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Abstract

Background: In low-income countries, studies demonstrate greater access and utilization of maternal and neonatal
health services, yet mortality rates remain high with poor quality increasingly scrutinized as a potential point of
failure in achieving expected goals. Comprehensive measures reflecting the multi-dimensional nature of quality of
care could prove useful to quality improvement. However, existing tools often lack a systematic approach reflecting
all aspects of quality considered relevant to maternal and newborn care. We aim to address this gap by illustrating
the development of a composite index using a step-wise approach to evaluate the quality of maternal obstetric
and neonatal healthcare in low-income countries.

Methods: The following steps were employed in creating a composite index: 1) developing a theoretical framework; 2)
metric selection; 3) imputation of missing data; 4) initial data analysis 5) normalization 6) weighting and aggregating; 7)
uncertainty and sensitivity analysis of resulting composite score; 8) and deconstruction of the index into its components.
Based on this approach, we developed a base composite index and tested alternatives by altering the decisions taken at
different stages of the construction process to account for missing values, normalization, and aggregation. The resulting
single composite scores representing overall maternal obstetric and neonatal healthcare quality were used to create
facility rankings and further disaggregated into sub-composites of quality of care.

Results: The resulting composite scores varied considerably in absolute values and ranges based on method choice.
However, the respective coefficients produced by the Spearman rank correlations comparing facility rankings by
method choice showed a high degree of correlation. Differences in method of aggregation had the greatest amount
of variation in facility rankings compared to the base case. Z-score standardization most closely aligned with the base
case, but limited comparability at disaggregated levels.

Conclusions: This paper illustrates development of a composite index reflecting the multi-dimensional nature of
maternal obstetric and neonatal healthcare. We employ a step-wise process applicable to a wide range of obstetric
quality of care assessment programs in low-income countries which is adaptable to setting and context. In exploring
alternative approaches, certain decisions influencing the interpretation of a given index are highlighted.
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Background

Over the last two decades, there has been significant pro-
gress in reducing the number of maternal deaths globally,
with a 45% decrease in the maternal mortality ratio
(MMR) from 1990 to 2013. Despite multiple interventions
to improve both maternal and neonatal healthcare services
in low-income countries, great disparities remain between
high and low-income countries with an average lifetime
maternal mortality of 1 in 38 compared to 1 in 3700 re-
spectively [1]. The disparity persists in relation to neonatal
deaths with 99% of 2 million annual neonatal deaths occur-
ring in low and middle-income countries [2, 3]. The major-
ity of maternal and neonatal deaths occur during the
intrapartum and immediate postpartum periods with
obstetric hemorrhage as the primary cause [3—-5]. While
studies demonstrate greater access and utilization of ma-
ternal and neonatal health services in low-income coun-
tries (LIC), mortality rates remain high with poor quality
increasingly scrutinized as the potential point of failure in
achieving expected goals [6-9]. Thus, the evaluation of the
quality of obstetric care, especially in LIC, has garnered in-
creasing attention [10].

Defining appropriate measurements to assess quality
can be challenging due to the multi-dimensional nature of
quality [11]. Although attempts have been made, there re-
mains a lack of consensus on appropriate measurements
and data sources to be used in low-income countries [6].
The vast number and complexity of existing quality indi-
cators, while useful for monitoring specific clinical
settings, can have limited utility in comprehensive moni-
toring due to the amount of information needed to be
processed [12]. One way to simplify is through composite
indicators or indices, which combine individual indicators
into a single index reflecting a more complex underlying
concept (e.g. quality of care) [11, 12]. Composite indices
allow various perspectives to be reflected simultaneously
and thus facilitate the comparison of quality performance
between facilities or health systems over time [11, 13].
The resulting composite scores can be easily communi-
cated to diverse stakeholders such as providers, health
managers, or purchasers of healthcare [12].

In respect to obstetric care, individual quality indicators
or simple indices are commonly used in tracking progress
along specific sub-components of care. However, long lists
of indicators can fall short on providing condensed infor-
mation on quality that more easily facilitate comparisons
across facilities, health programs, or countries [14]. As
quality improvements in one specific area of care do not
necessarily correlate to improvements in other areas,
composite indices resulting in a single score can account
for a multitude of relevant indicators across multiple qual-
ity dimensions [12, 15]. However, to ensure a composite
index accurately reflects a multidimensional concept, it is
prudent to adhere to a step-wise approach based on
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transparent methodologies and statistical consistency,
allowing for replication and application across stake-
holders and environments [11, 14].

There is a wide range of approaches and applications re-
lated to evaluation of obstetric and neonatal quality of care
in LIC settings. In the context of quality improvement pro-
gram evaluations, process and input indicators are com-
monly reported individually, especially if sub-components
of obstetric care are being assessed [13, 16, 17]. Otherwise,
these individual indicators are summarized into simple in-
dices each representing a sub-component of obstetric care
(e.g. infection prevention, third stage labor management,
respectful care, etc) [18-20]. A few evaluation studies
apply more complex statistical approaches, such as
standardization of scores or principal component analysis,
in generating quality indices but are limited in scope [21,
22]. In contexts where quality of care indicators are used
as an integral part of the intervention, such as in
performance-based financing, indicator weights are com-
mon means to reflect the relative contributions of single
quality aspects in the resulting quality score [23, 24]. Given
the complexity of obstetric care, evaluations would need to
rely on a range of data sources to accurately reflect the
multi-dimensionality of quality of care. Some standardized
approaches (e.g. Bologna score) collect data with only pa-
tient exit interviews or other single data sources, which
cannot capture all relevant dimensions of quality required
for a robust comprehensive evaluation [25, 26]. In recent
program evaluations [19, 27], quality of care has been
assessed in a more multifaceted way using facility inventor-
ies, interviews, and structured observation checKklists, but a
standard approach in combining the indicators into one
meaningful composite index has not yet emerged.

