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Abstract

Background: We demonstrate an application of Group-Based Trajectory Modeling (GBTM) based on the beta
distribution. It is offered as an alternative to the normal distribution for modeling continuous longitudinal data that
are poorly fit by the normal distribution even with censoring. The primary advantage of the beta distribution is the
flexibility of the shape of the density function.

Methods: GBTM is a specialized application of finite mixture modeling designed to identify clusters of individuals
who follow similar trajectories. Like all finite mixture models, GBTM requires that the distribution of the data
composing the mixture be specified. To our knowledge this is the first demonstration of the use of the beta
distribution in GBTM. A case study of a beta-based GBTM analyzes data on the neurological activity of comatose
cardiac arrest patients.

Results: The case study shows that the summary measure of neurological activity, the suppression ratio, is not well
fit by the normal distribution but due to the flexibility of the shape of the beta density function, the distribution of
the suppression ratio by trajectory appears to be well matched by the estimated beta distribution by group.

Conclusions: The addition of the beta distribution to the already available distributional alternatives in software for
estimating GBTM is a valuable augmentation to extant distributional alternatives.
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Background
A trajectory describes the evolution of a behavior,
biomarker, or some other repeated measure of interest
over time. Group-based trajectory modeling (GBTM)
[1], also called growth mixture modeling [2], is a special-
ized application of finite mixture modeling designed to
identify clusters of individuals who follow similar trajec-
tories. Originally developed to study the developmental
course of criminal behavior [3], GBTM is now widely
applied in biomedical research in such diverse applica-
tion domains as chronic kidney disease progression [4],
obesity [5, 6], pain [7], smoking [8], medication adoption
and adherence [9, 10], and concussion symptoms [11].
Like all finite mixture models, GBTM requires that the

distribution of the data composing the mixture be
specified, although there are no theoretical limits on the
distributions that could be used. In GBTM, parameters

of the specified distribution (e.g. mean and variance of a
normal distribution) are allowed to vary across trajectory
groups. To our knowledge, previously published applica-
tions have all specified the normal distribution, perhaps
with censoring, the Poisson distribution, perhaps with
zero-inflation, or the binary logit function. Real-world
continuous biomedical data are frequently not normally
distributed even after allowing censoring. This is par-
ticularly true of biomarker data, which are generally
positive, right skewed, and often zero-inflated. This
creates a need for flexible alternatives to the Gaussian
distribution [12].
In this article, we demonstrate an application of

GBTM based on the beta distribution. It is offered as an
alternative to the normal distribution for modeling con-
tinuous longitudinal data are poorly fit by other distribu-
tions. The primary advantage of the beta distribution is
the flexibility of the shape of the density function. The
normal density function, even in its censored form, must
follow some portion of it familiar bell-shaped form
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whereas the shape of beta distribution is far less
constrained. The disadvantage of beta distribution is that
the data under study must be transformable to a 0–1
scale.

Methods
The beta distribution can be parameterized in several
different ways. One which is particularly useful for our
purposes was proposed by [12]. Let y denote a beta
distributed random variable:

P y; μ;ϕð Þ ¼ Γ ϕð Þ
Γ μϕð ÞΓ 1−μð Þϕð Þ y

μϕ−1

where 0 < y < 1, 0 < μ < 1 and ϕ > 0. Under this
parameterization E(y) = μ and Var(y) = μ(1 − μ)/1 + ϕ).
The parameter ϕ is known as the precision parameter,
because for any μ a larger value of ϕ results in a smaller
Var(y).
We turn now to incorporating the beta distribution

into GBTM. In describing a GBTM, we denote the
distribution of trajectories by P(Yi), where the random
vector Yi=(yi1, yi1,…yiT) represents individual i’s longitu-
dinal sequence of measurements over T measurement
occasions. The GBTM assumes that the population
distribution of trajectories arises from a finite mixture
composed of J groups. The likelihood for each individual
i, conditional on the number of groups J, may be written
as:

P Y ið Þ ¼
XJ

j¼1

π j∙P Y ij j; θ j
� � ð1Þ

where πj is the probability of membership in group j,
and the conditional distribution of Yi given membership
in j is indexed by the unknown parameter vector θj.
Typically, the trajectory is modeled by a polynomial
function of time (or age). For the case where P(Yi| j; θj)
is assumed to follow the beta distribution, its mean at
time t for group j, μjt, is linked to time as follows:

