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Abstract

Background: Individual participant data meta-analysis (IPD-MA) is considered the gold standard for investigating
subgroup effects. Frequently used regression-based approaches to detect subgroups in IPD-MA are: meta-regression,
per-subgroup meta-analysis (PS-MA), meta-analysis of interaction terms (MA-IT), naive one-stage IPD-MA (ignoring
potential study-level confounding), and centred one-stage IPD-MA (accounting for potential study-level confounding).
Clear guidance on the analyses is lacking and clinical researchers may use approaches with suboptimal efficiency to
investigate subgroup effects in an IPD setting. Therefore, our aim is to overview and compare the aforementioned
methods, and provide recommendations over which should be preferred.

Methods: We conducted a simulation study where we generated IPD of randomised trials and varied the magnitude
of subgroup effect (0, 25, 50% relative reduction), between-study treatment effect heterogeneity (none, medium, large),
ecological bias (none, quantitative, qualitative), sample size (50,100,200), and number of trials (5,10) for binary,
continuous and time-to-event outcomes. For each scenario, we assessed the power, false positive rate (FPR) and bias of
aforementioned five approaches.

Results: Naive and centred IPD-MA yielded the highest power, whilst preserving acceptable FPR around the nominal
5% in all scenarios. Centred IPD-MA showed slightly less biased estimates than naïve IPD-MA. Similar results were
obtained for MA-IT, except when analysing binary outcomes (where it yielded less power and FPR < 5%). PS-MA
showed similar power as MA-IT in non-heterogeneous scenarios, but power collapsed as heterogeneity increased, and
decreased even more in the presence of ecological bias. PS-MA suffered from too high FPRs in non-heterogeneous
settings and showed biased estimates in all scenarios. Meta-regression showed poor power (< 20%) in all scenarios and
completely biased results in settings with qualitative ecological bias.

Conclusions: Our results indicate that subgroup detection in IPD-MA requires careful modelling. Naive and centred
IPD-MA performed equally well, but due to less bias of the estimates in the presence of ecological bias, we
recommend the latter.
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Introduction
Meta-analyses of individual participant data (IPD) pro-
vide the best evidence regarding treatment effects and
offer unique opportunities and benefits when investigat-
ing subgroup effects [1]. Therefore, IPD meta-analyses
(IPD-MA) are considered the gold standard for detection
of subgroup effects and their use has increased over the
last decade [2, 3]. The possibility to standardize sub-
group definitions and outcomes across studies, the
higher validity and credibility of subgroup findings and
the increased flexibility to search for subgroups based on
combinations of patient and/or disease characteristics
and the avoidance of incorrect results due to ecological
bias are benefits of using IPD of multiple trials rather
than traditional (aggregate) meta-analysis [4]. Neverthe-
less, Simmonds et al. (2015) have reported that only 1%
of the conducted meta-analyses were using IPD [5].
IPD-MA may be conducted either in one or two

stages. In two-stage IPD-MA, each trial is first analysed
separately, using an appropriate statistical model. For in-
stance, the first stage may estimate the main treatment
effect, or the different effects observed per subgroup, or
the treatment-covariate interaction effect. Subsequently,
these effects from different trials are combined into a
summary estimate in the second stage of the meta-ana-
lysis. Although meta-analytic methods are often used to
investigate main treatment effects, they can also be used
to investigate subgroups. For instance, the presence of
subgroup effects can be investigated by modelling the as-
sociation of the estimated main treatment effects with a
trial-level covariate (meta-regression). Alternatively, esti-
mates of subgroup effects or interaction terms can dir-
ectly be summarized using traditional meta-analysis
(MA) methods.
In one-stage IPD-MA, all IPD from every trial are ana-

lysed simultaneously whilst accounting for the clustering
of participants within studies. Hereby, researchers may
model interactions between treatment and patient-level
covariates either directly (naive IPD-MA), or after the co-
variates are mean-centred per study in order to account
for potential ecological bias (centred IPD-MA) [6].
When IPD are available for all studies, it is often un-

clear which meta-analysis method should be adopted. In
2015, Simmonds et al. reported that all approaches are
still being used in IPD-MA, even aggregated data meta-
analytic methods such as meta-regression and PS-MA.
Although minor differences are usually observed when
summarizing main treatment effects, each of aforemen-
tioned methods have specific deficiencies when investi-
gating the presence of subgroup effects [7, 8]. In
particular, it is well known that meta-regression has
poor power and is prone to (ecological) bias [6, 9–11].
Per-subgroup MA (PS-MA) has also been criticized of
being prone to ecological bias [12]. Further, MA of

interaction terms (MA-IT) is considered as less precise
when limited number of studies or participants are
present [2]. Finally, it has been demonstrated that
“naive” IPD-MA may suffer from limited precision and
excessive false positive rates (type I error) in the pres-
ence of trial-level confounding [6], which is similar to
ecological bias.
So far, comparisons of meta-regression, PS-MA, MA-

IT, “naïve” and centred meta-analysis to study subgroup
effects have been limited to either empirical studies or
simulation studies only comparing a subset of these
approaches. Simmonds and Higgins [13] proved that
one-stage IPD-MA is always more powerful than the
two-stage methods, under the assumption that there is
no between-study heterogeneity, all studies have the
same residual variance and all studies use balanced
randomization. These assumptions were considered too
restrictive. Therefore, Simmonds and Higgins also per-
formed a simulation to compare meta-regression and
MA-IT, but their simulations only included datasets with
250 patients and neither one-stage methods nor PS-MA
were included. Other studies ignored the presence of re-
sidual (i.e. unrelated to effect modification) between-
study heterogeneity in treatment effect, for example
Lambert et al. [10] compared meta-regression to naïve
IPD-MA using simulated datasets without between-
study heterogeneity. Koopman et al. compared meta-re-
gression, naive IPD-MA, and MA-IT using only empir-
ical studies [14]. Hua et al. compared different types of
one-stage approaches using simulated time-to-event data
[6]. Burke et al. theoretically explained the differences
between the results of naive IPD-MA and MA-IT [7].
Fisher et al. wrote a critical review over PS-MA, MA-IT,
centred and naive IPD-MA methods and applied them
on empirical studies [8]. In a subsequent paper, compar-
ing two-stage methods only, he advocated the use of
MA-IT over PS-MA and meta-regression, and applied
all three on empirical studies to point out the differences
[12]. Simmonds et al. [5, 15] reviewed the aforemen-
tioned statistical approaches in two consecutive papers,
one in 2005 and one in 2015. They concluded that one-
stage methods are used more frequently in 2015 than in
2005 and that meta-regression and MA-IT were not typ-
ically preferred, in contrast to PS-MA which is the most
frequently used two-stage method. PS-MA, however, is
prone to power reduction when heterogeneity is present
and overestimation when there is no heterogeneity [12,
16, 17]. These issues may be worsened if ecological bias
and between-study heterogeneity are simultaneously
present. Finally, Kontopantelis has performed a simula-
tion study comparing naïve IPD-MA and MA-IT [18].
He has generated data, covering different IPD sizes and
different between-study heterogeneity levels on intercept
and treatment effect. Nevertheless, centred IPD-MA, PS-
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MA, and meta-regression were not included, ecological
bias was not generated and the number of participants
was above 1000, which in some RCTs may be unrealistic.
To our knowledge all above mentioned studies have

