
Ozga and Rauch BMCMedical ResearchMethodology          (2019) 19:118 
https://doi.org/10.1186/s12874-019-0765-1

TECHNICAL ADVANCE Open Access

Introducing a new estimator and test for
the weighted all-cause hazard ratio
Ann-Kathrin Ozga1* and Geraldine Rauch2,3

Abstract

Background: The rationale for the use of composite time-to-event endpoints is to increase the number of expected
events and thereby the power by combining several event types of clinical interest. The all-cause hazard ratio is the
standard effect measure for composite endpoints where the all-cause hazard function is given as the sum of the event-
specific hazards. However, the effect of the individual components might differ, in magnitude or even in direction,
which leads to interpretation difficulties. Moreover, the individual event types often are of different clinical relevance
which further complicates interpretation. Our working group recently proposed a new weighted effect measure for
composite endpoints called the ‘weighted all-cause hazard ratio’. By imposing relevance weights for the components,
the interpretation of the composite effect becomes more ‘natural’. Although the weighted all-cause hazard ratio
seems an elegant solution to overcome interpretation problems, the originally published approach has several
shortcomings: First, the proposed point estimator requires pre-specification of a parametric survival model. Second,
no closed formula for a corresponding test statistic was provided. Instead, a permutation test was proposed. Third, no
clear guidance for the choice of the relevance weights was provided. In this work, we will overcome these problems.

Methods: Within this work a new non-parametric estimator and a related closed formula test statistic are presented.
Performance of the new estimator and test is compared to the original ones by a Monte-Carlo simulation study.

Results: The original parametric estimator is sensible to miss-specifications of the survival model. The new
non-parametric estimator turns out to be very robust even if the required assumptions are not met. The new test
shows considerably better power properties than the permutation test, is computationally much less expensive but
might not preserve type one error in all situations. A scheme for choosing the relevance weights in the planning stage
is provided.

Conclusion: We recommend to use the non-parametric estimator along with the new test to assess the weighted
all-cause hazard ratio. Concrete guidance for the choice of the relevance weights is now available. Thus, applying the
weighted all-cause hazard ratio in clinical applications is both - feasible and recommended.

Keywords: Composite endpoint, Weighted effect measure, Weight-based log-rank test, Simulation study

Background
In many clinical trials, the aim is to compare two treat-
ment groups with respect to a rarely occurring event like
myocardial infarction or death. In this situation, a high
number of patients has to be included and observed over
a long period of time for a demonstration of a relevant
treatment effect and to reach an acceptable power.
Combining several events of interest within a so-called
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composite endpoint can lead to a smaller required sample
size and save time as a higher number of events is mend
to increase the power. The common treatment effect mea-
sure for composite endpoints is the all-cause hazard ratio.
This effect measure is based on the total number of events
irrespective of their type. Commonly, either the log-rank
test or the Cox proportional hazards model [1–4] are
used for analysing the all-cause hazard ratio. However, the
interpretation of the all-cause hazard ratio as a compos-
ite treatment effect can be difficult. This is due to two
reasons: First, the composite might not necessarily reflect
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the effects of the individual components which can dif-
fer in magnitude or even in direction [5–7]. Second, the
distinct event types could be of different clinical rele-
vance. For example, the fatal event ‘death’ is more relevant
than a non-fatal event like ‘cardiovascular hospital admis-
sion’. Moreover, the less relevant event often contributes
a higher number of events and therefore has a higher
influence on the composite effect than the less relevant
event.
Current guidelines on clinical trial methodology hence

recommend to combine only events of the same clini-
cal relevance [3, 8]. However, this is rather unrealistic
in clinical practice, as important components like ‘death’
cannot be excluded from the primary analysis if a fatal
event is clearly more relevant than any other non-fatal
event. Therefore, to address the problems that arise within
the analysis of a composite endpoint other methods to
ease the interpretation of results are needed. An intu-
itive approach could be to define a weighted composite
effect measure with weights that reflect the different levels
of clinical relevance of the components. Weighted effect
measures have been proposed and compared by several
authors [9–14]. Some of the main disadvantages of these
approaches include the high dependence on the censor-
ing mechanism and on competing risks [13, 14]. Recently,
Rauch et al. [15] proposed a new weighted effect measure
called the ‘weighted all-cause hazard ratio’. This new effect
measure is defined as the ratio between the weighted aver-
age of the cause-specific hazards for two groups. Thereby,
the predefined weights are assigned to the individual
cause-specific hazards. With equal weights for the com-
ponents the weighted all-cause hazard ratio corresponds
to the common all-cause hazard ratio and thus defines a
natural extension of the standard approach.
Although this new weighted effect measure seems an

elegant solution to overcome interpretation problems,
the originally published approach has several shortcom-
ings: 1. The proposed original estimator for the weighted
all-cause hazard ratio requires pre-specification of a para-
metric survival model to estimate the individual cause-
specific hazards. The form of the survival model, however,
is usually not known in the planning stage of a trial. 2.
No closed formula for a corresponding test statistic was
introduced but a permutation test was used instead which
comes along with a high computational effort. 3. No clear
guidance for the choice of the relevance weighting fac-
tors was provided. In this work, we want to address these
issues to make the weighted all-cause hazard ratio more
appealing for practical application. In particular we will
provide answers to the following questions:

• How robust is the original estimator for the weighted
all-cause hazard ratio against miss-specifications of
the underlying parametric survival model?

• How robust is the new alternative non-parametric
estimator for the weighted all-cause hazard ratio?

• How can we derive a closed formula test statistic for
testing the weighted all-cause hazard ratio?

• How do the different estimators and tests behave in a
direct performance comparison?

• What are the required steps when choosing adequate
weighting factors in the planning stage?