μjt ¼ β0 j þ β1 jt þ β2 jt
2…:

where, in principle, the polynomial can be of any order.1

Note that the parameters linking μjt to time are trajec-
tory group specific, thus allowing the shapes of trajector-
ies to vary freely across group. Also associated with each
trajectory group is a group specific precision parameter,
ϕj. The remaining components of θj pertain to the
parameterization of πj, which in this case is specified to
follow a multinomial logistic function.
For given j, conditional independence is assumed. In

other words, except as explained by individual i’s
trajectory group membership, serial observations in the

random vector Yi are assumed to be independent of one
another. Thus, we may write:

Pk Y ij j; β j

� �
¼

YT

t¼1

pk yit ; j; β j

� �
ð2Þ

While conditional independence is assumed at the
level of the latent trajectory group, at the population
level outcomes are not conditionally independent
because they depend on a latent construct, trajectory
group membership. See chapter 2 of [1] for a discussion
of the conditional independence assumption.
The GBTM modeling framework does not require

that the random vector Yi be complete for all individ-
uals. For the baseline GBTM specified above, missing
values in Yi are assumed missing at random. However,
for applications such as that described below where
measurement ends due to some external event—in
this case due to the death of the patient or the
patient awakening from coma—an extension of
GBTM described in [13] may be used to account for
non-random dropout.
Detailed discussion of the methods to approach selec-

tion of J, the number of latent groups in the population,
and the order of the polynomial specifying each group’s
trajectory are beyond the scope of this paper and have
been previously described [1]. Briefly, no test statistics
identifies the number of components in a finite mixture
[14, 15]. Also, as argued in [1], in most application do-
mains of GBTM the population is not literally composed
of a finite mixture of groups. Instead the finite mixture
is intended to approximate an underlying unknown
continuous distribution of trajectories for the purpose of
identifying and summarizing its salient features. As de-
scribed in [14, 16], finite mixture models are a valuable
tool for approximating an unknown continuous distribu-
tion. In this paradigm, model selection is performed by
combining test statistics such as AIC and BIC, which
can guide the statistician to identify which model best
fits the data. This is combined with expert knowledge of
which model best reveals distinctive trajectory groups
that are substantively interesting. The order of the
polynomial used to model each group’s trajectory is
typically determined by starting with an assumed
maximum order for each trajectory group then suc-
cessively reducing the order if the highest order term
is statistically insignificant.
All models are estimated with software that is freely

available at https://www.andrew.cmu.edu/user/bjones/. The
maximization is performed using a general quasi-Newton
procedure [17, 18] and the variance-covariance of
parameter estimates are estimated by the inverse of the
information matrix.
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Results
We demonstrate use of the beta distribution in a GBTM
of data quantifying brain activity of 396 comatose pa-
tients resuscitated from cardiac arrest. The University of
Pittsburgh Institutional Review Board approved all as-
pects of this study. The data result from an observa-
tional cohort study of consecutive comatose patients
hospitalized at a single academic center from April 2010
to October 2014 that underwent continuous electroen-
cephalographic (EEG) monitoring for at least 6 h after
resuscitation from cardiac arrest. Not included are
patients that arrested from trauma or catastrophic
neurological event, and those who awakened, died or
were transitioned to comfort care within 6 h of hospital
arrival.
The point of departure for our demonstration is prior

work that applied GBTM to an indicator of brain
activity, suppression ratio, a quantitative measure of the
proportion of a given EEG epoch that is suppressed
below a particular voltage threshold for activity [19]. In
the first hours after cardiac arrest, many patients’ EEGs
are quite suppressed (50–80%) [19] showed that patients
with persistently low or rapidly improving suppression
ratios often make good recoveries, while persistent
suppression over the first 36 h is ominous.
Our main concern with the prior application was the

assumption that suppression ratio followed a censored
normal distribution with a minimum of 0 and a max-
imum of 1. To illustrate the basis for our concern, con-
sider Fig. 1, which reports a histogram of the median