There appears to be a lack of composite indices of obstet-
ric quality of care that can be easily applied to LICs demon-
strating a multidimensional concept while following a
transparent process. To address this gap, we employ an
existing conceptual framework reflecting the measurement
of quality of care in order to develop an index resulting in
composite scores, which can then be used to compare ob-
stetric and neonatal quality of care among facilities. This
article attempts to illustrate the step-wise development of a
composite index based on current standards of construc-
tion with the goal to produce a single score reflecting the
multidimensional aspect of maternal obstetric and neonatal
quality of care. Using a systematic approach starting from a
set of quality of care indicators to form different composite
indices, we further demonstrate how various methodo-
logical approaches affect the resulting score.

Methods
Data sources
To illustrate the development of this obstetric quality of

care score, we used data taken from the baseline
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assessment of the Results Based Financing for Maternal
and Newborn Health (RBF4AMNH) program in Malawi
[28]. This evaluation included a sample of 33 Emergency
Obstetric Care (EmOC) facilities (five hospitals, 18
health centers) offering obstetric and newborn care ser-
vices located in four districts: Balaka, Dedza, Mchinji,
Ntcheu. Baseline data was collected in 2013 prior to the
start of the implementation of RBFAMNH and included
four different data collection tools: a facility inventory,
structured patient-provider observations, a structured
interview with health workers, and a structured exit
interview with women who recently delivered at the fa-
cility. All data was collected by trained research assis-
tants. The facility inventory assessed the availability of
equipment, essential medications, guidelines, emergency
transportation and human resources. The provider-
patient sample consisted of a total of 82 direct observa-
tions of uncomplicated delivery cases and assessed birth
attendants’ adherence to clinical guidelines during rou-
tine obstetric care. Interviews were conducted with a
total of 81 midwives and midwifery nurses, assessing
health worker satisfaction in the work place and their
experiences with supervision and training. The exit
interview sample consisted of 204 women who delivered
at these facilities; interviews assessed women’s experi-
ence receiving obstetric care at the facility and their per-
ceptions of the quality of care received.

Composite index development approach

We employed the step-wise approach outlined by the
Organization of Economic Cooperation and Development
(OECD) guidelines for composite index development [12].
Although developed for high-income countries, the

Page 3 of 13

identified standards are fully applicable to the context of
LICs. The OECD guidelines includes the following steps
with slight modifications: 1) developing a theoretical
framework; 2) metric selection; 3) imputation of missing
data; 4) initial data analysis 5) normalization 6) weighting
and aggregating of selected variables; 7) uncertainty and
sensitivity analysis of resulting composite score; 8) and de-
construction of score into its components [12, 14].

Based on this approach, we developed a base compos-
ite index resulting in a composite score for each facility
and tested alternatives by altering the decisions taken at
different stages of the construction process [12, 14].
Table 1 provides an overview of different approaches at
each step to further illustrate the base and alternative
index scenarios taken to formulate the composite scores.

Conceptual framework

The conceptual framework, which provided the basis of
choosing single indicators to contribute to the composite
index, was slightly modified from a multidimensional
matrix measuring quality of care first introduced by
Maxwell [29] and later refined by Profit et al. [14] (See
Table 2). We consider this matrix ideal for the purpose
of measuring quality of care as it incorporates two com-
plementary approaches of measuring quality of care.
This results in a quality matrix which sufficiently reflects
the dynamic process of healthcare delivery [14, 31]. The
matrix includes the six key dimensions of quality of care
as initially outlined by the Institute of Medicine (IOM)
[32] and subsequently adapted by the World Health
Organization (WHO): effective, efficient, accessible, ac-
ceptable/patient-centered, equitable, and safe [30]. These
are complemented by the three quality of care elements

Table 1 Steps in developing base case composite indicator with alternative methods

STEPS
1. Theoretical Framework: Quality Matrix

2. Metric Selection: Literature Review/Expert Opinion

3. Missing data imputation: imputation by mode for binary variables or mean for continuous variables

4. Initial Data Analysis: Review outliers/directionality
Indicators within cells Base Case
5a. Normalization:
5b. Weighting:

5c¢. Aggregation:
Cells within matrix Base Case
6a. Normalization:

6b. Weighting:

Rescaling of cell scores (Min-max)

6c. Aggregation:

Binary categorization of non-binary cell indicators

Additive linear aggregation of indicator scores

Additive linear aggregation of cell scores

Alternative
A. Rescaling of non-binary cell indicators (Min-max)
Equal weighting
B. Geometric aggregation of indicator scores
Alternative
C. Standardization of cell scores (Z-scores)
Equal weighting