This paper is organized as follows: In the Methods
Section, we start by introducing the standard unweighted
approach for analysing a composite time-to-first event
endpoint. In the same section, the weighted all-cause haz-
ard ratio is introduced as well as the original parametric
estimator and the permutation test as recently proposed
by Rauch et al. [15]. A new non-parametric estimator for
the weighted all-cause hazard ratio and a related closed
formula test is introduced subsequently. Next, we provide
a step-by-step guidance on the choice of the relevance
weighting factors. In the Results Section, the different
estimators and tests for the weighted all-cause hazard
ratio are compared by means of a Monte-Carlo simulation
study to evaluate their performance for various data sce-
narios, in particular those whomeet and those who violate
the underlying model assumptions. We discuss our meth-
ods and results and we finish the article with concluding
remarks.

Methods
The standard all-cause hazard ratio
The interest lies, throughout this work, in a two-arm clin-
ical trial where an intervention I shall be compared to a
control C with respect to a composite time-to-event end-
point. A total of n individuals are randomized in a 1 : 1
allocation to the two groups. The composite endpoint
consists of k components EPj, j = 1, ..., k. It is assumed
that a lower number of events corresponds to a more
favourable result. The observational period is given by the
interval [ 0, τ ]. The study aim is to demonstrate superior-
ity of the new intervention and therefore a one-sided test
problem is formulated.

Definitions and test problem
The all-cause hazard function for the composite endpoint
is parametrized as

λCE,i(t) = λCE,0(t) exp(βCEXi),
i = 1, ..., n,

where Xi is the treatment indicator which equals 1 when
the individual i belongs to the intervention group and 0
when it belongs to the control. Equivalently, the cause-
specific hazards for the components are given as
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λEPj ,i(t) = λEPj ,0(t) exp(βEPjXi),
i = 1, ..., n, j = 1, ..., k.

Note that the hazard for the composite endpoint is the
sum of the cause-specific hazards for the components [15]

λCE(t) =
k∑

j=1
λEPj(t). (1)

The all-cause hazard ratio for the composite is given as

θCE = exp(βCE) = λICE(t)
λCCE(t)

,

where the indices I and C denote the group allocation and
proportional hazards are assumed so that θCE is constant
in time. Note that the proportional hazards assumption
can only hold true for both the composite and for the
components if equal cause-specific baseline hazards are
assumed across all components.
Asmotivated above, a one-sided test problem for the all-

cause hazard ratio is considered. The hypotheses thus read
as

H0 : θCE ≥ 1 versus H1 : θCE < 1. (2)

Point estimator and test statistic
For estimating the all-cause hazard ratio, a semi-
parametric estimator for the all-cause hazard ratio θ̂CE
can be obtained by means of partial maximum-likelihood
estimator from the well-known Cox-model [1].
The most common statistical test to assess the null

hypothesis stated in (2) is the log-rank test. Let tl, l =
1, ..., d, denote the distinct ordered event times for the
pooled sample of both groups, where d is the total num-
ber of observed events irrespective of its type within the
observational period [ 0, τ ]. Moreover, let dEPj ,l = dIEPj ,l +
dCEPj ,l, l = 1, ..., d, j = 1, ..., k denote the observed amount
of individuals that experience an event of type j at time
tl in the pooled sample given as the sum of the specific
group-wise number of events. Similarly, let dl = dIl +
dCl =

k∑
j=1

dIEPj ,l +
k∑

j=1
dCEPj ,l, denote the observed amount

of individuals that experience an event of any type until
time tl in the pooled sample given as the sum of the
group-wise number of events. The number of individu-
als at risk just before time tl is denoted as nl = nIl + nCl .
The Nelson-Aalen estimators for the cumulative all-cause
hazard functions over the entire observational period are
given as

�̂I
CE(τ ) =

∑

tl≤τ

k∑
j=1

dIEPj ,l

nIl
=

∑

tl≤τ

dIl
nIl

and

�̂C
CE(τ ) =

∑

tl≤τ

k∑
j=1

dCEPj ,l

nCl
=

∑

tl≤τ

dCl
nCl

.

Under the null hypothesis stated in (2), the cumulative all-
cause hazards of both groups are equivalent. This means
that the sum of the cause-specific hazards are assumed
to be equivalent. This does not automatically imply that
the cause-specific hazards are also equivalent. However,
this more specific assumption is required to deduce the
test statistic of the weight-based log-rank test. Under the
null hypothesis (2) and the additional assumption that the
cause-specific hazards are equivalent, the random variable
DI
l , l = 1, ..., dI , for randomly sampling dIl events from nIl

patients where nIl is a subset of the pooled sample with
nIl + nCl individuals including a total of dl events at a fixed
time point tl is hypergeometrically distributed as

DI
l ∼ Hyp

(
nIl + nCl , dl, d

I
l

)
.

Then the expectation of the additive DI
l over all distinct

tl ≤ τ is

E

⎛

⎝
∑

tl≤τ

DI
l

⎞

⎠ =
∑

tl≤τ

E
(
DI
l
) =

∑

tl≤τ

nIl
nIl + nCl

dl.

and the variance is given as

Var

⎛

⎝
∑

tl≤τ

DI
l

⎞

⎠ =
∑

tl≤τ

Var
(
DI
l
)

=
∑

tl≤τ

nIl n
C
l (nIl + nCl − dl)dl

(nIl + nCl )2(nIl + nCl − 1)
.

The corresponding log-rank test thus reads as [16]

LR :=
∑
tl≤τ

(
dIl − nIl dl

nIl+nCl

)

√
∑
tl≤τ

nIl n
C
l (nIl+nCl −dl)dl

(nIl+nCl )2(nIl+nCl −1)

. (3)

The test statistic LR is approximately standard normally
distributed under the null hypothesis given in (2). Neg-
ative values of the test statistic favour the intervention
and therefore the null hypothesis is rejected if LR ≤
−z1−α , where z1−α is the corresponding (1 − α)-quantile
of the standard normal distribution and α is the one-sided
significance level.