focused on a limited number of scenarios. Most studies
either focused on only a limited set of available ap-
proaches, only one type of outcome or one level of sub-
group effect magnitude and only in Hua et al. [6]
ecological bias has been introduced.
In our simulation paper, we will compare all afore-

mentioned approaches using binary, continuous and sur-
vival outcome measures, focussing on differences in
power, false positive rates (FPRs) and bias in the esti-
mates. We will vary the amount of between-study het-
erogeneity in treatment effects, the magnitude of the
subgroup effect, the level of ecological bias, and the
number of trials and participants.

Methods
In our study we included five common statistical ap-
proaches: centred (one-stage) IPD-MA, naive (one-stage)
IPD-MA, MA of interaction terms (MA-IT), per-sub-
group MA (PS-MA), and meta-regression. We simulated
datasets with binary, continuous, or survival outcomes.
We varied the magnitude of the subgroup effects, the
presence of between-study heterogeneity in treatment ef-
fect, the level of ecological bias, and the size and number
of trials. Our paper is organized as follows. We start
with a description of the data generation mechanism
(Section 2.1), followed by a description of the statistical
approaches (Section 2.2), and the assessment of power,
FPRs and bias in the estimates (Section 2.3).

Data generation
In this section we describe the data-generation mechan-
ism in general; details on the parameters can be found
in Table 1. In short, IPD-sets were generated for con-
tinuous, binary, and time-to-event outcomes. We gener-
ated equal treatment allocation, as in a two-arm
randomized clinical trial with a control and an active
treatment. We focused on effect modification by a bin-
ary covariate, using smoking as an example throughout
the paper. We simulated different baseline risk levels for
non-smokers and smokers; for example, mortality rates

may be different. We assumed absence of treatment ef-
fect in non-smokers and varied the magnitude of the
treatment effect in smokers (absent, medium, or large),
reflecting the subgroup effect. We also varied the magni-
tude of the additional between-study heterogeneity in
treatment effect (absent, medium, or large) and the mag-
nitude of ecological bias (none: 0, quantitative: + 100%
of the subgroup effect (favouring treatment effect), quali-
tative: − 200% of the subgroup effect (favouring placebo
effect)) in the scenarios with large and medium subgroup
effects. Since the subgroup effect in the no-subgroup
effect scenarios is by definition equal to 0, we used the
medium subgroup-effect settings to define the size of eco-
logical bias. We also varied the number of trials [5 or 10],
and the number of participants (50, 100, or 200 per trial).
In total, this resulted in 486 scenarios. Per scenario we
generated 1000 IPD-sets, with equal treatment allocation
in each trial. We varied the percentage of smokers over
the trials in order to reflect variability in the prevalence of
the potential effect modifier across datasets. Specifically,
the percentages were 30, 40, 50, 60, and 70%. We gener-
ated the individual outcomes using a generalized linear
model (GLM) with a normal distribution with a standard
deviation of 1 and an identity link for the continuous
outcomes, a Bernoulli distribution and logit link for the
binary outcomes, and an exponential distribution and log
link for the time-to-event outcomes. We assumed a com-
mon baseline effect across studies for the intercept term
(b0), a common prognostic effect of smoking (bS), and the
interaction between treatment status and smoking (bx).
The coefficients we used varied per type of outcome and
scenario, see Table 1. For the treatment effect (bT), we
generated random effects across studies (Hj). The linear
predictor in the GLM was:

linpredij¼b0þ bTþH j
� ��TreatmentijþbS�Smokingij

þbA�Treatmentij�Smoking j:

bw�Treatmentij� Smokingij‐Smoking j

� �

ð1Þ

where i denotes the participant and j the study. Hj was
drawn from a normal distribution with a mean of 0 and

Table 1 Parameters used in data generation

Parameters

Type of outcome b0 bT PS bx
(Large subgroup effect)

bx
(Medium subgroup effect)

bx
(No subgroup effect)

Continuous 0 0 1 −0.5 − 0.25 0

Binary
(log-scale)

- 1.385 0 0.98 - 0.98 - 0.44 0

Time-to-event
(log-scale)

−6.2 0 0.7 −0.7 −0.35 0
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a standard deviation (τ) of 0 (no heterogeneity), 0.25
(medium) or 0.5 (large heterogeneity), reflecting values
of τ in the Cochrane Database of Systematic Reviews of
2009–2013 [19]. Note that Hj reflects additional be-
tween-study heterogeneity, on top of variability due to
within-study sampling (imprecision) or subgroup effects.
For the continuous outcomes, the average outcome in

the control group was 0 and 1 for non-smokers and
smokers respectively. For the binary outcomes, in the
control group the event rates of the non-smokers and
smokers were respectively 20 and 40%. In logit-scale the
above-mentioned event rates were approximately - 1.385
and − 0.4 respectively (see Table 1). For the time-to-
event outcome, the hazard rates in the control group
were defined as 2 and 4 events per 1000 person-days for
non-smokers and smokers, respectively. Therefore, the
increase in the hazard risk of the smokers was 0.7 on the
log scale (see Table 1). For all types of outcomes, the
treatment reduced the average outcome only in the
smoker’s group by 0% for the no subgroup effect sce-
nario, 25% for the medium subgroup effect scenario, and
50% for the large subgroup effect scenario. For the con-
tinuous outcome this resulted in average values of 1,
0.75, and 0.5, for the binary outcome in event rates of
40, 30, and 20%, and for the time-to-event outcome in 4,
3, and 2 events per 1000 person-days in smokers, for the
no, medium, and large subgroup effect, respectively.

