimizing in a convenient manner
the risk of bias due to selective sampling.
Most mortality prediction tools focused on death

at discharge or 1 month: this timing seems appropri-
ate, since most deaths due to ICH occur early in the
disease [1]. However, the same cannot be said for
functional outcome prediction: significant changes in
functional status have been described in ICH pa-
tients up to 1 year [72], rendering outcome predic-
tions at 1 month or discharge less useful. Noticeably,
12 derivation procedures focused on functional out-
come at discharge or 1 month. A reasonable com-
promise would be prediction at three to 6 months,
allowing enough time for patient recovery without
excessive loss to follow up or occurrence of compet-
ing events. Another important issue is that studies
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with longer follow-ups did not report on outpatient
care interventions (ex. rehabilitation), making
generalizability of their results less straightforward.
Functional outcome prediction was mostly binary
and used different scales and cut off values: whereas
the optimal method of functional outcome

measurement in ICH patients is debatable [73], the
usage of different scales and cut offs between tool
derivation studies makes comparisons between these
instruments more difficult. Only five studies reported
blinded outcome assessment: whereas mortality is a
rather “hard outcome”, functional outcome

Fig. 2 Predictor distribution according to mortality vs functional outcome prediction tool

Fig. 3 Forrest plot of reported c statistics for mortality prediction tools
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evaluation is inherently more subjective and thus
more prone to evaluation bias.
Derivation studies were rather heterogeneous in the

number of patients and events analyzed. Interestingly, the
four most frequently included variables for mortality pre-
diction were also the four most frequently included vari-
ables for functional outcome prediction (Fig. 2). This
overlap suggests that mortality prediction tools should, at
least to some extent, predict functional outcome and
vice-versa. The number of events per variable is a simple
rule of thumb to assess the adequacy of sample size: it is
suggested that a minimum of ten events per variable are
required to prevent overfitting during statistical modelling
[73], but a lower rate was found for 21 tools, although ad-
mittedly not all of them were regression based.
Missing data, whether pertaining to missing predictors or

loss to follow-up, is also a potential source of bias for deriv-
ation studies, with the risk of bias relating to the amount of
missing data and the extent to which it is missing at ran-
dom. Handling of missing predictors was frequently not re-
ported (22 studies). Where it was reported, complete
case-analysis was the method most frequently used, which
potentially creates non-random, non-representative samples
of the source population. For this purpose, guidelines for
prediction modelling studies have suggested preferential
use of other methods such as multiple imputation, noticing
however that if the number of missing predictors is exten-
sive this technique will not be sufficient to handle this prob-
lem [69]. The same argument regarding risk of bias may be
made for loss to follow-up: 4 studies reported a loss to
follow-up > 10%.
Discrimination and calibration are important proper-

ties for predictive models that should be reported. Dis-
crimination relates to the extent to which a model

distinguishes those who will suffer the outcome of inter-
est from those who will not, whereas calibration refers
to the agreement between observed and predicted out-
come rates [74]. C statistic is the most commonly used
performance measure for discrimination [75] but it was
retrieved for only 38 derivations focusing on mortality
and 15 derivations focusing on functional outcome.
Taken together, these studies demonstrated good dis-
criminatory ability for both predictions. The pooled C
statistic for mortality prediction was 0.880 and the pooled
C statistic for functional outcome prediction was 0.872
but these results must be interpreted with caution, due to
the heterogeneity in the included studies in terms of
population studied, selected predictors, method of model
development and choice of outcome. Other forms of dis-
criminatory ability reported include accuracy, sensitivity/
specificity, and positive/negative predictive values, but the
interpretation of these measurements is less straightfor-
ward: the first two require the use of cut-off points for
predicted probabilities, therefore not allowing the full use
of model information, whereas the last depend on the
overall probability of the event in the studied sample,
hampering extrapolations for other populations with dif-
ferent event rates. Calibration was only reported for 14
tools, either using the Hosmer-Lemeshow test, the Le
Cessie and Howelingen test, or a calibration plot.
The most frequently used method for model deriv-

ation was logistic regression. There seems to be no con-
sensus about the best method for variable selection
during multivariate logistic regression modelling, but
most studies used automatic methods. These methods
allow for a more efficient use of data but come with an
added risk of model overfit and possible exclusion of im-
portant predictor variables due to chance, especially