The weighted all-cause hazard ratio
Definitions and test problem
The idea of the weighted all-cause hazard ratio is to
replace the standard all-cause hazard given in (1) by a
weighted sum of the cause-specific hazards using pre-
defined relevance weights for the individual components
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that refer to their clinical relevance. The weighted all-
cause hazard is then given as

λwCE(t) :=
k∑

j=1
wEPj · λEPj(t) (4)

where the non-negative weights wEPj ≥ 0, j = 1, ..., k,
are reflecting the clinical relevance of the components
EPj, j = 1, ..., k. If the weights are all equally set to 1
(wEP1 = wEP2 = ... = wEPk = 1), then the weighted
all-cause hazard corresponds to the standard all-cause
hazard.
The ‘weighted all-cause hazard ratio’ as proposed by

Rauch et al. [15] is then given as

θwCE(t) :=
λ
I,w
CE(t)

λ
C,w
CE (t)

, (5)

where the indices I and C denote the group allocation.
Note that the weighted all-cause hazard ratio is a time-
dependent effect measure except for the case of equal
baseline hazards across the components [15] which refers
to

λCE,0(t) = λEP1,0(t) = ... = λEPk ,0(t).

The weighted all-cause hazard ratio can also be integrated
over the complete observational period [ 0, τ ]

�w
CE(τ ) := 1

τ

∫ τ

0
θwCE(t)dt. (6)

In the remainder of the work, we will concentrate on the
weighted all-cause hazard ratio at a predefined time-point
for the sake of simplicity. Again, a one-sided test problem
for the weighted all-cause hazard ratio is considered

H0 : θwCE ≥ 1 versus H1 : θwCE < 1. (7)

The hypotheses to be assessed in the confirmatory anal-
ysis are thus equivalent to the common unweighted
approach.

Original point estimator and test statistic
In order to estimate the weighted all-cause hazard ratio
Rauch et al. [15] proposed to identify and estimate the
cause-specific hazards via a parametric survival model.
Rauch et al. [15] thereby focused on the Weibull model.
This approach is thus based on the assumption that
the cause-specific hazards for each component are pro-
portional. With the estimated cause-specific hazards
λ̂IEPj and λ̂CEPj derived from the Weibull model, a para-
metric estimator for the weighted all-cause hazard ratio is
given by

θ̂wCE(t) =

k∑
j=1

wEPj · λ̂IEPj(t)

k∑
j=1

wEPj · λ̂CEPj(t)
. (8)

The pre-specification of a survival model to identify the
cause-specific hazard must be seen as a considerable
restriction as the shape of the survival distribution is usu-
ally not known in advance. Thus, it is of interest to eval-
uate how sensible the parametric estimator reacts when
the survival model is miss-specified. Moreover, there is
the general interest in deriving a less restrictive non-
parametric estimator.
A related variance estimator for (8) cannot easily be

deduced and thus an asymptotic distribution of the para-
metric estimator given in (8) is not available. Therefore,
Rauch et al. [15] considered a permutation test to test
the null hypothesis specified above. For the permutation
test the sampling distribution is built by resampling the
observed data. Thereby, the originally assigned treatment
groups are randomly assigned to the observation without
replacement in several runs. Although this is an ele-
gant option without the need to make further restrictive
assumptions, the disadvantage is that such a permutation
test is not available as a standard application in statistical
software but requires implementation.Moreover, depend-
ing on the trial sample size and the computer capacities,
this is a very time consuming approach.

New point estimator and closed formula test statistic
To derive the new point estimator, we will assume in the
following that the baseline hazards for all individual com-
ponents and for the composite are equivalent within each
group, meaning that

λCE,i(t) = λ0(t)exp(βCEXi)

= λ0(t)
k∑

j=1
exp(βEPjXi)

i = 1, ..., n, and thus (4) reads as

λwCE,i(t) = λ0(t)
k∑

j=1
wEPjexp(βEPjXi).

This is a very restrictive assumption usually not met in
practice. The assumption is only required to formally
derive the new non-parametric estimator. We do not gen-
erally focus on data situations were this assumption is
fulfilled. The estimator is only relevant for practical use
if deviations from this assumptions produce no relevant
bias. This will be investigated in detail in the sections
Simulation scenarios and Results.
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Under this assumption, the baseline hazards in the
representation of the weighted all-cause hazard ratio
cancel out. By this, the weighted all-cause hazard ratio
is no longer time-dependent. It is therefore possible
to replace the cause-specific hazards by the cumulative
cause-specific hazards:

θwCE = θwCE(t) =

k∑
j=1

wEPjλ
I
EPj(t)

k∑
j=1

wEPjλ
C
EPj(t)

=

k∑
j=1

wEPjλ0(t)exp(βEPj · 1)
k∑

j=1
wEPjλ0(t)exp(βEPj · 0)

=

k∑
j=1

wEPj
∫ t
0 λ0(s)exp(βEPj)ds

k∑
j=1

wEPj
∫ t
0 λ0(s)exp(0)ds

=

k∑
j=1

wEPj�
I
EPj(t)

k∑
j=1

wEPj�
C
EPj(t)

, (9)

where �EPj(t), j = 1, ..., k, refer to the corresponding
cause-specific cumulative hazards over the period [ 0, t].
With Xi equal to 1 if the individual i belongs to the
intervention and 0 otherwise. This representation can
be used to derive a non-parametric estimator for the
weighted all-cause hazard ratio using the corresponding
non-parametric Nelson-Aalen estimators given as