Statistical approaches
Each of the 486 distinct scenarios was generated 1000
times. All 486,000 simulated data-sets were analysed
using aforementioned five approaches (more details
below). All analyses were conducted with the statistical
package R, version 3.4.1 [20] using for one-stage ap-
proaches lmer [21], glmer [21] and coxme [22] while for
two-stage approaches the packages metafor [23], logistf
[24], coxphf [25].

Centred IPD-MA
One-stage approaches jointly analyse the IPD from all
trials, accounting for the clustering of participants
within trials. In line with recent recommendations [5],
effect modifiers should be centred by their mean
value in each trial, in order to separate the within
and across-trial information. In our simulations, the
percentage of smokers pj is used to adjust for poten-
tial between-trial differences. Therefore, we fitted a
mixed effects model as in Section 2.2.4, but now with
two interaction terms to separate across- and within-
trial information, thus accounting for potential eco-
logical bias.
The statistical model is the following:

g Y ij
� �¼β0 jþβ1 j�Treatmentijþβ2�Smokingij

þβA�pj�Treatmentij

þβw�Treatmentij� Smokingij−pj

� �

ð2Þ
β0 j�Ν β0; τ02ð Þ
β1 j�Ν β1; τ12ð Þ

where βA is the across studies interaction and βW is the
within-study interaction effect.
We assumed a common (fixed) effect for βw, as we

have not generated between-study heterogeneity on the

treatment-smoking interaction term. We extracted β̂ w,

which gives the interaction effect (free of ecological bias)
and its corresponding p-value for power, estimate bias
and false positive rate (FPR) calculations.

Naive IPD-MA
For continuous outcomes we applied linear mixed-ef-
fect models, for binary outcomes logistic mixed-effect
models and for time-to-event outcomes CoxPH mixed
effects models. We used all available data in a single
model containing a random effect for treatment and
fixed effects for intercept, subgroup and treatment-
subgroup interaction. The statistical models are based
on the following specification:

g Y ij
� �¼β0 jþβ1 j�Treatmentijþβ2�Smokingij

þβx�Treatmentij�Smokingij

ð3Þ
β0 j�Ν β0; τ02ð Þ
β1 j�Ν β1; τ12ð Þ

We assumed common effects for β2 and βx and ran-

dom effects for β0j and β1j. We extracted the β̂ x esti-
mate, which reflects the treatment-smoking interaction,
and its corresponding p-value for power, estimate bias
and false positive rate (FPR) calculations. This one-stage
approach is characterised as naive [6, 16], as it does not
account for potential ecological bias that may come of
unadjusted confounders on trial level, like potential age-
differences between trials.

Per-subgroup meta-analysis (PS-MA)
We separated the IPD-set for each trial into smoking
and non-smoking participants. Per trial, we fitted an ap-
propriate model per outcome: linear, logistic or CoxPH
regression. In order to account for single monotone like-
lihood issues due to zero cells in binary and time to
event outcomes, we adopted the Firth’s bias correction
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for logistic [20, 24] and CoxPH [21, 25] regression. This
penalization method reduces the bias that occurs when
adopting maximum likelihood estimation (MLE) in finite
samples, and has therefore been recommended in (rela-
tively) small datasets [26].
The mathematical description of our GLM model per

trial j is:

g Y ij
� �

Nonsmokers¼α jþβ j�Treatmentij ð4Þ

g Y ij
� �

Smokers¼γ jþδ j�Treatmentij ð5Þ

In the formula above, g represents the appropriate link
function (identity, logit or log in case of continuous, bin-
ary or count outcomes, respectively).
Per subgroup we applied a random-effects meta-ana-

lysis with the extracted treatment coefficients using the
EB method, which is equivalent to the Paule-Mandel
method [27], for the τ2 estimation [28] and the HKSJ ad-
justment [29, 30]. The resulting per-subgroup pooled es-
timates were compared with each other with a Wald
test. We extracted the differences between the per-sub-
group pooled estimates and its corresponding p-value
for power, estimate bias and false positive rate (FPR)
calculations

Meta-analysis of interaction terms (MA-IT)
In meta-analysis of interaction terms (MA-IT), the inter-
action between the potential effect modifier (here smok-
ing status) and treatment is directly modelled per trial.
We hereto fitted an appropriate model per trial: linear,
logistic or CoxPH regression, including a treatment-
smoking interaction term. Again, we applied Firth’s bias
correction for logistic [24, 31] and CoxPH [25, 32]
regression.
The statistical model per trial j is as follows:

g Y ij
� �¼β0 jþβTj�Treatmentijþβsj�Smokingijþβxj

�Treatmentij�Smokingij

ð6Þ
We applied a fixed effect meta-analysis for pooling the

β̂ xj estimates of interaction. We extracted the pooled es-
timate and its corresponding p-value for power, estimate
bias and false positive rate (FPR) calculations.

Meta-regression
Meta-regression is a two-stage approach that uses
weighted regression to associate the effect of a trial-level
moderator variable (i.e. the percentage of smokers per
trial) with the estimated treatment effect in that trial.
Hereto, each trial is first analysed separately using either
linear, logistic or Cox proportional hazards (CoxPH) re-
gression. Again, we applied Firth’s bias correction for

logistic [24, 31] and CoxPH [25, 32] regression. Subse-

quently, for each trial the estimated treatment effect β̂ j

and the percentage of smokers pj are extracted. We eval-
uated the presence of subgroups by fitting a linear mixed
model with as dependent variable the extracted treat-

ment coefficients β̂ j and as explanatory variable the per-
centage of smokers pj. Between-study variation in
treatment effects was modelled with a random intercept.

Weights were based on the inverse variances of β̂ j. We
applied the empirical Bayes (EB) (Paule-Mandel) method
for the estimation of the between-study heterogeneity τ2

and performed the Hartung-Knapp-Sidik-Jonkman
(HKSJ) adjustment [28, 29].
The mathematical form of our model is:

β̂ j ¼ γ0 j þ γ1 � pj þ ε j
ε j � N 0; σ2

� �
γ0 j∼N γ0; τ02ð Þ

ð7Þ

where γ0j,γ1 are the meta-regression coefficients and εj
the residual error of study j. We extracted γ̂1 and its cor-
responding p-value for power, estimate bias and false
positive rate (FPR) calculations, see section 2.3.