D. Geometric aggregation
of cell scores

7. Uncertainty/Sensitivity Analysis: comparison base case against alternative methods

8. Deconstruction: explore individual indicators contribution to composite score
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Table 2 Conceptual Framework®®
EFFECTIVE EFFICIENT ACCESSIBLE/ TIMELY PATIENT- EQUITABLE SAFE
CENTERED/
ACCEPTABLE
health care that is delivering health health care that is timely,  health care that health care quality delivering
adherent to evidence care which maximizes geographically reasonable, takes into account does not because health care
based guidelines resource use and with appropriate skills preferences of of personal which
resulting in improved avoids waste and resources service users and  characteristics such minimizes
health outcomes community culture as gender, race, risks and
or socioeconomic status; harm to

STRUCTURE
PROCESS
OUTCOME

service users.

@ Adapted from Profit J, Typpo KV, et al. Improving benchmarking by using an explicit framework for the development of composite indicators: an example using

pediatric quality of care. Implement Sci. 2010;5 (1):13 [14]

® WHO, editor. Quality of care: a process for making strategic choices in health systems. Geneva: WHO; 2006. 38 p [30]

first described by Donabedian: structure, process, and
outcome [33]. We felt that the definition of the WHO
dimensions correlated best with the contextual environ-
ment of LICs with the aspect of timeliness included
under the WHO quality dimension of accessibility,
which also considers that healthcare services need to
occur in a setting that is equipped with adequate re-
sources to meet the needs of the community.

Metric selection

Guided by this conceptual framework, the indicator se-
lection process was based on a literature review focused
on obstetric and neonatal care quality indicators. The
starting point was the recent WHO publication on
“Standards for Improving Quality of Maternal and New-
born Care in Health Facilities” [34] with a set of quality
of care indicators identified through literature review,
expert consultations, and a consensus-building Delphi
process representing 116 maternal health experts in 46
countries. We further examined additional sources of
maternal and neonatal quality of care indicators [4, 35—
45] to identify any further indicators that had not been
specified in the WHO document. Using multiple sources
in combination with the WHO document, we identified
an initial set of indicators most relevant to obstetric and
neonatal care quality. Starting with this indicator selec-
tion, the content and definition of each indicator was
reviewed with duplicated indicators removed or redun-
dant indicators combined (e.g. adequate supervision
available vs. number of supervisory visits).

We mapped the resulting indicators by assigning them
to the cells provided by the conceptual quality of care
matrix (Table 2). Generally, there was little to no overlap
in assigning indicators to single matrix cells. In situa-
tions where an indicator could be assigned to more than
one cell, consensus between co-authors was sought for
the most appropriate indicator assignment given both
the dimension definition and content suggested by the

reviewed literature. For example, “availability of clean
water” could conceptually fall under “accessible” to rep-
resent access to water or “safe” to highlight the import-
ance of clean water. Ultimately, the indicator was
assigned to the safe dimension to represent “sanitation
and hygiene”. For the following steps we transition from
the literature to the existing data from Malawi as de-
scribed above.

Imputation of missing data

Generally, data quality in terms of completeness was
high. Most missing values were due to certain data col-
lection tools not being applied at certain facilities. As
our aim was to develop a composite score including in-
formation from each of the different data sources, we in-
cluded only facilities where all four data collection tools
were actually applied resulting in a final sample of 26 fa-
cilities out of a total 33 EmOC facilities. The vast major-
ity of missing values occurred in variables stemming
from direct observations where observers were asked to
enter “1” if they observed a certain task and “0” if they
did not, in the course of the observation. Supervision
and debriefings during data collection revealed that the
latter tended to be an issue, with observers not being
aware of the implications of not entering zeros for non-
observed behavior at the end of the observation. We are,
therefore, highly confident that missing values on these
variables actually reflect non-observation of behavior
and replaced missing values with “0” accordingly. We
are further confident that the small remaining number
of missing values can be assumed to be missing at ran-
dom and were replaced with the respective sample mode
(or sample mean for the one continuous variable with
missing values). Due to the nature of how the data was
collected and the missing values, multiple imputation
would not have been appropriate as an alternative [46].
Therefore, we searched for a proxy variable that would
be a close substitute for the missing data in the original
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variable [47]. When it was not possible to identify an ap-
propriate proxy variable, we used the mode for binary
variables as an alternative for missing data in the direct
observations. In addition, we provided a second alterna-
tive by coding the missing values in the direct observa-
tions as “1” thus providing a full range of possible
outcomes (detailed information on missing data and re-
sults of using alternative missing imputation methods is
provided in the Additional file 1).

Initial data analysis

As the composite index was intended to be calculated at
facility level, we aggregated the data from individual- level
data collection tools which measured information at the
individual to the facility level. We did this by averaging
data across all individual-level observations (i.e. cases, in-
terviews) for each variable and facility. This resulted in
scores between 0 and 1. For reasons of simplicity, these
proportions were then retransformed into binary variables
using a 0.5 cut-off (ie. “0” for less 0.5, “1” for 0.5 or
greater). The few continuous variables were averaged. This
resulted in one observation for each variable and each fa-
cility, which was necessary to combine the data sets.