�̂I
EPj(t) :=

∑

tl≤t

dIEPj ,l
nIl

, �̂C
EPj(t) :=

∑

tl≤t

dCEPj ,l
nCl

,

using the notations given in section Point estimator and
test statistic. By this a non-parametric estimator for the
weighted all-cause hazard ratio is given by

θ̃wCE(t) :=

k∑
j=1

wEPj · �̂I
EPj(t)

k∑
j=1

wEPj · �̂C
EPj(t)

. (10)

In contrast to the parametric estimator θ̂wCE(t) given
in (8), the non-parametric estimator θ̃wCE(t) given in (10)
does not require the pre-specification of a survival model.
However, the correctness of the non-parametric estima-
tor is still based on the assumption of equal cause-specific
baseline hazards. In case the baseline hazards differ, θ̃wCE(t)
can be calculated but represents a biased estimator for
θwCE(t). Therefore, it is of interest to evaluate how sensi-
ble the non-parametric estimator reacts when the equal
baseline hazards assumption is violated.
An alternative testing procedure to the discussed per-

mutation test can be formulated by a weight-based log-
rank test statistic derived from a modification of the
common log-rank test statistic given in (3). We use
the expression ‘weight-based log-rank test’ instead of
‘weighted log-rank test’, as in the literature the weighted
log-rank test refers to weights which are assigned to
the different observation time points whereas we aim
to weight the different event types of a composite
endpoint.
Under the null hypothesis (7) and under the assump-

tion that the weighted all-cause hazards are equal between
groups, the random variable DI

EPj ,l, j = 1, ..., k, for ran-
domly sampling dIEPj ,l events of type EPj from nIl patients
where nIl is a subset of the pooled sample with nIl+nCl indi-
viduals including a total of dl events at a fixed time point
tl is hypergeometrically distributed as

DI
EPj ,l ∼ Hyp

(
nIl + nCl , dEPj ,l, d

I
EPj ,l

)
.

The expectation of the additive weighted DI
EPj ,l over all

distinct tl ≤ τ is given as

E

⎛

⎝
∑

tl≤τ

k∑

j=1
wEPj · DI

EPj ,l

⎞

⎠

=
∑

tl≤τ

k∑

j=1
wEPjE

(
DI
EPj ,l

)

=
∑

tl≤τ

k∑

j=1
wEPj

nIl
nIl + nCl

dEPj ,l

=
∑

tl≤τ

nIl
nIl + nCl

k∑

j=1
wEPjdEPj ,l

and the variance is given as
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Var

⎛

⎝
∑

tl≤τ

k∑

j=1
wEPj · DI

EPj ,l

⎞

⎠

=
∑

tl≤τ

k∑

j=1
w2
EPjVar

(
DI
EPj ,l

)

=
∑

tl≤τ

k∑

j=1
w2
EPj

nIl n
C
l (nIl + nCl − dEPj ,l)dEPj ,l

(nIl + nCl )2(nIl + nCl − 1)

=
∑

tl≤τ

nIl n
C
l

(nIl + nCl )2(nIl + nCl − 1)
·

⎛

⎝(nIl + nCl )

k∑

j=1
w2
EPj · dEPj ,l −

k∑

j=1
w2
EPj · d2EPj ,l

⎞

⎠ ,

assuming that no events of different types occur at the
same time point.
Thus, the weight-based log-rank test for the proposed

weighted effect measure can be defined analogous to (3)
as

LRw :=
∑
ti≤τ

(
k∑

j=1
wEPj d

I
EPj ,i

− nIi
nIi+nCi

k∑
j=1

wEPj dEPj ,i

)

√√√√√√√√
∑
ti≤τ

⎛

⎜⎜⎜⎝

nIi n
C
i

⎛

⎝
(
nIi+nCi

) k∑

j=1
w2EPj

dEPj ,i−
k∑

j=1
w2EPj

d2EPj ,i

⎞

⎠

(
nIi+nCi

)2(
nIi+nCi −1

)

⎞

⎟⎟⎟⎠

. (11)

Under the null hypothesis of equal weighted compos-
ite (cumulative) hazards the test statistic (11) is approx-
imately standard normal distributed. Hence, the null
hypothesis is rejected if LRw ≤ −z1−α , where z1−α is the
corresponding (1 − α)-quantile of the standard normal
distribution and α is the one-sided significance level.
Note that the common weighted log-rank test can be

shown to be equivalent to the Cox score test [16] because
the weights are working on the coefficient β and thus the
partial likelihood and its logarithm can be easily deduced.
The intention of the common weighted log-rank test is
to weight the time points. However, in our weight-based
log-rank test, the weights have another meaning and are
working on the whole hazard not only on the coefficient.
Thus, the log-likelihood translates to a form were the
weights are additive and therefore the score test does not
translate to the test statistic proposed in this work. This
was also the reason why we called our test ’weight-based’
and not ’weighted’ log-rank test. Our test is valid but must
be interpreted as a Wald-type test statistic.

Step-by-step guidance for the choice of weights
When using the weighted all-cause hazard ratio as the effi-
cacy effect measure for a composite endpoint it is impor-
tant to fix the weights in the planning stage of the study.

This can be seen as a quite challenging task, as the choice
of the weights importantly influences the final outcome
and the interpretation of the results. Thus, it is impor-
tant to choose the weights in a well-reflected way and not
arbitrarily. To help researchers with this task, we provide
detailed steps on how to choose appropriate weights for a
specific clinical trial situation.When discussing the choice
of weights, it must be kept in mind that by using the stan-
dard all-cause hazard, i.e. the unweighted scenario, this
corresponds to equal weights for all components imply-
ing that event types with a higher event frequency are
naturally up-weighted. Therefore, equal weights for all
components can be considered at least as arbitrary as pre-
defined weights according to relevance considerations. To
define reasonable weights, we first recall the weighted
all-cause hazard function as introduced in (4)

λwCE(t) =
k∑

j=1
wEPj · λEPj(t), j = 1, .., k.

