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Abstract

Background: The life expectancy of cancer patients, and the loss in expectation of life as compared to the life
expectancy without cancer, is a useful measure of cancer patient survival and complement the more commonly
reported 5-year survival. The estimation of life expectancy and loss in expectation of life generally requires
extrapolation of the survival function, since the follow-up is not long enough for the survival function to reach 0. We
have previously shown that the survival of the cancer patients can be extrapolated by breaking down the all-cause
survival into two component parts, the expected survival and the relative survival, and make assumptions for
extrapolation of these functions independently. When extrapolating survival from a model including covariates such
as calendar year, age at diagnosis and deprivation status, care has to be taken regarding the assumptions underlying
the extrapolation. There are often different alternative ways for modelling covariate effects or for assumptions
regarding the extrapolation.

Methods: In this paper we describe and discuss different alternative approaches for extrapolation of survival when
estimating life expectancy and loss in expectation of life for cancer patients. Flexible parametric models within a
relative survival setting are used, and examples are presented using data on colon cancer in England.

Results: Generally, the different modelling assumptions and approaches give small differences in the estimates of
loss in expectation of life, however, the results can differ for younger ages and for conditional estimates.

Conclusion: Sensitivity analyses should be performed to evaluate the effect of the assumptions made when
modelling and extrapolating survival to estimate the loss in expectation of life.

Keywords: Life expectancy, Loss in life expectancy, Cancer, Survival, Relative survival

Introduction and Background
A useful summary measure for survival data is the mean
survival time, or life expectancy, as an alternative to
survival proportions at selected time points. The life
expectancy from the date of cancer diagnosis until death
(irrespective of cause of death), gives an estimate of aver-
age the number of years cancer patients are expected to
live after they are diagnosed with cancer [1, 2]. By con-
trasting the life expectancy among cancer patients to the
life expectancy amongst similar people in the general pop-
ulation, one can estimate the loss in expectation of life
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due to cancer [3]. This can be expressed as a propor-
tion of expected life lost by dividing the difference by
the expectation of life. The loss in expectation of life, or
the proportion of expected life lost, are useful measures
for quantifying the cancer burden in the society and dif-
ferences in survival between groups. But it can also be
quantified at an individual level and interpreted as the
average number of life years a cancer patient is expected
to lose due to the cancer diagnosis, and can therefore
be an important measure in clinical research and use-
ful for understanding the impact of a cancer diagnosis
on an individual’s life expectancy [4–6]. This measure,
although theoretically easy to estimate, generally requires
extrapolation of both the expected (general-population)
survival and the observed all-cause survival (of the cancer
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patients), due to limited follow-up. The expected survival
can be extrapolated by making assumptions about the
future mortality in the general population. We have pre-
viously shown that the survival of the cancer patients can
be extrapolated by breaking down the all-cause survival
into two component parts, the expected survival and the
relative survival, and make assumptions for extrapolation
of these functions independently [7]. For most types of
cancer the excess mortality is low after some years from
diagnosis, so the expected mortality dominates for long-
term follow-up, and the extrapolation therefore mostly
depends on the extrapolation of the expected survival.
This approach has previously been proposed by Hakama
and Hakulinen, by using grouped data (a life tables of rel-
ative survival), by assuming that the cancer patients have
a constant excess hazard after the available follow-up [3].
Others have proposed methods where the cancer patients
are assumed to have the same mortality as the general
population (excess mortality is zero) after the observed
follow-up [1, 8], or extrapolated survival based on a lin-
ear regression of some functiont of the survival [9]. We
proposed a modelling approach, using flexible paramet-
ric models, where the assumption of a constant, or zero,
excess hazard is not required [7].
When extrapolating survival from a model including

covariates such as calendar year, age at diagnosis and
deprivation status, care has to be taken regarding the
assumptions underlying the extrapolation. There are often
different alternative ways for modelling covariate effects
or for assumptions regarding the extrapolation. In this
paper we will describe and discuss a few of the different
options, and show examples using data on colon cancer in
England.
The loss in expectation of life (LEL) due to cancer is

the difference between the expectation of life the patients
would have had if they had not been diagnosed with can-
cer, estimated using population mortality rates for the
general population, and the observed expectation of life
among the cancer patients, as illustrated in Fig. 1 and
Eq. 1. S∗(t) is the expected survival, usually obtained from
population life tables. The overall, or all-cause, survival,
S(t), can vary by values of the covariates, z, which can, for
example, be patient characteristics such as sex, age and
calendar year of diagnosis and/or tumour characteristics
such as stage or grade. The expected survival is allowed to
vary by the factors z′ , on which the population mortality
rates are stratified, which usually represent a subset of z,
typically age, sex and calendar year.