Methods comparison
To assess the power, FPRs and bias in the subgroup ef-
fect estimates of all approaches, each scenario was re-
peated 1000 times, and we analysed the data as
described in sections 2.2.1–2.2.5. See also Fig. 1, which
summarises our simulation procedure.
The power of a statistical test is the probability that the

test correctly rejects the null hypothesis (H0). As we are
comparing the approaches in a simulation setting, we
know the direction of the subgroup effect, if any. There-
fore, we conducted a one-sided test with a significance
level of 0.025 in the scenarios with the medium or large
subgroup effects to assess the power of the approaches. As
we applied Firth’s bias correction, all approaches con-
verged, and we defined power as the percentage of signifi-
cant results, based on all simulations.
The FPR is the probability of finding a statically sig-

nificant subgroup effect where there is none. Therefore,
we conducted a two-sided hypothesis test with a nom-
inal significance level of 0.05 in all scenarios without
subgroup effect and calculated the percentage of statisti-
cally significant results.
The estimand we are investigating is the treatment-ef-

fect modification term. In our data-generation mechan-
ism that would be the equivalent to the interaction term
bw see formula [1]. Each of our aforementioned ap-
proaches estimates this treatment effect modification
term in a different manner. Per approach, we calculated
the bias in the estimate of the resulting coefficient, a

Belias et al. BMC Medical Research Methodology          (2019) 19:183 Page 5 of 13



difference between the estimand and the coefficient esti-

mate (bw− dβmethod).

Results
For illustrative purposes we show the power and FPR results
of our simulations for the scenarios of five trials with each
100 participants in Figs. 2 and 3. Furthermore, we show the
bias for each method into Table 2, Table 3, Table 4, Table 5,
and Table 6. The above setting was considered most repre-
sentative for typical IPD-MA. The results of other scenarios
are shown in the appendices (Additional files 1, 2, 3, 4, 5, 6,
7, 8 and 9). Results were similar to Figs. 2 and 3, but with
an increasing trend in power as subgroup effect, number of
participants or number of trials increased.

False positive rates
Figure 2 shows that centred and naive IPD-MA result in
consistent type I error rates (around nominal 5%) for all
types of outcome. However, for MA-IT we noticed that
FPRs were low (around 2.5 to 3.5%) when modelling binary
outcomes. PS-MA yielded high FPRs in scenarios without
heterogeneity, reaching approximately 9% for survival out-
comes. But when heterogeneity increased, PS-MA’s FPRs
decreased even below 5%, reaching 1% for continuous out-
comes. Finally, meta-regression showed type I error rates
approximately at 5% for all types of outcome.
For scenarios with ecological bias, centred and naïve

IPD-MA showed slightly reduced FPRs for the binary
outcomes in scenarios without heterogeneity. In the

Fig. 1 Overview of simulations approximately here
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other scenarios they performed as described. MA-IT re-
sults were not affected by the addition of ecological bias.
PS-MA showed mixed results. For binary outcomes the
addition of ecological bias resulted in increased FPRs,
while for the continuous outcomes the FPRs decreased,
and for time-to-event outcomes FPRs remained un-
affected. Furthermore, similar to settings without eco-
logical bias, PS-MA showed a decreasing trend in the
FPRs estimates when heterogeneity increased. Finally,
meta-regression showed increased FPRs especially for

continuous outcomes, reaching 18% in the scenarios
favouring placebo (qualitative ecological bias).

Power
In general, naïve and centred IPD-MA showed approxi-
mately similar results. In scenarios without ecological bias
naïve IPD-MA showed slightly more power than centred
IPD-MA. In scenarios with ecological bias centred IPD-
MA showed more power than naïve, which increased even
more in the qualitative compared to the quantitative

Fig. 2 Type I errors for the scenarios of 5 studies with 100 participants each approximately here

Fig. 3 Power to detect a large subgroup effect in the scenarios of 5 studies with 100 participants each approximately here
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ecological bias scenarios. Furthermore, the power of
centred IPD-MA was highest in scenarios with ecological
bias. Compared to IPD-MA methods MA-IT showed de-
creased levels of statistically significant results. In scenar-
ios with a limited number of trials (n = 5) and small
sample sizes (n = 50 participants), we observed the stron-
gest difference. A similar increase in the power of MA-IT
as seen for the centred IPD-MA was observed with the

addition of ecological bias. With PS-MA, power decreased
as heterogeneity increased. For continuous outcomes we
observed the strongest decrease: the power dropped from
80% in scenarios without heterogeneity to 25% in highly
heterogeneous scenarios. PS-MA showed decreased power
in scenarios with ecological bias, compared to those with-
out. Finally, meta-regression demonstrated low power in
all scenarios and often mis-identified the direction of the

Table 2 Centred CPD-MA coefficient estimate bias (mean [IQR])
Centred one-stage IPD-MA BIAS [IQR]

Binary outcome Continuous outcome Survival outcome

Heterogeneity
magnitude

Ecological Bias Large
subgroup
effect

Medium
subgroup
effect

No sugroup
effect

Large
subgroup
effect

Medium
subgroup
effect

No sugroup
effect

Large
subgroup
effect

Medium
subgroup
effect

No sugroup
effect

No
heterogeneity

No ecological bias -0.008 [0.592] -0.004 [0.626] 0.007 [0.533] -0.006 [0.257] -0.012 [0.254] 0 [0.24] 0.024 [0.459] 0.017 [0.47] -0.012 [0.393]

No
heterogeneity

Favouring treatment
ecological bias

-0.038 [0.572] -0.001 [0.596] 0.002 [0.578] 0.005 [0.259] 0.006 [0.253] -0.001 [0.238] 0.019 [0.505] 0.019 [0.486] -0.008 [0.423]

No
heterogeneity

Favouring placebo
ecological bias

-0.013 [0.566] 0.002 [0.567] -0.013 [0.589] 0.001 [0.245] 0.005 [0.238] -0.004 [0.245] 0.023 [0.599] 0.021 [0.539] -0.013 [0.371]

Medium
heterogeneity

No ecological bias -0.042 [0.618] 0.024 [0.533] 0.008 [0.598] -0.001 [0.251] -0.009 [0.237] -0.005 [0.234] 0 [0.453] -0.002 [0.466] -0.012 [0.368]

Medium
heterogeneity

Favouring treatment
ecological bias

-0.048 [0.563] -0.013 [0.574] 0.01 [0.599] -0.01 [0.242] 0.006 [0.258] 0.004 [0.256] 0.002 [0.485] -0.003 [0.484] -0.013 [0.4]