The weighted all-cause hazard can also be interpreted as
the standard all-cause hazard based on modified cause-
specific hazards λ̃EPj(t) where

λ̃EPj(t) := wEPj · λEPj(t), j = 1, .., k.

Thus, by introducing the component weights we implicitly
modify the event time distribution that is the correspond-
ing survival function. When choosing a weight unequal to
1, the survival distribution changes its shape. For a weight
larger than 1, the number of events artificially increases
and as a consequence, the survival function decreases
sooner. In contrast, for a weight smaller than 1 the sur-
vival distribution becomes more flat as the number of
events is artificially decreased. Whereas the all-cause haz-
ard ratio can be heavily masked by a large cause-specific
hazard of a less relevant component, a more relevant com-
ponent with a lower number of events can only have a
meaningful influence on the composite effect measure,
when it is up-weighted (or if the less relevant component
is down-weighted accordingly). On the contrary, if a large
cause-specific hazard is down-weighted this can result in
a power loss. Therefore, weighting can improve interpre-
tation but the effect on power can be positive or negative,
depending on the data situation at hand.
In order to preserve the comparability to the

unweighted all-cause hazard ratio, we recommend to
fix the weight of the most important component, which
is often given by ‘death’, to 1. All other weights should
then be chosen smaller or equal to 1. When considering
a weight for the most relevant component larger than 1,
this results in endless possibilities and it becomes more
difficult to set the weights for the other less relevant
events in an adequate relation. The general recommenda-
tion of fixing all weights wEPj ≤ 1, j = 1, ..., k is moreover
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reasonable because choosing a set of weights which are
both - smaller and greater than 1 - can cause a situation
where the weighted all-cause hazard is equivalent to the
standard all-cause hazard. This is problematic because in
this case we cannot differentiate if the effect is due to the
weighting scheme or due to the underlying cause-specific
hazards. For illustration of the latter problem, consider
two event types EP1 and EP2 with exponentially dis-
tributed event times, where EP1 corresponds to the more
relevant endpoint

λEP1(t) = 0.2 λEP2(t) = 0.3.

This leads to the standard all-cause hazard

λCE(t) = 0.2 + 0.3 = 0.5.

If the weights are chosen as wEP1 = 1.3 and wEP2 = 0.8
the weighted cause-specific hazards are given as

λ̃EP1(t) = 1.3 · 0.2 = 0.26
λ̃EP2(t) = 0.8 · 0.3 = 0.24

and therefore, the weighted all-cause hazard is equiva-
lently given by

λwCE(t) = 0.26 + 0.24 = 0.5.

Choosing the weights wEP1 = 1 and wEP2 = 0.6 gives the
weighted cause-specific hazards

λ̃EP1(t) = 1 · 0.2 = 0.2
λ̃EP2(t) = 0.6 · 0.3 = 0.18,

and therefore

λwCE(t) = 0.2 + 0.18 = 0.38,

where the influence of the weights is now visible. Instead
of interpreting the weighted hazards, for the applied
researcher it might be easier to consider the correspond-
ing weighted composite survival function SwCE(t) given
as

SwCE(t) = exp(−�w
CE(t)) = exp

(
−

∫ t

0
λwCE(x)dx

)

= exp

⎛

⎝−
∫ t

0

⎛

⎝
k∑

j=1
wEPj · λEPj(x)

⎞

⎠ dx

⎞

⎠

= exp

⎛

⎝−
k∑

j=1
wEPj

∫ t

0

(
λEPj(x)

)
dx

⎞

⎠

= exp

⎛

⎝−
k∑

j=1
wEPj�EPj(t)

⎞

⎠

=
k∏

j=1
exp(−wEPj�EPj(t)).

It can be seen that the weights are still working mul-
tiplicatively on the cumulative cause-specific hazards
and the event time distributions for the different event
types are also connected multiplicatively. By the intro-
duction of the weights we still assume that an indi-
vidual can only experience one event but (for weights
smaller than 1) less individuals experience the event. This
means that the expected number of events decreases
with a weight smaller than 1. Therefore, the weighted
survival function for the composite still corresponds
to a time to first event setting but with a proportion
of events which is lower compared to the unweighted
approach.
Comparing the graphs of the weighted and unweighted

event time distributions can be a helpful tool for choosing
the weights as shown in Fig. 1 for the exemplary set-
ting discussed above. It can be seen that both weighting
schemes yield a larger difference between the event time
distributions when comparing the intervention versus the
control, however the second weighting scheme shows the
larger difference.
In conclusion, we recommend to proceed as follows in

order to choose the weights

1. Identify the clinically most relevant event type (e.g.
‘death’) and assign a weight of 1.

2. Choose the order of clinical relevance for the
remaining event types. For each event type EPj you
should answer the question "How many events of
type EPj can be considered as equally harmful than
observing one event (or any other amount of
reference events) in the clinically most relevant
endpoint?". For example, if in the example given
above 5 events of type EP2 are considered as equally
harmful as one event of EP1, then the weighting
scheme proposed in Scenario B might be preferred. If
instead the researcher arguments that 5 events of
type EP2 are considered as equally harmful as 3
events of EP1, then the weighting scheme proposed
in Scenario A should be preferred. The weights are
thus mend to bring all events to the same severity
scale. By assigning a weight of 1 to the most relevant
event type, this event type acts as the reference event.
Therefore, the weighted survival function and its
summarizing measures (median survival, hazard
ratio) can be interpreted as a standard survival
function for the reference event. For example, if
’death’ is the reference event, on a population and on
an individual patient level, the weighted survival
function then expresses the probability to be neither
dead nor in a condition considered as equally
harmful. The median weighted survival can be
interpreted as the time when half of the population is
either dead or in an equally harmful condition.
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Fig. 1 Event time distributions for two different weighting schemes: Scenario A: wEP1 = 1,wEP2 = 0.6; Scenario B: wEP1 = 1,wEP2 = 0.2

3. If there are some assumption about the form of the
underlying event time distributions, then the
functional form of the cause-specific hazards is
known. The weighted cause-specific hazards are
obtained by simple multiplication with the weighting
factors. We recommend to choose several weighting
scenarios and to plot the resulting weighted and
unweighted event time distributions and to
investigate graphically how different weights would
affect the expected survival time and median survival
per group. Moreover, the weighted and unweighted
hazard ratio can be analytically deduced and
compared. By this, the impact of the weighting
scheme becomes more explicit.