LEL(z) =
∫ tmax

0
S∗(u; z′

)du −
∫ tmax

0
S(u; z)du, (1)

where t = 0 is the time of diagnosis. Integration should in
theory be done up to ∞, but in practice a time point, tmax,
is used where the survival function is assumed to have

reached zero (i.e. all patients are assumed dead). It can also
be of interest to estimate conditional LEL, conditioning on
survival up to a certain point, tc,

LEL(z|T > tc) =
∫ tmax

tc

S∗(u; z′
)

S∗(tc; z
′
)
du−

∫ tmax

tc

S(u; z)
S(tc; z)

du.

(2)

Another measure of interest is the proportion of expected
life lost (PELL), given by Eq. 3,

PELL(z) =
∫ tmax
0 S∗(u; z′

)du − ∫ tmax
0 S(u; z)du∫ tmax

0 S∗(u; z′
)du

. (3)

To get a measure of the impact a cancer has on a popula-
tion level the LEL for each individual, j, in a cohort of N
individuals can be summed;

N∑
j=1

LEL(zj). (4)

This gives the total amount of person-years lost in the
population.
The difficulty in estimating these quantities is that

we rarely have follow-up until the time point when all
individuals have died, and therefore need to extrapo-
late the survival functions, as illustrated in Fig. 2. The
expected survival function can be estimated by mak-
ing assumptions about the future mortality rates in the
population, which are usually easily available, but it is
difficult to extrapolate the all-cause survival among the
cancer patients. Extrapolations of the all-cause survival
can be based on a parametric distribution, but it is dif-
ficult to find a parametric model that fits the observed
data and also capture the mortality beyond the available
data well enough for reliable extrapolation. By break-
ing down the all-cause survival into two component
parts, the expected survival and the cancer survival, one
can extrapolate these two component separately. Since
the mortality due to cancer decreases with time for
most cancers, and is low for long-term follow-up, the
expected mortality dominates in the extrapolation. We
have previously shown that extrapolations of all-cause
survival among cancer patients is possible by extrapolat-
ing the cause-specific survival using a relative survival
framework.

Relative survival
Relative survival [10, 11] is the method of choice for esti-
mating cancer patient survival, as it does not rely on
correct classification of cause of death. It is defined as the
observed (all-cause) survival among the cancer patients
divided by the expected survival the patients would have
experienced had they not had cancer.
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Fig. 1 Illustration of loss in expectation of life, LEL

In the relative survival setting, the all-cause survival,
S(t), as a function of time t since diagnosis, can be written
as

S(t; z) = S∗(t; z′
)R(t; z), (5)

where R(t) represents the relative survival. The hazard
analogue of relative survival is excess hazard, and it mea-
sures the mortality the patients experience in excess of
what would have been expected if they had not had cancer.
The overall, all-cause, hazard, h(t), among the patients is
written as the sum of the expected hazard, h∗(t), and the

excess hazard, λ(t), associated with the cancer

h(t; z) = h∗(t; z′
) + λ(t; z). (6)

The relative survival can be estimated using a modelling
approach that enables flexible modelling of the baseline
excess hazard [11], and one such model is the flexible
parametric survival model [12, 13]. The flexible paramet-
ric survival model [12, 13] uses restricted cubic splines to
model the baseline cumulative hazard. The use of splines
enables the model to capture complex baseline cumulative
hazard functions, and gives a parametric model with-
out the need of strong distributional assumptions. The
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Fig. 2 Illustration of extrapolation of survival functions
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flexible parametric survival model was first introduced by
Royston and Parmar in 2001 [12, 14]. The model has also
been extended for relative survival, by modelling the log
cumulative excess hazard using restricted cubic splines
[13, 15]. In a flexible parametric survival model for rela-
tive survival, the log cumulative excess hazard, ln�(t; z),
is modelled as a function of follow-up time, t, using splines
as:

ln(�(t; z)) = s(x; γ0) + zβ , (7)

where x = ln(t), s(x; γ0) is a restricted cubic spline
function and z are covariate effects. Time-varying effects
(non-proportional hazards) can easily be modelled by
adding interaction terms by a covariate and a new set of
spline variables for time. The relative survival can easily be
obtained using the relationship between the survival and
the cumulative hazard function,

R(t; z) = exp(−�(t; z)). (8)