In the following step, we matched the variables contained
in the available datasets with the mapped matrix indicators.
Once matched, we analyzed the variables contained in each
matrix cell for internal consistency by correlating each vari-
able pair within the cells. Variables of a given cell with cor-
relations > 0.7 were re-evaluated and were merged into one
single variable, in cases where the variables measured ap-
proximately the same quality construct and were consistent
with the conceptual framework.

Indicators within cells: normalization, weighting and
aggregation

Due to the necessity of a uniform scale for aggregation,
normalization of the indicator values is required when dif-
ferent units of scale exist [12, 14]. As the vast majority of
variables was binary, in the base case, we transformed the
couple remaining non-binary variables using cut-off values
supported by standards reported in the literature. To de-
fine the number of skilled birth attendants per facility, a
cut-off value of at least 3 was used based on the literature
and requirements of the program [48]. For the other con-
tinuous variable, time from arrival to contact with the pro-
vider, we used the median time of 20 min as our cut-off
value. The remaining variables were ordinal variables with
the median used as a cut-off value. For Alternative A
(Table 1), we rescaled the few non-binary variables to a
range of values between 0 and 1 (see below).

To identify weights, we considered data-driven methods
(e.g. principal component analysis) relatively inappropriate
given our variables mainly represented measures of adher-
ence to universally established quality of care standards
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[12]. Thus, statistically derived weights may have assigned
more importance to readily measurable or easily achiev-
able input or process measures relevant to the observed
context, but independent of the defined standards, making
comparability across settings difficult. Therefore, we iden-
tified weights using expert ratings identified by the WHO
Delphi study [34]. However, as these indicator ratings var-
ied only minimally and thus did not sufficiently support a
clear weighting pattern for indicators identified by the
matrix, we applied equal weights. Additional publications
on quality of care indicator weights almost uniformly sug-
gested the use of equal weights. [12, 49, 50].

For the base case scenario, the indicators within each
matrix cell were then aggregated using an additive ap-
proach, meaning that the values for each indicator within
a cell were added together to reflect a raw sum with the
maximum sum (i.e. cell score) varying between cells de-
pending on the total number of indicators within a given
cell. In the respective Alternative B (Table 1), we used geo-
metric instead of additive aggregation (see below).

Cells within matrix: normalization, weighting, and
aggregation

In a next step, we further combined the cell scores into
a single composite score. As the maximum cell scores
(ranging from 6 to 19) differed depending on the num-
ber of indicators identified for each cell, we rescaled
each cell score based a range from 0 to 1, except in Al-
ternative C where Z-score standardization was used to
rescale [12]. Rescaling the cell scores ensured each cell
contributes equally to the overall composite score. These
rescaled scores were subsequently aggregated, using
equal weights to obtain an overall composite score ran-
ging from zero to twelve. In the respective Alternative D
(Table 1), we replaced the additive aggregation of cell
scores with geometric aggregation (see below).

Uncertainty and sensitivity analysis

A number of uncertainties based on decisions, such as
normalization and aggregation methods, taken at various
steps can influence the outcome of a composite score.
Therefore, we calculated the outcomes with theoretically
equally valid but different decisions to evaluate for a
practically relevant difference [51]. Given these many
steps and decisions taken in response to the underlying
data, we further explored possible uncertainties intro-
duced by not opting for an alternative approach at a
given step [51]. Therefore, we created a set of alternative
composite indices that differed in one decision step and
compared these to our base composite index. The four
alternative approaches are as follows (see also Table 1):

Alternative A Instead of transforming non-binary vari-
ables (ordinal or continuous) into a binary form, we re-
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scaled them to a range between 0 and 1. This alternative
approach could increase distortion by extreme values, but
at the same time widens the contribution of variables that
have a narrow range of values across the sample, thus bet-
ter reflecting the actually measured information and
underlying variance of these variables [12].

Alternative B Geometric aggregation (i.e. multiplying
indicator values) of indicators to obtain a cell score, ra-
ther than arithmetic aggregation. With this alternative,
“0” values in single indicators can no longer be compen-
sated by the remaining indicators, which would have a
larger effect on the outcome in the case of binary
measurements.

Alternative C Standardization using Z-scores in each
cell to achieve normalization, which converted cell score
values to a normally distributed scale with a mean of 0
and a standard deviation of 1. Standardization of cell in-
dicators with extreme values will have a greater effect in
the resulting composite score [12].

Alternative D Geometric aggregation to combine cell
score into a composite score, decreasing the extent of
compensation of low cell score values by high values.

Our sensitivity analysis consisted of a descriptive com-
parison of the scores and applying ranks to each studied
facility using the base and alternative scores. Robustness
of facility ranking using the base index compared to the
alternative indices was determined using Spearman rank
correlation.

Deconstruction

We deconstructed the base and alternative composite
scores by evaluating each cell within the matrix, compar-
ing sample means and confidence intervals (95% confi-
dence intervals, +/-2 standard deviations) using base
and alternative scores. Furthermore, we applied the same
methods to evaluate the elements of structure, process,
and outcome.

Results

We begin with presenting the results of the literature re-
view exercise in choosing indicators, followed by the em-
pirical results of the data analysis.