Simulation scenarios
To provide a systematic comparison of the original para-
metric estimator θ̂wCE(t) to the new non-parametric esti-
mator θ̃wCE(t) for the weighted all-cause hazard ratio and
in order to analyse the performance of the weight-based
log-rank test compared to the originally proposed per-
mutation test we performed a simulation study with the
software R Version 3.3.3 [17].
Within our simulation study, we investigate various

data scenarios for a composite endpoint composed of
two components EP1 and EP2. We restrict our simu-
lations to weights given by wEP1 = 1, wEP2 = 0.1 or
wEP1 = 0.1, wEP2 = 1 where the two event types are thus
considered to show a considerable difference in clinical
relevance. The results for another less extreme weighting
scheme are provided as Additional file 1 (i.e. weights
1 and 0.7). A total of 10 scenarios based on different

underlying hazard functions were considered in order to
mimic situations where the underlying assumptions of
both approaches are fulfilled and those where they are
(partly) violated. For the original parametric estimator,
the cause-specific hazards were estimated by fitting
Weibull models. A total of 1000 data sets each with
n = 200 patients (100 patients per group) were simu-
lated for each scenario. The amount of simulated data
sets was limited to 1000 because of the time-consuming
runtime of the permutation test which was based on 1000
runs. We used the pseudo-random generator Mersenne
Twister [18]. For simulating the underlying event times,
the approach described by Bender et al. [19] was used.
The minimal follow-up was either fixed to τ = 1 or τ = 2
year(s). For each scenario the methods were compared on
the same data sets. In case of non-convergence of a model,
the data set was excluded. Table 1 lists the underlying
hazard functions for the different simulation scenarios
and summarizes briefly which assumptions are met. In
Fig. 2 the corresponding weighted and unweighted event
time distributions for the composite for the interven-
tion and the control group are graphically displayed for
all 10 scenarios. In addition, the related weighted and
unweighted hazard ratios for the composite are visualized
along with unweighted cause-specific effects.

For Scenario 1-7 the cause-specific hazards are Weibull,
or exponentially, distributed with the hazard of the
form [20]

λ(t) = κ · ν · tν−1. (12)
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Fig. 2 Event time distributions for the intervention (dashed lines) and control (solid lines) for the composite endpoint based on the unweighted
(black lines) and weighted (yellow and blue lines) cause-specific hazards as well as the unweighted all-cause hazard ratio (black solid line) in
comparison to the weighted all-cause hazard ratios (yellow and blue lines) and the cause-specific hazard ratios (dotted black lines)

Thereby, κ > 0 is the scale parameter and ν > 0 is
the shape parameter. The investigated scenarios show to
some extend the flexibility of the Weibull model. Situ-
ations with earlier occurring events for one event type
(higher cause-specific hazard) and later occurring events
for the other event type (lower cause-specific hazards)

are capture as well as situations where the difference in
hazards is smaller. In the scenarios 1-6 at least one cause-
specific hazard is time-dependent whereas in Scenario 7
the hazards are constant.
The hazard for the composite increases over time for

the Scenarios 1 and 3 and decreases for Scenario 2. For
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the Scenarios 4 and 5 the hazard first decreases and then
increases after a while. For the Scenarios 1 and 3 the pro-
portional hazards assumption is fulfilled for each of the
event types simultaneously. Also note that in Scenario 3
and partly in the Scenarios 4 and 5 the effects for the event
types point into opposite directions. Scenario 6 depicts
a situation where no treatment effect for the individual
components and the composite exists. In Scenario 7 there
are opposite effects for the individual components which
cancel out in the combined composite for one weighting
scheme.
As we aim to quantify how robust the original paramet-

ric estimator for the weighted all-cause hazard ratio based
on the Weibull model is when the event times for the
components in fact do not follow a Weibull distribution,
Scenarios 8 to 10 are based on a Gompertz distribution.
Like the Weibull model the Gompertz model fulfils the
proportional hazards assumptions where the hazard is
parametrized as

λ(t) = κ · eν·t + ε, (13)

which is also referred to the Gompertz-Makeham dis-
tributed hazard [20, 21]. Again, κ > 0 is a scaling param-
eter and ν > 0 a shape parameter. In addition, a more
general term ε ≥ −κ defining the intercept is formulated.
For all Scenarios with Gompertz distributed event times
the hazard for the composite increases over time. For the
situation where the shape parameters are equal across
all event types the proportional hazards assumption does
apply to the composite. This is the case for Scenario 8 but
not for the Scenarios 9 and 10. The proportional hazards
assumption also holds true for each event type separately
for the Scenarios 8 and 9. In Scenario 10 the proportional
hazards assumption is violated for all event types and for
the composite.