Approaches for extrapolation of relative survival
Based on a flexible parametric relative survival model the
extrapolated relative survival can be estimated. There are
different approaches that can be used for extrapolating the
relative survival, by making different assumptions about
the excess mortality beyond the point of available data.
The two most common approaches are to assume pop-
ulation cure [16] or to extrapolate based on the model
parameters. Population cure is when the mortality rate
of the diseased patients return to that expected in the
population, i.e. the excess hazard goes to zero. When the
full (extrapolated) relative survival function has been esti-
mated the full (extrapolated) all-cause survival function
can be estimated bymultiplying the relative survival by the
(extrapolated) expected survival function [7]. The LEL is
then estimated as

LEL(z) =
∫ tmax

0
S∗(u; z′

)du−
∫ tmax

0
R(u; z)S∗(u; z′

)du.

(9)

We have shown that estimating the LEL using Eq. 9 per-
forms much better than using Eq. 1 [7].

Methods
To illustrate different assumptions and approaches that
can be used when estimating LEL, National Cancer Reg-
istry Data provided by Public Health England was used.
We used data on colon cancer (International Classifica-
tion of Diseases–10 site code C18) in England in the years
1998-2013. The dataset contains all individuals diagnosed
with colon cancer in England during the specified years,
and holds information about the individual as well as
information about the cancer diagnosis. We used infor-
mation on age at diagnosis, calendar year of diagnosis,

time between diagnosis and death or censoring, as well
as a categorical variable of deprivation status at diagnosis
based on postcode areas split into five categories. Follow-
up information was available until 31st of December 2016,
and survival times were censored at 12 years post diag-
nosis. There were in total 303,792 individuals included in
the analyses. We used 8 different models or approaches to
estimate the LEL for this group of patients, as listed below,
to illustrate various modelling choices. If not otherwise
specified all estimations were based on flexible parametric
models for excess mortality, with 5 degrees of freedom for
the baseline cumulative hazard and 3 degrees of freedom
for time-varying effects. The effect of age and calen-
dar year were modelled continuously using splines with
4 degrees of freedom and interactions between age and
year were included using splines with 2 degrees of free-
dom. All effects were allowed to be time-varying, i.e. we
relaxed the proportional excess hazard assumption, which
is important since the proportional hazards assumption
is often violated in population based cancer studies. For
the expected mortality and survival we used a population
lifetable specific to England stratified by age, sex and cal-
endar year. Extrapolations of excess mortality was based
on the model parameters, and future expected mortality
rates were assumed the same as in 2013 (the last year of
available data in the population lifetable).
Approach 1 The model and approach described above.
Approach 2 The future expected mortality rates beyond

2013 were based on projected mortality rates in
England.

Approach 3 Cutoffs were used for age so that effect of
age on excess mortality was the same for all ages up
to 40, as well as all ages from 90 and above.

Approach 4 A period approach was used, with period
window 1st of January 2012 to 31st of Dec 2013, and
calendar year was not included in the model.

Approach 5 As 1, but 7 degrees of freedom for the base-
line cumulative hazard and 4 degrees of freedom for
time-varying effects.

Approach 6 As 1, but 8 degrees of freedom for the base-
line cumulative hazard and 5 degrees of freedom for
time-varying effects.

Approach 7 Deprivation status was included in the
model, and a lifetable including deprivation was
used. The same period approach as described above,
and calendar year was not included in the model.

Approach 8 As above, but a restriction was used for the
effect of deprivation, so that the hazard ratios for
deprivation were assumed constant after the last
available follow-up.

Results
Expected mortality beyond the last year
Different assumptions can be made regarding the future
expected mortality rates, and mortality projections for
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a given population can often be obtained from official
statistics bureaus. Alternatively, one can assume that the
age- and sex-specific rates stays constant at the levels
observed within the last available year, which is similar
to how standard life expectancy is estimated. We used
population mortality projections for England, produced
by The Office for National Statistics, and compared the
estimations of life expectancy using these projections to
estimations based on assuming that the 2013 rates con-
tinued in the future. Figure 3 shows the life expectancy of
female colon cancer patients across calendar year at diag-
nosis, for four selected ages, along with the life expectancy
for females in the general population, from approach 1
and 2 as listed above. The two approaches for extrapolat-
ing expected mortality rates give slightly different values
of life expectancy for later calendar years, and for younger
patients, but the LEL difference is small. When we look
at differences in LEL between population subgroups (e.g.
deprivation or sex) the impact will be minimal.
Population mortality projections might not always be

available, which might make it more practical to use

the current rate within the latest year. The approach
used might influence the younger ages more than older
ages, and if possible we recommend to evaluate both
approaches as a sensitivity analysis. Either way, it is impor-
tant to always report which assumption has been made
regarding the population mortality rate beyond the last
year of observed data.