Medium
heterogeneity

Favouring placebo
ecological bias

-0.024 [0.553] -0.038 [0.525] -0.02 [0.56] 0.003 [0.246] 0 [0.246] -0.01 [0.266] -0.012 [0.62] -0.017 [0.545] -0.011 [0.382]

Large
heterogeneity

No ecological bias -0.007 [0.611] -0.025 [0.545] 0.006 [0.607] -0.002 [0.251] 0.003 [0.263] 0.001 [0.243] 0.006 [0.467] -0.001 [0.474] -0.011 [0.388]

Large
heterogeneity

Favouring treatment
ecological bias

-0.02 [0.554] -0.008 [0.568] -0.001 [0.624] 0.001 [0.241] -0.008 [0.251] 0.006 [0.244] 0 [0.492] -0.007 [0.48] -0.011 [0.394]

Large
heterogeneity

Favouring placebo
ecological bias

-0.01 [0.577] -0.02 [0.553] -0.006 [0.587] 0.004 [0.248] -0.002 [0.249] -0.002 [0.225] -0.011 [0.592] -0.01 [0.557] -0.012 [0.366]

Table 3 Naïve CPD-MA coefficient estimate bias (mean [IQR])
Naive one-stage IPD-MA BIAS [IQR]

Binary outcome Continuous outcome Survival outcome

Heterogeneity
magnitude

Ecological Bias Large
subgroup
effect

Medium
subgroup
effect

No sugroup
effect

Large
subgroup
effect

Medium
subgroup
effect

No sugroup
effect

Large
subgroup
effect

Medium
subgroup
effect

No sugroup
effect

No
heterogeneity

No ecological bias -0.012 [0.595] -0.001 [0.596] 0 [0.516] -0.005 [0.258] -0.014 [0.25] 0 [0.231] 0.017 [0.459] 0.011 [0.456] -0.013 [0.377]

No
heterogeneity

Favouring treatment
ecological bias

0.021 [0.56] 0.027 [0.57] -0.006 [0.596] 0.031 [0.255] 0.019 [0.24] -0.027 [0.242] -0.03 [0.489] -0.009 [0.474] -0.03 [0.409]

No
heterogeneity

Favouring placebo
ecological bias

0.075 [0.596] 0.073 [0.566] -0.013 [0.585] 0.042 [0.241] 0.041 [0.232] 0.035 [0.247] -0.089 [0.572] -0.047 [0.51] 0.027 [0.367]

Medium
heterogeneity

No ecological bias -0.043 [0.627] 0.023 [0.523] 0.004 [0.562] -0.001 [0.247] -0.01 [0.239] -0.007 [0.228] -0.002 [0.449] -0.002 [0.464] -0.014 [0.365]

Medium
heterogeneity

Favouring treatment
ecological bias

-0.003 [0.544] 0.009 [0.565] 0.007 [0.599] 0 [0.249] 0.011 [0.257] -0.005 [0.257] -0.031 [0.491] -0.021 [0.479] -0.029 [0.398]

Medium
heterogeneity

Favouring placebo
ecological bias

0.052 [0.572] 0.013 [0.516] -0.024 [0.563] 0.024 [0.255] 0.015 [0.245] 0.008 [0.262] -0.107 [0.589] -0.068 [0.523] 0.009 [0.383]

Large
heterogeneity

No ecological bias -0.01 [0.59] -0.027 [0.551] 0.007 [0.591] -0.003 [0.255] 0.002 [0.268] 0.002 [0.242] 0.005 [0.456] -0.002 [0.463] -0.012 [0.389]

Large
heterogeneity

Favouring treatment
ecological bias

0.009 [0.559] 0.003 [0.557] -0.004 [0.586] 0.005 [0.241] -0.006 [0.255] 0.003 [0.249] -0.019 [0.489] -0.016 [0.483] -0.018 [0.392]

Large
heterogeneity

Favouring placebo
ecological bias

0.044 [0.569] 0.015 [0.56] -0.008 [0.591] 0.012 [0.242] 0.001 [0.247] 0.004 [0.23] -0.071 [0.565] -0.040 [0.542] -0.004 [0.365]
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interaction effect (i.e. statistically significant results for
negative rather than positive interaction coefficients), es-
pecially in scenarios with qualitative ecological bias.

Binary outcomes
Figure 3a shows the results of our simulations for binary
outcomes. In scenarios with 5 trials and 100 participants,
all five statistical approaches showed less than 70%
power to detect large subgroup effects. In scenarios
without ecological bias centred and naive IPD-MA

approaches had similar power results: around 60% power
across all three heterogeneity levels. When ecological
bias was added, centred IPD-MA showed an increase
from 60 to 70% in power. The increase in power was less
for naïve IPD-MA, from 60 to 65%. MA-IT showed
lower power than the centred and naïve IPD-MA
(around 50%), and remained unaffected by heterogeneity.
The presence of ecological bias increased the power of
MA-IT to 60%. PS-MA showed a notable decrease in
power as heterogeneity increased. In scenarios without

Table 4 Meta-analysis of interaction terms coefficient estimate bias (mean [IQR])
MA-IT BIAS [IQR]

Binary outcome Continuous outcome Survival outcome

Heterogeneity
magnitude

Ecological Bias Large
subgroup
effect

Medium
subgroup
effect

No sugroup
effect

Large
subgroup
effect

Medium
subgroup
effect

No sugroup
effect

Large
subgroup
effect

Medium
subgroup
effect

No sugroup
effect

No
heterogeneity

No ecological bias 0.044 [0.573] 0.015 [0.578] 0.002 [0.496] -0.006 [0.277] -0.011 [0.252] 0.002 [0.25] -0.032 [0.461] -0.014 [0.46] -0.014 [0.408]

No
heterogeneity

Favouring treatment
ecological bias

0.028 [0.543] 0.03 [0.563] -0.003 [0.568] 0.005 [0.273] 0.007 [0.253] 0 [0.241] -0.036 [0.471] -0.01 [0.467] -0.018 [0.424]

No
heterogeneity

Favouring placebo
ecological bias

0.06 [0.54] 0.056 [0.541] -0.019 [0.576] 0 [0.25] 0.007 [0.244] -0.006 [0.254] -0.038 [0.553] 0.003 [0.513] -0.005 [0.374]