Results
Table 2 displays the results of the simulation study for
all Scenarios 1 to 10. Columns 2 and 3 present check
boxes for the underlying model assumptions of the two
estimators. Especially for those scenarios where some
assumptions are violated, we are interested in the (stan-
dardized) bias, the relative efficiency, and the coverage
of the corresponding confidence interval for the different
estimators (see Table 3). Thereby. the bias is quantified
by comparing the mean logarthmized (natural) estima-
tors (Table 2 Columns 10 and 11) to the corresponding
natural logarithm of the true effect (Table 2 Column 7)
which is fixed by the simulation setting. For the stan-
dardized bias the bias is divided by the corresponding
standard error of the estimated effects. The relative effi-
ciency is the quotient of the mean square error of the
original estimator divided by the mean square error of the
non-parametric estimator. A relative efficiency smaller

than one is in favour of the original estimator. The mean
square error is the sum of the quadratic bias and the
quadratic standard error for the logarithmized estimators.
The coverage is the proportion of times the 95% confi-
dence interval for each estimated effect includes the true
effect. To determine the confidence intervals, the stan-
dard error for all estimated effects is required which we
obtained by the permutation distribution. Thereby, again
logarithmic scale is used so that the estimators’ distribu-
tion is not skewed and thus their standard deviation and
the performance measures in Table 3 can be interpreted.
In Column 4 of Table 2 the time point τ at which the
estimators are evaluated is shown and Columns 5 and 6
show the underlying component weights. Note that by
switching the weights between the two components, we
implicitly investigate the influence of all hazard combina-
tions when the relevance of the components is reversed.
Column 7 displays the logarithmized true weighted all-
cause hazard ratio at time τ which can be obtained from
the underlying cause-specific hazard functions. Columns
8 and 9 show the mean amount of events averaged over
all data sets per scenario for all event types separately
and its standard deviation. Columns 10 and 11 show the
mean of the logarithmized estimated weighted all-cause
hazard and its standard deviation based on the original
parametric estimator θ̂wCE(τ ) and based on the new non-
parametric estimator θ̃wCE(τ ). Columns 12 to 13 show the
empirical power values for the originally proposed permu-
tation test based on θ̂wCE(τ ) and for the new weight-based
log-rank test based on θ̃wCE(τ ). Note that the reported
power values correspond to one-sided tests based on a
one-sided significance level of 0.025.
Table 3 depicts the amount of simulations that converged
(Columns 2 and 3), the bias (Columns 4 and 5), the stan-
dardized bias (Columns 6 and 7), the square root of the
mean square error (Columns 8 and 9), the relative effi-
ciency (Column 10), and the coverage (Columns 11 and
12) for the logarithmized original and new estimators.
Scenarios 1 and 3 reflect situations where the propor-

tional hazards assumption is fulfilled for each component
but the Weibull distributed cause-specific hazards are
unequal and thus the composite effect is time-dependent.
Since in this scenarios the assumptions for the original
estimator is fulfilled it is intuitive that the (standardized)
bias is small for the parametric estimator. Although the
assumptions for the non-parametric estimator are vio-
lated the bias is still rather small. This good performance
is also captured in the coverage which is mostly near the
anticipated 95%. It is furthermore intuitive that the orig-
inal estimator shows most often a smaller mean square
error in relation to the non-parametric estimator. Note
that in Scenario 3 the unweighted effects point into dif-
ferent directions but the direction of the weighted effect
depends on the weighting scheme. In the Scenarios 2,
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4, and 5 the proportional hazards assumption is not ful-
filled for neither the components nor for the composite
but the cause-specific hazards still follow a Weibull dis-
tribution. For Scenario 2 it can be seen that the estimated
weighted effects are the same for both estimators but
do not approach the true effect as good as in the Sce-
narios 1 and 3. This is because both approaches need
at least the assumption of proportional hazards in the
components. A similar outcome would be expected for
the Scenarios 4 and 5. However, in both scenarios the
parametric estimator performs much worse than the non-
parametric estimator. This is due to the higher variability
in the estimations. For Scenario 6 where there is no effect
for the unweighted composite both approaches perform
quite well. For the original estimator this was expected
since its assumptions are fulfilled. In Scenario 7 with the
weights 1 for event type 1 and 0.1 for event type 2 the
true combined treatment effect is 0. This is also captured
quite well in both estimators. Note that only for this spe-
cific weighting scheme the composite effect is 0 but not
for the other weighting schemes. However, the perfor-
mance of the estimation approaches is also satisfying for
the other weighting schemes. In Scenario 8, Gompertz-
Makeham distributed cause-specific hazards are assumed.
Thereby, the proportional hazards assumption is fulfilled
for the components and the composite. Thus, it is intuitive
that the new non-parametric estimator closely coincide
with the true effect. However, the parametric estimator
based on the Weibull model is relevantly biased inde-
pendent of the weighting scheme and shows a higher
variability. Scenario 9 still depicts Gompertz-Makeham
distributed cause-specific hazards but the proportional
hazards assumption is only fulfilled for the components
and not for the composite. Although the cause-specific
baseline hazards are thus unequal the non-parametric
estimator performs better in this scenario whereas the
parametric estimator shows substantial bias and variabil-
ity whichmight be also due to convergence problems. Sce-
nario 10 represents Gompertz distributed cause-specific
hazards where the proportional hazards assumption is
neither fulfilled for the components nor for the composite.
Compared to the two previous scenarios the performance
of the parametric estimator has increased and is not glob-
ally worse than that of the non-parametric estimator. The
performance depends on the weighting scheme. In here,
not all τ -weight-combinations are displayed. However,
the performance of the missing combination scenarios is
comparable to the corresponding scenarios displayed.
In conclusion, the original parametric estimator turns

out to be sensible against model miss-specifications
for estimating the underlying cause-specific hazards as
expressed by most values of the (standardized) bias and
the coverage of the confidence intervals for Scenarios 4,
5, 8, 9, 10. In these scenarios, the performance of the