Indicator selection

From the reviewed literature, we initially identified 271
possible indicators representing the quality of obstetric
and neonatal care (Additional file 2). Mapping across
our conceptual matrix, at least one identified indicator
covered each of the quality of care elements and dimen-
sions. When matching our available data from Malawi to
this literature-based comprehensive indicator set, we
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failed to sufficiently match two of the six dimensions: ef-
ficiency and equity. We considered possible indicators
for efficiency and equity using our data, but insufficient
numbers of variables in our dataset reflecting efficiency
and equity would not properly represent these dimen-
sions in comparison to other dimensions. Our final re-
sult yielded 85 indicators distributed among 4 quality
dimensions representing structure, process, and out-
come elements with the data available to us (Add-
itional file 3).

Uncertainty and sensitivity analysis

Table 3 presents the base and four alternative composite
scores for each of the 26 facilities (labeled A through Z
in descending order per rank of facility-specific base
score). Correspondingly, the ranks of the base (line) and
alternative scores (dots) are presented in Fig. 1 Facility
Rankings. The scores and ranks vary considerably by
method choice and noted differences are as follows:

e Base vs. alternative A: Rescaled ordinal or
continuous variables are compared to binary variables
(base case). Alternative A scores are slightly more
condensed and therefore show less variation across
facilities. This method reduces the extreme ends of
the scale and extremely well performing facilities are
no longer seen as potential outliers. Despite the narrow
distribution of values in the underlying data, the
variation in values remains minimal. This method
showed no significant outliers in facility rankings
compared to the base case (Fig. 1).

e Base vs. alternative B: Additive aggregation (base
case) is compared to geometric aggregation of binary
indicators into cell scores. With the same maximum
possible points as the base case, in the absence of
perfect quality, geometric aggregation leads to
substantially lower scores in each cell than additive
aggregation, and, therefore to lower total scores. In
addition, this method created outliers in facility
rankings compared to the base case. This can be seen
best with Facility N (Fig. 1), which ranked 14th in the
base case, but dropped to 23rd due to not meeting all
indicators in 9 of the 12 cells. Although this facility
obtained some or most of the indicators in each cell,
it did not obtain all indicators in the majority of cells,
which caused this facility to be most affected by
this method.

e Base vs. alternative C: Rescaled cell scores using
the Min-max method (base case) is compared to
standardization using Z-scores for each cell, which
expands the underlying scale to a normal distribu-
tion curve. Although this allows for easier identifica-
tion of exceptionally good and poor performing
facilities, it is a relative metric, only allowing for
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Table 3 Base and Alternative Composite Scores by Facility
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Facility Base Case A. Min-max B. Geometric C. Z-score D. Geometric
Normalization Aggregation Standardization (cells) Aggregation (cells)
(indicators) (indicators)

Scale Range 0-12 0-12 0-12 not applicable 0-1
A 11.07 9.81 237 11.20 033
B 10.67 9.59 213 797 0.22
C 10.50 9.36 1.92 8.27 0.13
D 10.03 8.89 1.92 8.27 0.13
E 9.88 8.96 2.00 513 0.07
F 9.83 8.75 1.79 539 0.06
G 9.68 943 146 4.49 0.05
H 937 828 1.79 4.10 0.02
I 9.36 8.15 113 290 0.04
J 9.21 8.74 1.29 375 0.02
K 9.14 7.55 1.67 1.50 0.02
L 8.99 843 1.00 1.99 0.02
M 8.84 7.51 117 1.64 0.01
N 850 750 0.79 -235 0.01
O 848 7.51 117 -1.46 0.01
P 8.28 7.83 1.29 =172 0.00
Q 8.24 7.37 1.13 -2.77 0.01
R 8.12 7.52 1.00 —243 0.00
S 8.10 763 1.00 -2.76 0.00
T 7.85 7.16 1.50 -3.80 0.00
u 7.52 737 0.70 -4.79 0.00
\% 744 6.79 1.00 =577 0.00
W 7.39 7.39 0.50 —7.96 0.00
X 7.16 6.68 1.00 -9.16 0.00
Y 711 6.70 1.00 -840 0.00
Z 6.45 567 0.50 -9.99 0.00

JKLMNOPQRSTUVWXYZ

Base Case
Alternative A
Alternative B

® Alternative C
@ Alternative D

Fig. 1 Facility Rankings

comparison of facilities against each other, but does
not give the user a way to easily identify how well
the facilities are performing in absolute terms (e.g.
against some standard, against another sample). This
method also shows no significant outliers in facility

rankings compared to the base case.

Base vs. alternative D: Additive aggregation of the
cell scores (base case) is compared to geometric
aggregation into a composite score. The maximum
scale range is now 0—1 with almost all facilities
identified as poor performers. This method is
extremely sensitive to a low performance in a given
cell score and therefore does not allow for much
differentiation between facilities. This method also
showed a significant difference in facility rankings
compared to the base case most notable for facility
P, which was ranked 16th in the base case, but
drops to 26th when using the geometric aggregation
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at the cell level. This facility scored “0” in the
patient-centered structure cell, which then resulted
in a total score of “0” using this method.