Modelling age effects
Age at diagnosis is commonly modelled by categorising
age, and assuming that the excess mortality is constant
within age groups. However, since mortality changes also
within age groups, it is preferable to model age continu-
ously e.g. by splines. Since the expected mortality rates,
and life expectancy, changes continuously with age, it is
even more important to model age continuously when the
objective is to estimate the life expectancy or LEL. Due to
few individuals diagnosed at young or old age, the results
can be somewhat imprecise for these ages, and there can
sometimes be problems with convergence of the models
and the predictions can be unstable for the very young or
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mortality for expected survival beyond 2013
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very old. One solution for this is to assume that the effect
of age on the excess mortality is the same for all ages below
a certain cutoff, and similarly the same for all ages above
a certain cutoff. Results based on approach 1 and 3 are
shown in Fig. 4, where the LEL is presented across age for
female patients diagnosed in year 2005. The cutoff values,
age 40 and 90, are shownwith vertical lines. The estimated
LEL differ for younger and older ages, but the uncer-
tainty is also higher in the younger ages, where the data
is sparse. The PELL is also presented in Fig. 4, along with
a histogram showing the age distribution among colon
cancer patients in 2005. Even though the results differ in
the youngest and oldest ages, the number of individuals
within these ages is low, less than 6% of the patients are
below 40 or above 90 at diagnosis. When summing up the
total LEL among females diagnosed in 2005 the difference
is negligible, 62404 for approach 1 and 62418 for approach
3, since the contribution from the few patients younger
than 40 and older than 90 at diagnosis is small.
We recommend to use an approach such as approach 3 if

needed for model stability, for example to avoid problems

with convergence. This is even more useful when trying
to fit models to many cancer sites to ensure that all mod-
els converge. Approach 3 can also be used as a sensitivity
analyses, to see that the overall results are not sensitive to
the model fit among the few young and old individuals. If
the interest however, lies in the LEL for older individuals,
this approach should not be used.

Period approach vs modelling calendar year effect
Period analysis can be used to obtain survival estimates
for recently diagnosed patients, for which there is limited
follow-up [17, 18]. Since improvement in cancer patient
survival over calendar time is mainly observed in short-
term survival, the yet unobserved long-term survival for
recently diagnosed patients can be estimated from can-
cer patient survival diagnosed in earlier calendar periods,
which is the approach used in period analysis. Alter-
natively, estimates can be obtained by extrapolating the
calendar year effect from a model including year if diag-
nosis as a covariate. When temporal trends are of interest,
the latter approach might be preferred, and the former
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approach might be preferred when the aim is estimation
of LEL for recently diagnosed patients only. Results from
the two approaches are compared in Fig. 5, where the LEL
and PELL across age is plotted for female patients from
approach 4 and for calendar year 2013 from approach
1. Even though there are some differences, especially for
younger ages, the differences are generally small. If the
interest is to estimate the total number of life years lost for
a typical yearly colon cancer cohort, this can be estimated
using the age distribution for a specific year. For 2013, the
total number of life years lost for females is 58253 based
on approach 1 vs 60097 based on approach 4, illustrating
that the differences for the whole population is not great
even if the difference can be large for the younger ages.
The choice between a period approach vs modelling cal-

endar year often depends on if the interest is in primarily
estimating the LEL for recently diagnosed patients, where
the period approach would be used, or if the interest is in
estimating temporal trends, where the calendar year mod-
elling would perhaps be more appropriate. However, for
the latter, it is important to model the effect of calendar

year appropriately including important interaction
effects.