Medium
heterogeneity

No ecological bias 0.018 [0.577] 0.039 [0.514] 0.008 [0.54] -0.003 [0.26] -0.008 [0.249] -0.006 [0.237] -0.058 [0.461] -0.0390 [0.467] -0.016 [0.386]

Medium
heterogeneity

Favouring treatment
ecological bias

0.017 [0.532] 0.015 [0.538] 0.007 [0.567] -0.01 [0.259] 0.005 [0.259] 0.003 [0.25] -0.058 [0.48] -0.0390 [0.497] -0.025 [0.402]

Medium
heterogeneity

Favouring placebo
ecological bias

0.046 [0.53] 0.006 [0.497] -0.019 [0.533] 0.002 [0.25] 0.003 [0.26] -0.01 [0.268] -0.077 [0.566] -0.0381 [0.511] -0.005 [0.37]

Large
heterogeneity

No ecological bias 0.049 [0.556] -0.004 [0.519] 0.003 [0.573] -0.001 [0.258] 0.002 [0.281] 0.003 [0.257] -0.053 [0.451] -0.039 [0.472] -0.016 [0.38]

Large
heterogeneity

Favouring treatment
ecological bias

0.048 [0.538] 0.016 [0.525] -0.008 [0.588] -0.001 [0.255] -0.008 [0.271] 0.006 [0.256] -0.063 [0.497] -0.0431 [0.492] -0.024 [0.403]

Large
heterogeneity

Favouring placebo
ecological bias

0.063 [0.563] 0.023 [0.508] -0.012 [0.56] 0.004 [0.25] -0.003 [0.257] -0.003 [0.248] -0.077 [0.541] -0.0350 [0.532] -0.006 [0.376]

Table 5 Per-subgroup meta-analysis coefficient estimate bias (mean [IQR])
PS-MA BIAS [IQR]

Binary outcome Continuous outcome Survival outcome

Heterogeneity
magnitude

Ecological Bias Large
subgroup
effect

Medium
subgroup
effect

No sugroup
effect

Large
subgroup
effect

Medium
subgroup
effect

No sugroup
effect

Large
subgroup
effect

Medium
subgroup
effect

No sugroup
effect

No
heterogeneity

No ecological bias 0.053 [0.526] 0.02 [0.542] -0.002 [0.471] -0.005 [0.263] -0.014 [0.255] 0.001 [0.245] -0.058 [0.437] -0.032 [0.42] -0.011 [0.404]

No
heterogeneity

Favouring treatment
ecological bias

0.102 [0.516] 0.063 [0.522] -0.006 [0.529] 0.034 [0.264] 0.02 [0.238] -0.028 [0.242] -0.112 [0.426] -0.050 [0.438] -0.04 [0.417]

No
heterogeneity

Favouring placebo
ecological bias

0.216 [0.515] 0.132 [0.516] -0.013 [0.537] 0.071 [0.24] 0.048 [0.25] 0.047 [0.25] -0.21 [0.511] -0.090 [0.46] 0.045 [0.364]

Medium
heterogeneity

No ecological bias 0.03 [0.554] 0.038 [0.486] -0.002 [0.525] -0.003 [0.247] -0.009 [0.24] -0.009 [0.238] -0.072 [0.438] -0.041 [0.462] -0.021 [0.38]

Medium
heterogeneity

Favouring treatment
ecological bias

0.085 [0.511] 0.043 [0.523] -0.001 [0.544] 0.007 [0.247] 0.016 [0.253] -0.014 [0.254] -0.119 [0.453] -0.066 [0.455] -0.048 [0.401]

Medium
heterogeneity

Favouring placebo
ecological bias

0.188 [0.532] 0.078 [0.482] -0.03 [0.53] 0.055 [0.247] 0.031 [0.26] 0.027 [0.267] -0.228 [0.533] -0.105 [0.481] 0.03 [0.364]

Large
heterogeneity

No ecological bias 0.049 [0.525] -0.019 [0.515] -0.02 [0.55] -0.003 [0.268] 0.002 [0.276] 0.005 [0.247] -0.064 [0.464] -0.031 [0.473] -0.032 [0.395]

Large
heterogeneity

Favouring treatment
ecological bias

0.099 [0.518] 0.028 [0.515] -0.03 [0.548] 0.011 [0.261] -0.003 [0.266] -0.003 [0.236] -0.112 [0.467] -0.051 [0.465] -0.056 [0.408]

Large
heterogeneity

Favouring placebo
ecological bias

0.176 [0.515] 0.076 [0.53] -0.031 [0.534] 0.029 [0.265] 0.009 [0.264] 0.019 [0.245] -0.207 [0.549] -0.082 [0.493] 0.005 [0.371]
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ecological bias the power dropped from 60% (no hetero-
geneity) to 40% (large heterogeneity). The addition of
qualitative bias had a stronger effect on the power of PS-
MA than quantitative bias. Specifically, in scenarios
without heterogeneity, power dropped from 60 to 35%
when qualitative bias was added, while power remained
approximately the same with quantitative bias. Similar
patterns are observed with heterogeneity. Meta-regres-
sion resulted consistently in power below 10%, except
for scenarios with qualitative ecological bias, where it
showed increased percentages of statistically significant
results (reaching 30%), but these were mainly related to
effects in the opposite direction.

Continuous outcomes
Figure 3b shows the results of our simulations for con-
tinuous outcomes. All five statistical approaches showed
less than 80% power to detect large subgroup effects. In
particular, without ecological bias centred and naïve
IPD-MA approaches had similar consistent power re-
sults (approximately 80%) across all three heterogeneity
levels, which slightly decreased in the scenarios with
ecological bias. MA-IT showed lower power than
centred and naïve IPD-MA approaches, i.e. approxi-
mately 75% and was unaffected by heterogeneity and
ecological bias. PS-MA showed a decrease in power as
heterogeneity increased: in scenarios without ecological
bias the power dropped from nearly 80% (no heterogen-
eity) to around 30% (large heterogeneity). Furthermore,
PS-MA showed decreased power in scenarios without
heterogeneity but with quantitative and qualitative

ecological bias, 70 and 45% respectively, which further
dropped to 25 and 20% in scenarios with large hetero-
geneity. Meta-regression in scenarios with no and quan-
titative ecological bias resulted in power less than 10%
for all heterogeneity levels. In contrast, power increased
in scenarios with qualitative ecological bias, but in the
opposite direction of the subgroup effect.