The respective coefficients produced by the Spearman
rank correlations comparing the base to each alternative
score ranged from 0.90-0.99 (Table 4), indicating that
there was only a small impact of aggregation and trans-
formation decisions on the resulting facility ranking. As
expected of all alternative cases, geometric aggregation
at the indicator level led to the biggest discrepancies
from the base case. The Z-score standardization resulted
in the most similar rankings to the base case.

Lastly, we deconstructed the matrix to take a closer
look at how cell scores differed by which method was
used (Table 5). With the base score, there is a greater
range in the confidence interval of the outcome element,
which contains fewer indicators within each cell. Alter-
native A is similar to the base composite index with
slightly lower score values. Alternative B shows signifi-
cantly lower scores and a greater range of confidence in-
tervals. Of particular note, is the “effective” dimension
along the “process” element, with no facility able to meet
every indicator within that cell as seen in Alternative B.
This is also demonstrated in the dimension “accessible”
along the structure element, which is the best perform-
ing dimension within the “structure” element in the base
case. However, “accessible” becomes the worst perform-
ing dimension in Alternative B as the majority of facil-
ities could meet at least some indicators, but very few
could meet every indicator within this cell.

Discussion

With this study, we present an approach towards develop-
ing a composite index for maternal obstetric and neonatal
quality of care tailored to a low-income country context.
Starting from an established conceptual framework, we il-
lustrate a sequence of steps towards a maternal obstetric
and neonatal quality of care composite index using litera-
ture and an existing data set. To highlight the transpar-
ency in our approach, we compare alternative scores
representing different decision pathways. We believe this
illustration provides a useful outline to be applied and
adapted as necessary to other quality of care data sets.

Table 4 Spearman Rank Correlations

Base Case
A. Min-Max Normalization (indicators) 94
B. Geometric Aggregation (indicators) 90
C. Z-score Normalization (cells) 99
D. Geometric Aggregation (cells) 96
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Composite score development

Quality of care framework

Identifying the most adequate conceptual framework is
critical to creating a theoretical foundation for the assess-
ment of complex, multidimensional constructs. Ideally, this
framework should be defined a priori and guide the selec-
tion of indicators, identification of appropriate data
sources, and the design of evaluation tools [12]. In this
case, we were unable to fully match all matrix dimensions
with the data available to us. We evaluated the possibility
of linking to other data sets by reviewing the Health Man-
agement Information Systems (HMIS) data and Service
Provision Assessment (SPA) obtained by the Malawi Min-
istry of Health [52]. In addition, we examined the Demo-
graphic Health Survey data obtained by the National
Statistics Office [53, 54]. Unfortunately, the data from
these surveys did not cover the specific time period when
our data was collected, nor was it disaggregated by facility
in order to be incorporated into our data.

The resulting composite index was limited to those as-
pects of quality initially captured by the data and, thus,
omitting measures of equity and efficiency. Although ef-
ficiency and equality are considered essential compo-
nents in improving maternal health in low-income
countries, these measures are often not considered in
regards to specifically the quality of maternal and neo-
natal health care services and rarely included in quality
assessment tools as can be seen by the lack of indicators
in these dimensions in our initial indicator table (Add-
itional file 1) [45, 55, 56]. Despite the lack of attention
for equity and efficiency dimensions, these aspects are
important to policy makers and donors who want to en-
sure financial assistance is provided in an effective man-
ner while aligning their goals with the providers of care
[57, 58]. Further research could better identify appropri-
ate and useable efficiency and equity indicators specific-
ally related to quality of care and maternal health when
aiming for comprehensive evaluation.

On the other hand, composite indices should also reflect
user-friendliness, applicability, and reproducibility to in-
form benchmarking or performance evaluation across set-
tings [14]. To this extent, comprehensiveness should be
weighed against feasibility and practicability. To ensure
easy reproducibility, an ideal composite index should con-
sist of a limited, but relevant set of key indicators. This is
especially true for the assessment of obstetric care in LICs
and remains an ongoing pursuit, mainly limited by the
availability of reliable and routinely collected quality mea-
sures [6, 59]. Quality of care is a widely framed construct
that tries to address a variety of perspectives, therefore a
universally accepted quality of care composite is difficult
to achieve. The underlying quality dimensions remain ra-
ther universal, but universally accepted indicators may be
difficult to achieve or differ in relevance between settings.
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Table 5 Cell scores by Base and Alternative Indices
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Base Case Alternative Alternative Alternative Alternative
Mean (Cl) A Mean (Cl) B Mean (Cl) C Mean D Mean (Cl)

Structure

Effective 80 (.73-87) 80 (.75-.85) .27 (09-45) 0 80 (.73-87)

Accessible 80 (.75-.84) 73 (69-.78) 04 (04-12) 0 80 (75-.84)

Patient- 60 (48-.70) 59 (48-70) 12 (02-25) 0 60 (.48-.70)

centered

Safe 75 (67-83) 70 (62-.78) .19 (03-35) 0 .75 (67-83)
Process

Effective 55 (48-62) 51 (45-57) 0 0 55 (48-62)

Accessible 82 (75-.89) .70 (64-.75) .38 (.18-59) 0 82 (75-.89)