non-parametric estimator tends to be better because not
only the (standardized) bias is smaller and the coverage
probability is better but also the relative efficiency favours
the non-parametric approach. Moreover, in Scenarios 4
and 5 the (standardized) bias of the parametric estimator
is smaller and its variation is considerably higher which
cannot only be explained by the smaller amount of con-
verged simulations. The higher amount of non-converging
models for the original approach is furthermore a disad-
vantage. In scenarios where the assumption for the para-
metric estimator is fulfilled (Scenarios 1 and 3) its per-
formance tends to be better than for the non-parametric
approach. Although in these scenarios the assumption of
equal cause-specific baseline hazards is violated, the per-
formance of the non-parametric estimator is however not
considerably worse than for the parametric estimator.
Except for Scenario 1b, the power of the weight-based

log-rank test is uniformly equal or larger than the power
of the permutation test. This power advantage in partic-
ular occurs in situations where the two point estimators
coincide (Scenarios 2a and 2b or 10a) or even when the
non-parametric estimator suggests a less extreme effect
(Scenarios 8 or 9). For Scenario 6 where there is no effect
for the components nor for the composite the permu-
tation test in the investigated scenarios performs better
in terms of preserving the type one error. In Scenario 7
where the composite effect is 0 for one weighting scheme
the type one error is preserved for the permutation test as
well as the weight-based log-rank test in this scenario.
If the weights are chosen to be 1 and 0.7, the perfor-

mance comparisons basically come to the same results
(compare Additional file 1). Summarizing the results of
our simulation, the new non-parametric estimator and the
corresponding weight-based log-rank test outperform the
original estimator and the permutation test.

Discussion
In this work, we investigated a new estimator and test
for the weighted all-cause hazard ratio which was recently
proposed by Rauch et al. [15] as an alternative effect mea-
sure to the standard all-cause hazard ratio to assess a com-
posite time-to-event endpoint. The weighted all-cause
hazard ratio as a weighted effect measure for composite
endpoints is appealing because it is a natural extension of
the all-cause hazard ratio. It allows to regulate the influ-
ence of event types with a greater clinical relevance and
thereby eases the interpretation of the results. Generally
it must be noted that the weighted all-cause hazard ratio
was introduced to ease the interpretation of the effect in
terms of clinical relevance. The aim of the weighted effect
measure is not to decrease the sample size or increase the
power. The power of the weighted all-cause hazard ratio
can be larger but may also be smaller than the power of
the unweighted standard approach.
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The original parametric estimator proposed by Rauch
et al. [15] requires the specification of a parametric sur-
vival model to estimate the cause-specific hazards. More-
over, in the original work by Rauch et al. [15] a permu-
tation test was proposed to test the new effect measure
which comes along with a high computational effort. In
this work, we overcome these shortcoming by propos-
ing a new non-parametric estimator for the weighted
all-cause hazard ratio and a closed formula-based test
statistic which is given by a weight-based version of the
well-known log-rank test.
The simulation study performed within this work shows

that the original parametric estimator is sensible to miss-
specifications of the underlying cause-specific event time
distribution. If there are uncertainties about the underly-
ing parametric model for the identification of the cause-
specific hazards we therefore recommend to use the
new non-parametric estimator. In fact, the new non-
parametric estimator proposed in this work turns out to
be more robust even if the required assumption of equal
cause-specific baseline hazards is not met. The relative
efficiency as well as the coverage depict also that the
performance of the non-parametric estimator is in most
cases at least as good as the original parametric estima-
tor. Additionally, in our scenarios convergence problems
arose more often when using the parametric estimator.
This problems in convergence arose in scenarios where
the effect of one event type was either very high at the
beginning of the observational period or there was nearly
no effect at the end of the observational period where
the survival function reaches 0. Moreover, the simula-
tion study shows that the new weight-based log-rank test
results in considerably better power properties than the
originally proposed permutation test in almost all inves-
tigated scenarios. In some scenarios the type one error
might not be preserved and it has to be further inves-
tigated in which this is exactly the case and how it can
be addressed. In addition, the weight-based log-rank test
is computationally much less expensive. However, one
remaining restriction is that confidence intervals cannot
be directly provided because the testing procedure is not
equivalent to the Cox score test. The only possibility to
provide confidence intervals for the weighted hazard ratio
would be by means of bootstrapping techniques.
Apart from investigating the performance of the point

estimator and the related statistical test, we additionally
provide a step-by-step guidance on how to choose the
relevance weights for the individual components in the
planning stage. It is often criticized that the choice of rele-
vance weights in a weighted effect measure is to a certain
extend arbitrary. By applying our step-by-step guidance
for the choice of weights, this criticism can be addressed.
To be concrete, we propose to choose a weight of 1 for the
clinically most relevant component and to choose weights

smaller or equal to 1 for all other components by judging
how many events of a certain type would be considered
as equally harmful than an event in the most relevant
component. Using this approach for defining the weights,
comparability to the unweighted approach is given and the
most relevant event serves as a reference. When the shape
of the different event time distributions is known in the
planning stage, we also recommend to look at the plots
of the weighted and unweighted event time distributions
for different weight constellations to visually inspect the
influence of the weight choice on the shape of the survival
curves and on the treatment effect.

Conclusion
In conclusion, we recommend to use the new non-
parametric estimator along with the weight-based log-
rank test to assess the weighted all-cause hazard ratio.
When applying the weighting scheme proposed within
our step-by-step guidance, the choice of the weights can
be motivated with reasonable clinical knowledge. With
the results from this work, the weighted average haz-
ard ratio therefore becomes a very attractive new effect
measure for clinical trials with composite endpoints.

Additional files

Additional file 1: The additional file contains further simulation results
with the distributions described in this work but other weighting
schemes.(PDF 172 kb)
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