Time-to-event outcomes
Figure 3c shows the results of our simulations for time-
to-event outcomes. All five statistical approaches showed
less than 70% power to detect large subgroup effects. In
particular, in scenarios without ecological bias centred
and naïve IPD-MA approaches had similar consistent
power (approximately 65%) across all three heterogen-
eity levels, with a slight increase in power in the scenar-
ios with ecological bias. MA-IT showed slightly lower
power than centred and naïve IPD-MA approaches, i.e.
approximately 55% and this was unaffected by hetero-
geneity. Nevertheless, similar to the centred and naïve
IPD-MA methods, MA-IT showed an increase in power
in presence of ecological bias from 60 to 70%. PS-MA
showed a decrease in power as heterogeneity increased:
in scenarios without ecological bias the power dropped
from nearly 65% (no heterogeneity) to around 45% (large
heterogeneity). Furthermore, PS-MA showed decreased
power in scenarios with qualitative compared to quanti-
tative ecological bias, 35 and 60% respectively, and
dropped to 30 and 45% when large heterogeneity was in-
troduced. Meta-regression resulted in power less than
10% for all heterogeneity levels in scenarios with no or

Table 6 Meta-regression coefficient estimate bias (mean [IQR])
Meta regression BIAS [IQR]

Binary outcome Continuous outcome Survival outcome

Heterogeneity
magnitude

Ecological Bias Large
subgroup
effect

Medium
subgroup
effect

No sugroup
effect

Large
subgroup
effect

Medium
subgroup
effect

No sugroup
effect

Large
subgroup
effect

Medium
subgroup
effect

No sugroup
effect

No
heterogeneity

No ecological bias -0.026 [2.083] 0.029 [1.973] -0.06 [1.893] -0.009 [0.958] -0.052 [0.935] -0.021 [0.911] -0.085 [1.549] -0.081 [1.644] 0.027 [1.366]

No
heterogeneity

Favouring treatment
ecological bias

1.022 [1.872] 0.5 [1.835] -0.084 [1.784] 0.516 [0.912] 0.236 [0.892] -0.509 [0.97] -0.748 [1.71] -0.399 [1.657] -0.312 [1.356]

No
heterogeneity

Favouring placebo
ecological bias

2.984 [1.873] 1.276 [1.73] 0.076 [1.8] 1.515 [0.921] 0.742 [0.94] 1.006 [0.93] -2.045 [1.95] -1.058 [1.689] 0.701 [1.333]

Medium
heterogeneity

No ecological bias 0.01 [2.234] 0.051 [2.067] -0.046 [1.976] 0 [1.411] -0.008 [1.483] -0.026 [1.365] -0.013 [1.945] 0.007 [1.984] -0.03 [1.749]

Medium
heterogeneity

Favouring treatment
ecological bias

1.008 [2.157] 0.468 [2.037] 0.019 [2.104] 0.449 [1.339] 0.235 [1.467] -0.468 [1.437] -0.689 [2.037] -0.342 [2.019] -0.363 [1.738]

Medium
heterogeneity

Favouring placebo
ecological bias

2.963 [2.133] 1.296 [2.093] -0.069 [2.014] 1.525 [1.373] 0.724 [1.43] 0.998 [1.479] -2.011 [2.185] -1.002 [2.099] 0.633 [1.72]

Large
heterogeneity

No ecological bias -0.067 [2.839] 0.024 [2.92] 0.021 [2.55] -0.063 [2.44] -0.046 [2.295] 0.101 [2.37] 0.007 [2.614] 0.023 [2.682] -0.056 [2.577]

Large
heterogeneity

Favouring treatment
ecological bias

1.014 [2.737] 0.516 [2.764] 0.019 [2.81] 0.536 [2.179] 0.195 [2.22] -0.404 [2.252] -0.669 [2.633] -0.298 [2.678] -0.39 [2.521]

Large
heterogeneity

Favouring placebo
ecological bias

2.883 [2.701] 1.34 [2.723] 0.038 [2.721] 1.426 [2.454] 0.656 [2.562] 1.033 [2.264] -1.984 [2.784] -0.984 [2.719] 0.617 [2.491]
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quantitative ecological bias. In contrast, meta-regression
showed more power (approximately 15%) in presence of
qualitative bias but in the opposite direction of the sub-
group effect.

Bias in the estimates of the treatment-effect modification
Detailed results of the bias are presented in Table 2,
Table 3, Table 4, Table 5, and Table 6. The estimate bias
of centred and naïve IPD-MA was nearly zero and
remained unaffected by addition of ecological bias and
heterogeneity in all scenarios for all outcomes. The re-
sults were approximately zero, with a maximum bias of
0.017 and minimum of − 0.005 for centred and 0.1 and
− 0.07 for the naïve IPD-MA. MA-IT showed slightly in-
creased bias for binary outcomes especially in scenarios
with low numbers of participants (50) and trials [5] and
a high level of heterogeneity. PS-MA amalgamated het-
erogeneity with ecological bias and showed bias in all
scenarios and outcomes, especially on binary and sur-
vival outcomes. Finally, meta-regression estimated in all
scenarios the bA term, see formula 1, rather than the
estimand bw we were interested in. Therefore, meta-re-
gression showed extreme bias in all scenarios with eco-
logical bias, both quantitative and qualitative.

Discussion
We compared five common statistical approaches for
subgroup detection in IPD-MA in an extensive simula-
tion study. Our results showed that overall the centred
IPD-MA described by Hua et al. [6] performed best in
terms of power, false positive rates and estimate bias,
particularly in scenarios with heterogeneity and eco-
logical bias. Both (naive and centred) one stage IPD-MA
approaches reached high levels of power, with minimal
bias, while retaining nominal and stable false positive
rates around 5%. The MA-IT approach was less power-
ful, particularly in scenarios with binary outcomes, small
sample sizes (n = 50 participants), and few trials (5 stud-
ies). PS-MA showed inconsistent power, decreasing as
heterogeneity and ecological bias increased, and high
FPRs in scenarios without heterogeneity. Furthermore,
PS-MA showed high levels of estimate bias. Meta-regres-
sion showed a lack of power and often mis-identified the
direction of the interaction effect (i.e. negative rather
than positive interaction coefficients). Although our
findings were based on binary, continuous and survival
endpoints, it is highly likely that they will be applicable
to other type of outcomes, such as counts (using differ-
ent link functions such as poisson link function) and
rates (using logit or arcsin transformations of the out-
come or fitting a beta-regression model, which maxi-
mises the beta distribution likelihood). This supports the
generalizability of our recommendations.