Patient- 62 (53-70) 44 (38-52) 04 (04-12) 0 62 (53-70)

centered

Safe 68 (58-77) 63 (54-73) 15 (.06-30) 0 68 (58-77)
Outcome

Effective 94 (.88-1.00) .84 (.80-.89) 88 (.75-1.02) 0 94 (88-1.00)

Accessible 54 (44-64) 46 (39-54) 15 (01-30) 0 54 (44-64)

Patient- 90 (.82-.99) 88 (.81-95) 81 (65-97) 0 90 (.82-99)

centered

Safe 75 (65-.85) 68 (60-.76) 50 (29-71) 0 75 (65-.85)

Total Scores

Composite 8.74 (8.25-9.23) (range 0-12)

Total

Structure 294 (2.73-3.14) (range 0-4)  2.82 (2.63-3.02) (range 0-4)
Total

Process 267 (242-291) (range 0-4) 228 (2.05-2.51) (range 0-4)
Total

Qutcome 3.14 (294-3.33) (range 0-4) 2.97 (2.72-3.01) (range 0-4)
Total

7.97 (7.56-8.38) (range 0-12) 3.54 (2.84-4.24) (range 0-12) 0

043 (0.01-0.07) (range 0-1)
62 (31-92) (range 0-4) 0 2.94 (2.73-3.14) (range 0-4)
.58 (.27-.88) (range 0-4) 0 2.67 (242-291) (range 0-4)

2.35(1.99-2.71) (range 0-4) 0 3.14 (2.94-3.33) (range 0-4)

Therefore, most obstetric care quality indices are limited
in comprehensiveness by the indicators available [25].

To this regard, a more feasible approach could be to
embrace these limitations and promote the development
of composite indices in response to a program’s particular
focus of quality of care and available data, which may dif-
fer depending on location and time. While clearly limited
in universality, such composite indices may still be rele-
vant provided they are constructed following a set of stan-
dards that maintain transparency in respect to strengths
and limitations. Aligned with this more feasibility-driven
approach, we tried to illustrate how such standards and
transparency could be applied to the development of a
composite index built upon program-specific data related
to obstetric and neonatal care [28].

Uncertainty analysis

A major pitfall in combining indicators into composite indi-
ces are the introduction of uncertainties — knowingly or un-
knowingly — due to decisions taking in the normalization,
weighting or aggregation of indicators, which may bias the

resulting score towards desired aspects of care [60]. Statis-
tical comparison of different decisions during the develop-
ment of a composite index allows understanding of these
uncertainty biases and offers the opportunity to explore how
these decisions may affect the outcome of composite scores
and thus facility rankings. In our illustration, all scores were
relatively consistent in assigning high or low ranks to a given
facility (Table 4). Theoretically, none of the alternative sce-
narios drastically affected the relative comparison of quality
of care between studied facilities. Still, given a different sam-
ple, index differences might have been more pronounced.
We point out below some strengths and weakness of the fol-
lowing alternatives, especially in relation to the concept of
quality of care and communicating this with stakeholders.
Alternative A differs from the base score to the extent
that non-binary variables were re-scaled prior to aggre-
gation into a cell score. With these variables now con-
tributing values between 0 and 1 (instead of somewhat
arbitrary cut-off values used in the base index) the
scores for all but two cells now contain decimals instead
of integer information while keeping the same score
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range for each cell as in the base score. Overall, this led
to lower absolute values for the resulting composite
scores as without a set cut-off, fewer facilities meet the
extreme values of “1” or “0” for these respective indica-
tors. This relative increase in variability of the cell scores
also resulted in smaller confidence intervals when com-
pared to the binary variables of the base score (Table 5),
However, if an extreme value is not excluded, this
method could distort the indicator when rescaled result-
ing in the other smaller or larger values clustered at one
end of the range [12]. This alternative is beneficial in in-
stances where indicator content is ordinal (e.g. patient
satisfaction ratings) and/or continuous (e.g. number of
staff available) and a common scale needs to be created.
Since the vast majority of variables in our data set were
binary, transforming all variables to the binary form was
more feasible. Regardless, the scores and subsequent de-
construction for Alternative A can be easily read and
communicated to various stakeholders.

Alternative score C differs from the base score to the
extent that cell scores were standardized prior to aggre-
gation into the overall composite. While the rescaled cell
scores in the base score result in scores ranging from 0
to 1, this standardization normalized the resulting scores
around a mean of 0. Using this method for indicators or
cell scores prior to aggregation, prevents any potential
distortions that otherwise would have occurred by differ-
ently scaled cell means. Still, as this normalization ap-
proach does not change the actual range of the
individual cell score, it allows individual facilities with
extreme score values (i.e. exceptionally good or bad per-
formance for the given score) to contribute more to
their overall composite score. This might be desirable if
the intention of the resulting composite is to consider
exceptional performance on single indicators to be pref-
erable. In our illustration, this element of exceptionality
compared to the base score was most pronounced in the
relative distance between the top-ranked facility “A” vs.
the next-ranking facilities. However, this approach pre-
vents any further comparison of performance between
matrix components when deconstructing the composite
averaged across facilities. Given the normal distribution
introduced to the sub-scores, the resulting means will al-
ways be “0”, unless additional approaches (e.g. retrans-
formation) are taken [12].