suppression ratio at hour 12. It has two spikes close to
the minimum of 0 and the maximum of 1. In between,
the suppression ratio is approximately uniformly distrib-
uted. The histogram bears no resemblance to the normal
distribution. While it is possible for a mixture of cen-
sored normal distributions to approximate the histogram
in Fig. 1, the distribution of suppression ratio data
within the four groups reported in [19] does not resem-
ble the normal distribution. By contrast, overlying the
histogram is a beta distribution with μ = 0.42 and ϕ =
0.77, which closely resembles the observed distribution
of the suppression ratio.
Figure 2 shows a three group, beta-based trajectory

model over the first 48 h of suppression ratio measure-
ments.2 Because EEG monitoring may be ended either
because the patient dies or awakens, the model
accounted for non-random subject attrition as described
in [13]. The three group model was selected because it
optimized both BIC and AIC compared to fewer groups,
and models with four or more groups were sometimes
unstable and did not identity additional trajectory
groups that were clinically interesting in terms of their
survival prospects. For the three group model, group 1 is
specified to follow a cubic function of time, and groups
2 and 3 are specified to follow quadratic functions of
time because as discuss above the cubic term of these
trajectories were statistically insignificant at the .05 level.
As was found in the prior analysis based on the censored
normal assumption, trajectory group is strongly associ-
ated with survival probability. Overall, only about a third
of patients survive to hospital discharge. However,
survival probability for group 3, which accounts for an
estimated 32.0% of patients who have a persistently high
suppression ratio, only an estimated 2.3% survive. By
contrast group 1, which accounts for an estimated 26.8%

Fig. 1 The Distribution of Hour 12 Suppression Ratio Data with the
Best Fitting Beta Distribution. *The sum of the heights of the relative
frequency density bars multiplied by their width sum to 1.0 so as to
conform the with estimated beta density

Fig. 2 Three Group Trajectory Model with Beta Distributed
Suppression Ratio
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of patients, follows a persistently low suppression ratio
trajectory. For this group survival probability is an
estimated 69.8%. In between are group 2 patients.
How well do these beta distribution-based trajectories

fit the data? Fig. 3 overlays the actual distribution of the
suppression ratio data by trajectory group with the
predicted distribution according to the beta distribution
at hour 24. Inspection of the Figure reveals that for each
trajectory group the actual and predicted values nicely
correspond even though across trajectory group the
distribution of the suppression ratio are quite different.
Trajectory group 1 (Fig. 3a) and trajectory group 2
(Fig. 3b) have right skewed suppression ratio distribu-
tions, whereas the distribution for trajectory group 3
(Fig. 3c) is left skewed. Moreover, the left skew of
groups 1 and 2 are distinctly different, with group 1’s
skew far more extreme than group 2’s. The fit
between the actual and predicted data distribution by
trajectory group is similarly good for other hours.

Discussion
We note that the use of the beta distribution does re-
quire an adjustment for boundary observations, namely
data equal to 0 or 1, which are formally not feasible for
a beta distributed random variable. For boundary obser-
vations we follow the suggestion of [20] and add/sub-
tract from 0/1 data points a small amount equal to .5
divided by the number of subjects, 396. However, a use-
ful generalization to avoid this ad hoc adjustment would
be the addition of the equivalent of the zero-inflation
factor in the Poisson distribution to account for data at
the boundary values of the beta distribution.

Conclusion
We have demonstrated an extension of GBTM that adds
the beta distribution to the heretofore usually applied
distributions for modeling trajectories—the censored
normal, zero-inflated Poisson, and binary logit. The beta
option provides an alternative to the censored normal
distribution for modeling continuous or approximately

continuous measured outcomes measured over age or
time. Figure 1 makes clear that the normal distribution
poorly fits the suppression ratio data whereas the beta
distribution provides a far better fit. Figure 3 also makes
clear that due to the flexibility of the beta distribution a
beta-based GBTM can accommodate differences in the
distribution of the suppression ratio across trajectory
group and over time that are not readily accommodated
by the normal distribution.

Endnotes
1Up to 5th order polynomials can be estimated in the

software used to estimate the models reported in the
case study.

2The call to the Stata-based trajectory estimation used
to estimate this model was as follows:traj, var.(srt1-srt48)
indep(t1-t48) model(beta) order(3 2 2) dropout(0 0 0)
where srt* is the median supression ratio at hour * and t*
is the hour of measurement from 1 to 48 and the “drop-
out” component of the call activates the generalization of
GBTM to account for nonrandom subject attrition.
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