Comparison with literature
Our results are in agreement with the simulation study
of Lambert et al. [10], who compared in a setting with-
out between-study heterogeneity meta-regression and
naive IPD meta-analysis and showed that meta-regres-
sion is prone to a lack of power even when there is no
heterogeneity in treatment effect. Our results confirm
that meta-regression and PS-MA have limited usefulness
to investigate subgroup effects when individual partici-
pant data are available and that centred and naïve IPD-
MA approaches or MA-IT should be preferred [33]. Our
findings are also in line with a previous overview study
of Fisher et al., where MA-IT, PS-MA, naive and centred
IPD-MA were described and fitted in empirical studies
[8]. Furthermore, our results are also in agreement with
empirical studies for continuous and binary outcomes
[12, 14], which pointed out the need of individual par-
ticipant data and stressed that different results may
emerge with different approaches. In agreement with lit-
erature we have detected a lack of power in the MA-IT
compared to centred and naïve IPD-MA approaches in
small sample sized binary outcomes scenarios [2]. Fi-
nally, we simulated data with ecological bias using a co-
efficient for the across studies differences in the
treatment effect (bA) see formula 1. This implies a linear
association between the interaction of percentage of
smokers and treatment with the outcome. Our results
show that centred and naïve IPD-MA have minor differ-
ences in power and bias, which seems contradictory to
the results of Hua et al. [6]. Nevertheless, that is due to
different data generating mechanisms. We generated
ecological bias proportional to the percentage of
smokers, while Hua generated constant ecological bias
for all studies with percentage of smokers above 50%.

Strengths and limitations
The major strength of our simulation study is the variety
of scenarios and approaches we investigated. In particular,
we varied multiple elements relevant for meta-analysis,
such as between-study treatment effect heterogeneity,
quantitative and qualitative ecological bias, size and num-
ber of trials, and subgroup effect magnitude. To our
knowledge, this is the first study comparing power, FPRs
and estimate bias of centred and naive IPD-MA, MA-IT,
PS-MA and meta-regression when detecting subgroup ef-
fects. The fact that we applied all approaches and scenar-
ios on three common outcomes allows us to draw
conclusions that are widely applicable. The broad set-up
of the simulations allowed us also to generate similar het-
erogeneity, ecological bias and subgroup effects across all
three types of outcome.
Some potential limitations should also be discussed.

First, we only generated between-study heterogeneity for
the treatment effect even though we could have generated
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heterogeneity on other parameters in the model. Never-
theless, intercept and smoking can be considered nuisance
terms when the main interest is in investigating treatment
effects, thus generating heterogeneity on the intercept
and/or the smoker’s effect would not have altered our re-
sults and our conclusions. We avoided the introduction
of heterogeneity in the interaction term, as that
would have combined the statistically significant re-
sults resulting from our scenarios with those resulting
from random noise. As a consequence, the differences
in power and FPR across the methods would have
been underestimated. In addition, we assumed that
between-study heterogeneity was drawn from a nor-
mal distribution, such that modelling assumptions of
the various methods were (partially) in agreement
with the data generation mechanism. This may have
led to optimistic estimates of the power of all evalu-
ated methods. In these regards, researchers should be
aware that all methods are likely to perform poorer
in practice (further underlining the poor performance
of meta-regression and per-subgroup analysis). Sec-
ond, we assumed that trials were perfectly balanced
with respect to treatment allocation. Because small
trials are more likely to be imbalanced by chance,
their power to detect subgroup effects and treatment-
covariate interactions would be somewhat lower than
is the case in our simulation study. Finally, we simu-
lated a binary effect modifier reflecting either binary
variables such as smoking or the common practice
where dichotomizing continuous covariates is typically
conducted. Nevertheless, effect modification is also
commonly present in continuous and multilevel cat-
egorical variables, which are not covered in our
simulations.

Implications for practice
Centred and naïve IPD-MA, MA-IT and PS-MA are
considered well developed and powerful statistical tools
for IPD analysis. Nevertheless, we would like to highlight
that these methods should be used with caution and ap-
plied by a research team involving at least one member
with the appropriate statistical expertise. Centred and
naïve methods need careful modelling, as some assump-
tions they inherently make may not be applicable to all
data. Furthermore, convergence issues may emerge espe-
cially in mixed-effects models with time-to-event out-
comes. MA-IT may be problematic when investigating
subgroup effects across multiple trials because of lower
power than the centred and naïve IPD-MA approaches.
Furthermore, since in practice single trials are rarely suffi-
ciently powered to investigate subgroups or treatment-co-
variate interactions, the MA-IT approach may also be
hampered. For instance, practitioners may omit trials due

to single monotone likelihood issues (i.e. all participants in
a subgroup having the same outcome), thus reducing the
power of the meta-analysis. Firth’s bias correction may fix
the sparse-data bias issue but should be used with pru-
dence as this method introduces bias in the estimates
shrinking them to zero. The suboptimal performance of
the PS-MA approach implies that this method should be
avoided especially when between study heterogeneity and
ecological bias are present, as these effects may be amal-
gamated within the per subgroup estimates, which may
cause biased results and reduction of power.
Meta-regression is a statistical approach for aggregated

data and should be avoided in IPD. It is known to have
low power due to inefficient use of information espe-
cially when the subgroup covariate has a small variance
across trials. Furthermore, meta-regression is severely
prone to ecological bias.
MA-IT is less complicated than one-stage methods

and in meta-analyses with large trials it produces similar
results. Furthermore, results can be presented in terms
of forest plots, in contrast to one-stage methods, where
this is less obvious. Nevertheless, assuming correctly fit-
ted models for all methods, we advocate that centred
IPD-MA should be preferred. Our study demonstrates
that the centred IPD-MA method yields high power and
appropriate FPR, with minimal estimate bias. Hence, we
recommend this approach for IPD-MA aimed at investi-
gating subgroup effects.

Conclusions
Our results confirm the benefit of appropriately specified
one-stage meta-analysis methods to identify subgroup ef-
fects using individual participant data from multiple trials.
Naive and centred IPD-MAs performed approximately
equally well in terms of power and FPR, but since centred
IPD-MA showed less estimate bias in the presence of eco-
logical bias, we recommend the use of centred IPD-MA [5].
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