Alternative scores B and D differ from the base score
to the extent that geometric aggregation was applied
when combining indicators into cell scores or cell scores
into the overall composite. This approach limits the de-
gree to which aggregated measures can compensate for
each other in offsetting a low score in one area by per-
forming better in other areas. In alternative B, the geo-
metric aggregation of binary cell indicators results in an
all-or-nothing situation within each cell, as only one
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indicator value of “0” reduces the aggregated cell score
to “0” [14, 15]. In our illustration, the majority of facil-
ities did not score a value of 1 for every single cell indi-
cator within a cell, especially in respect to quality of care
related to accessible/structure (availability of functional
equipment, supplies, drugs), effective/process (adherence
to clinical standards), and patient-centered/process as-
pects (see Table 5). Whereas the base score represents
quality of care more along a continuum allowing for a
gradual increase in scores, geometric aggregation does
not allow for this flexibility and demands more perfec-
tion, which may not be as feasible in low income envi-
ronments due to lack of supplies or equipment.

This effect was even more pronounced in alternative D
once geometric aggregation was applied to the rescaled cell
scores. While geometric aggregation in our example re-
duced the variability of resulting scores (alternative D), it
also had strongest effects on facility ranking (alternative B).
This effect on the ranking reflects how inadequate perform-
ance in one measured item is no longer compensated, thus
honoring facilities whose performance is more complete
across all measured indicators. This “all-or-nothing” sce-
nario may be desirable in implementing and evaluating
health financing programs (e.g. pay for performance) where,
but it may develop perverse incentives if a facility believes it
cannot meet every indicator in a particular area and only
focus on areas where they can achieve all indicators [61,
62]. In the context of obstetric care where omission of sin-
gle processes and lack of specific equipment or supplies
might have severe implications on the birth outcome [37], a
composite accounting for such non-compensable single
omissions may be preferable.

Lastly, we addressed alternative methods for imputing
missing data (Additional file 1). We had considered
more complex imputation approaches, but decided
against them for various reasons, most importantly one
statistical and one conceptual reason. Regarding the
former, methods such as random or multiple imput-
ation require larger sample sizes to work properly and
we would have, therefore, risked further biasing our
study in unknown ways. Second, from a policy perspec-
tive, we wish to illustrate how a large number of vari-
ables can feasibly be combined into an overall quality
score usable in monitoring and evaluation systems, for
instance. In light of this, we were reluctant to use ap-
proaches which would require more in-depth statistical
knowledge to replicate.

Policy implications

The article illustrates how a large variety of dimensions
and elements of quality of care can be combined into a
meaningful and easy-to-handle composite score useful in
ranking facilities by their quality level, to monitor facilities’
progress in quality improvement, and to determine which
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specific quality areas may need more attention. Our com-
posite index was guided by the data sets we had available
and the low-income context in which the data was ob-
tained. Therefore, the indicators comprised not only of
processes that are necessary for providing quality of care
in any context, but also the inputs such as essential medi-
cines and basic equipment that are often not readily avail-
able in a LIC [37]. As the indicators were obtained from
the literature citing standards of maternal and neonatal
quality of care, this index has the ability to be applied in
multiple contexts. Yet, indicators may need adaptation, as
is often required, to align with the local context [34]. We
further hope that our example was instrumental in sensi-
tizing readers to the implications of certain key decisions
in the aggregation process.

Conclusions

Identifying and addressing gaps in quality maternal and
neonatal healthcare is an essential function in any health
system in order to improve health outcomes. Providing
condensed indicators of quality of care in the form of a
composite index can be a useful adjunct but can also
introduce biased information if not constructed carefully.
In this paper, we outline and illustrate an approach to a
composite index reflecting a multi-dimensional frame-
work of maternal obstetric and neonatal healthcare. In so
doing, we provide a step-wise process applicable to a wide
range of obstetric quality of care assessment programs in
LICs as it can be easily adapted and implemented in a
given setting or context. A comprehensive matrix combin-
ing both elements and dimensions of care allows decon-
struction of the composite into cell scores representing
specific aspects of quality. In reflecting and exploring al-
ternative approaches, we attempted to highlight how cer-
tain decisions influence the practicability or usefulness of
a given index. By integrating known quality frameworks,
we are able to develop a composite index which can com-
municate a multidimensional quality assessment of obstet-
ric and neonatal healthcare to multiple stakeholders
potentially  informing policy changes and new
interventions.

Additional files

Additional file 1: Missing Data. The first table identifies the number and
percentage of missing data followed by the base case method for imputing
missing data compared to an alternative using proxy variables, which are
listed if used for imputation of missing data. An additional alternative
method for missing data was examined, which coded direct observation
missing values as task performed (1) versus task not performed (0) in the
base case. These alternative methods for imputing missing data were
compared with the results, which is demonstrated in the tables containing
the facility composite scores and Spearman rank correlations. (DOCX 26 kb)

Additional file 2: Initial indicator Table. This table identifies the 271 possible

indicators representing the quality of obstetric and neonatal care obtained
from the literature. (DOCX 27 kb)
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Additional file 3: Composite Indicators. The table provides an overview of
all indicators included in the composite index, which are further grouped
by topic to provide a format in which specific areas of quality can easily be
discerned. (DOCX 22 kb)
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