Fig. 4 Forrest plot of reported c statistics for functional outcome prediction tools
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when sample sizes are small [76]. Nearly half of the re-
gression based tools were simplified in the form of risk
scores, allowing for an easier application. Machine learn-
ing algorithms found in our systematic review included
decision trees (four), artificial neural networks (four),
support vector machines (one), random forests (one)
and a hybrid approach (one). These methods are an al-
ternative to logistic regression that requires less formal
statistical training and offer more efficient use of data
and a higher ability to detect non-linear relations. How-
ever, they are prone to overfitting, extremely sensible to
small perturbations in data and empirical in the nature
of model development [77, 78]. Despite being pointed as
more statistically efficient, these methods were not su-
perior to logistic regression for discrimination in our
review.
When models are tested in the same sample on which

they were derived, their results tend to be biased due to
overfitting: to minimize this problem, internal validation
(resampling) techniques can be used. Only 19 deriva-
tions used resampling techniques for overfit adjustment.
Bootstrapping is recommended as the preferred method
of internal validation [74], but was performed for only
two. Other methods encountered included
cross-validation and split sample. The later, used in three
tools, is regarded as the least effective method since it
reduces statistical power for the derivation procedure
and does not validate the results in a new population.
In summary, the results from our review suggest that

the most promising prognostic tools are i) logistic re-
gression based risk scores, which combine the high dis-
crimination showed by logistic regression with the ease
of application typical of prognostic scores; ii) derived
from general cohorts (i.e, spontaneous or primary ICH)
to maximize generalizability; iii) without significant loss
to follow up, to minimize risk of bias; iv) with early out-
come measurement for mortality (i.e, discharge or 1
month) and later outcome measurement for functional
outcome (i.e, 3 months or more) and v) showing high
discrimination with an appropriate EPV rate. Examples
of such scores include the scores by Chen [45], Hemphill
[48], Ho [64], Romano [56] and Ruiz-Sandoval [58] for

mortality, Ji [51] and Rost [57] for functional outcome
prediction and Godoy [62] for a combined outcome. Not
surprisingly, several validation studies have been pub-
lished for these tools. Other factors to take into account
are internal validation and blinded outcome assessment,
the latter being particularly important for functional
status.
Our review has limitations. Firstly, there were no clear

guidelines on conducting and reporting studies for prog-
nostic tool derivation at the time most of these studies
were performed. This lead to frequent underreporting
and higher difficulty in retrieving information about im-
portant methodological aspects and performance mea-
sures, which reflected on the results of our review. As
an example, we were only able to retrieve c-statistics for
53 derivations, which means that several tools could not
be evaluated for this important discrimination measure.
Guidelines have recently been published to give guid-
ance on this issue [69]. Second, studies have demon-
strated that healthcare professionals are frequently
pessimistic in the face of neurological emergencies [79].
This negative perception can result in a “self-fulfilling
prophecy”, whereby the physician’s perception will lead
to early withdrawal of care which, by itself, will facilitate
a negative outcome [79]. Most studies assessing the ef-
fect of early care limitation in the performance of prog-
nostic models have focused on validation studies [47, 80,
81]. According to these studies, models underestimate
adverse outcomes in patients with early care limitation
and overestimate in patients without. However, care
limitation has also been demonstrated to be an inde-
pendent predictor of poor outcome [34, 82]. Hence, one
should expect that withdrawal of care would affect
model performance also in derivation studies, but this
factor was not taken in to account in the majority of
studies included in this review. A possible solution for
this problem is to derive prognostic models from patient
populations with maximum level of care. Such approach
was more recently used by Sembill and collaborators to
derive the max-ICH score [83]. Third, the previously dis-
cussed aspects of prognostic tool derivation are useful to
assess the risk of bias and external validity of these

Table 3 RVE pooled c statistics and subgroup comparisons using metaregression

Prognostic tools Nr
studies

Nr
tools

Pooled
c-stat

95%CI I2 ß 95%CI p

Lower Upper Lower Upper

Overall 40 53 0·878 0·864 0·891 79% – – – –

Mortality prediction tools 30 38 0·880 0·865 0·894 80% -0·007a -0·039a 0·026a 0·679

Functional outcome prediction tools 13 15 0·872 0·842 0·901 77%

Logistic regression based tools 37 43 0·874 0·858 0·889 76% 0·018b -0·034b 0·070b 0·490

Machine learning algorithms 6 9 0·898 0·821 0·976 88%
amortality prediction tools as reference group
blogistic regression based tools as reference group
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instruments, but they do not necessarily determine the
way these tools will behave in clinical practice. Risk of
bias does not necessarily imply existing bias, and the ul-
timate issue is how they behave in an independent exter-
nal dataset [84]. At the time of our search we identified
external validation studies for only 27 prognostic tools
[14, 16, 20, 22, 26, 27, 29–31, 37, 40, 41, 43–46, 48, 54,
56–59, 62, 63]. Nevertheless, derivation studies less
prone to bias are more likely to perform well in valid-
ation studies. The issues discussed in this systematic re-
view should then be taken as a guidance for future
studies seeking to validate existing prognostic tools or to
derive new ones in ICH patients as well as in other
populations.

Conclusions
Prognostic models showed high discrimination in deriv-
ation studies for mortality and functional outcome pre-
diction in ICH patients but numerous methodological
and reporting deficiencies were present, namely insuffi-
cient length of follow-up for functional outcome, ab-
sence of blinding, reporting and handling of missing
data, low EPV rate, infrequent use of appropriate in-
ternal validation procedures and underreporting of im-
portant model performance measures. Machine learning
methods have not proven to be superior to regression
based models and a significant number of these tools
weren’t submitted to external validation. Guidelines have
been reported to support authors in developing and
reporting studies both for prognostic model derivation
and validation [69].
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