Knots, sensitivity analyses
When using splines it is important to perform sensitiv-
ity analyses, to evaluate the robustness to the number and
placement of the knots. It has, however, been shown that
the flexible parametric model is robust to the choice of
knots [19]. Figure 6 shows the estimated LEL for female
patients from model 1, 5 and 6, over calendar time for
4 selected ages. It clearly demonstrates that the LEL is
robust to the knots. Even so, the different number of knots
could lead to models that behave differently at the tail of
the distribution of event times, and therefore extrapolate
differently. This small differences are, as seen in Fig. 6, not
so important when estimating the LEL at time of diag-
nosis, but can lead to larger differences in conditional
LEL.
Figure 7 shows the 5-year conditional LEL from the

three models, and the differences are slightly larger. How-
ever, the differences are still relatively small, e.g. the 5-year
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Fig. 6 Sensitivity analyses of LEL estimates using different number of knots

conditional LEL for age 50 at diagnosis in year 2008 ranges
between 2.8 and 3.2 years. The 5-year conditional LEL
is negative for older ages, indicating that older cancer
patients that survive at least 5 years have a longer life
expectancy than someone of the same age in the general
population. This could be due to a healthy survivor effect,
that those who survive are stronger and healthier and have
more contact with the health care system than the gen-
eral population. But it could also be due to the modelling
assumptions, or that the populationmortality rates are not
appropriate in older ages.
Generally, the knots in a flexible parametric model are

placed according to the distribution of event times, which,
in studies ofmortality among cancer patients, oftenmeans
that there are few knots towards the end of follow-up time.
It could therefore sometimes be useful to add an extra
knot towards the end of follow-up, when extrapolating
the survival. We recommend to always do sensitivity anal-
yses to evaluate the effect of different number of knots
and knot locations, even though this generally has a lim-
ited impact on the results, except possibly on conditional
estimates.

Extrapolating covariate effects
LEL can be a useful tool for quantifying differences in
cancer patient survival by different groups, such as depri-
vation groups. Since the effect of deprivation on excess
mortality often decreases by time, it is commonly mod-
elled with non-proportional hazards. When extrapolating
from a model with non-proportional hazards, as when
estimating LEL, the time-varying effects are also extrap-
olated and can give rise to excess hazards functions that
cross or increase/decrease at a non-believable rate after
the end of follow-up. Crossing excess hazard functions
can be prevented by constraining the extrapolated effects
to be proportional beyond the available data but allowing
for non-proportional hazards within the available follow-
up. This was done within approach 8, and compared to
a model without constraints (approach 7), and results of
LEL for two deprivation groups are shown in Fig. 8 across
age for female patients diagnosed in 2012. The results
from the two approaches are very similar, partly since
the the excess mortaliy is so low at this point, so dif-
ferent relative effects make little difference in absolute
terms.
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We recommend again that the approach of constraining
covariate effects should be considered as sensitivity analy-
ses, but it is unlikely to make too much difference as other
cause mortality begin to dominate as time progress.

Discussion
We believe that the LEL is a useful summary measure of
cancer patient survival, and a good complement to other
survival measures such as the often reported 5-year sur-
vival. LEL is easy to interpret, and it gives a measure of the
disease burden and the impact of cancer on a patients life
expectancy. In comparison, the 5-year survival is a mea-
sure of net survival, the proportion of patients that survive
5 years if the specific cancer would be the only possible
cause of death. This is interesting when comparing groups
or populations with different other cause mortality, but is
not a good measure of disease burden. Estimation of LEL
usually requires extrapolation of the survival function,
since the cancer patients are not followed long enough for
the survival to reach zero. An alternative is to estimate
restricted mean survival, which does not require extrap-
olation, but is instead more difficult to interpret [20, 21].
Another measure similar to LEL is the years of life lost
(YLL) [22–25]. The YLL is estimated for those that die in
a set period, by comparing the age at death to the typical
age at death for the population, with those that die at an
older age than this reference value not contributing to the
metric. The YLL measure does not rely on extrapolation,
but has the limitation that the measure will contain a mix
of patients diagnosed at different points in calendar time,
so is not applicable to a certain cohort of cancer patients.
The YLLmeasure may also rely on accurate cause of death
information if those included in the analysis are defined
by using only those that die due to cancer.
Estimation of LEL generally requires extrapolation of

the survival function, and we have previsouly shown that
the survival of the cancer patients can be satisfactorily
extrapolated by making assumptions for extrapolation of
the cancer mortality and the other cause mortality inde-
pendently [7] .However, when extrapolating survival from
a model including covariates care has to be taken regard-
ing the assumptions underlying the extrapolation. We
have in this paper illustrated alternative ways for mod-
elling covariate effects and different assumptions regard-
ing the extrapolation. This is shown using data on on
colon cancer in England. Generally, the different mod-
elling assumptions and approaches give small differences
in the estimates of LEL, however, the results can differ for
younger ages and for conditional estimates.

Conclusion
We recommend to always perform sensitivity analyses to
evaluate the effect of the assumptions made when mod-
elling and extrapolating survival to estimate the LEL.
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