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Abstract

Background: When data are collected subject to a detection limit, observations below the detection limit may be
considered censored. In addition, the domain of such observations may be restricted; for example, values may be
required to be non-negative.

Methods: We propose a method for estimating population mean and variance from censored observations that
accounts for known domain restriction. The method finds maximum likelihood estimates assuming an underlying
truncated normal distribution.

Results: We show that our method, tcensReg, has lower bias, Type I error rates, and mean squared error than other
methods commonly used for data with detection limits such as Tobit regression and single imputation under a range
of simulation settings from mild to heavy censoring and truncation. We further demonstrate the consistency of the
maximum likelihood estimators. We apply our method to analyze vision quality data collected from ophthalmology
clinical trials comparing different types of intraocular lenses implanted during cataract surgery. All of the methods
yield similar conclusions regarding non-inferiority, but estimates from the tcensReg method suggest that there may
be greater mean differences and overall variability.

Conclusions: In the presence of detection limits, our new method tcensReg provides a way to incorporate known
domain restrictions in dependent variables that substantially improves inferences.

Keywords: Contrast sensitivity, limited dependent variables, Limited domain, Visual acuity

Background
Censoring, in which the value of an observation is not
known exactly but rather is only known to be above or
below a specific value, is prevalent in many data settings.
Censoring occurs with time-to-event data, but can also
occur when measurements are subject to a detection limit
(DL). A detection limit is defined as the lowest quantity or
concentration of a compound that can be reliably detected
with a given analytical method [1]. Quantities below the
DL can be considered censored. Detection limits and the
*Correspondence: williazo@g.ucla.edu
1Department of Biostatistics, University of California Los Angeles, Charles E.
Young Dr. South, 90095 Los Angeles, USA
Full list of author information is available at the end of the article

censored observations associated with them are encoun-
tered in epidemiology [2, 3], hydrology [4], chemistry [5],
toxicology [6], and economics [7, 8].
Estimation of the parameters of a normal distribution

based on a sample with censored observations has a long
history of investigation. [9] was one of the first authors
to develop maximum likelihood estimation methods for
this data setting. Much of the early work focused on single
mean models [9–12] or estimation using order statistics
[13, 14]. Regression with a dependent variable subject to
known censoring gained prominence with the work of
[15], who developed the Tobit model, also called a cen-
sored regression or Tobit regression model. Linear regres-
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sion methods with an unspecified censored distribution
were later developed by [16].
In settings in which censored data arise due to a DL,

estimation is sometimes performed by singly imputing
the DL or 1/2 DL for censored observations. While these
methods are known to yield biased estimates of the mean
and standard deviation, they are still routinely applied
due to convenience. Single imputation of the DL yields
upwardly biased estimates of the mean [4]. There can also
be substantial bias using 1/2 DL imputed values, with the
direction of the bias depending on the underlying data
mechanism [1, 2, 4]. [2] noted that the bias of parameter
estimates when using 1/2 DL is substantial unless the pro-
portion of censored observations is small, defined as less
than 10%.
Related to but distinct from censoring is the concept

of truncation. A truncated distribution is a conditional
distribution that results from restricting the domain of
some other probability distribution. For example, the
zero-truncated Poisson distribution is the distribution of
a Poisson random variable conditional on the value of the
random variable being non-zero. Truncation is a strict
restriction of the domain of the random variable; observa-
tions outside the domain cannot occur. In contrast, when
an observation is censored, its true value is known to
lie beyond the censoring threshold, and such true values
are permitted to occur. Truncation is a property of the
population, while censoring is a result of the sampling
mechanism.
Methods have been developed for estimating the param-

eters of a truncated normal distribution. [9] developed
methods for the single mean model, while later work by
[17] provided solutions for settings involving normal dis-
tributions with known or unknown truncation points and
single or double truncation. [18] extended the theoretical
framework to settings in which the distribution satisfies
regularity conditions but is not necessarily normal. Work
by [19] expanded the truncated regression framework by
demonstrating the consistency and asymptotic normal-
ity properties of the maximum likelihood estimator and
identifying consistent initial estimators.
Both censored and truncated data are often referred to

as limited dependent variables in the economics literature
[8, 15]. There are currently methods of parameter estima-
tion applicable to censored observations from normally
distributed random variables and uncensored observa-
tions from truncated normal random variables. However,
estimation for the case in which observations are censored
from a truncated normal random variable, are lacking.
In this manuscript we propose maximum likelihood esti-
mation techniques for such data. The methods can be
seen as analogous to those of [15] with the latent nor-
mal distribution replaced with a latent truncated normal
distribution.

The paper is organized as follows. In “Methods” we
introduce a motivating example from an analysis of visual
quality data from clinical trials of intraocular lenses
implanted during cataract surgery and the maximum
likelihood estimation procedure. The “Results” compares
the performance of the proposed new methodology to
other common methods using both simulations and our
motivating example. In the “Discussion” we reflect on
the significance of the results, discusses limitations and
note possible areas for extending the work. Finally the
“Conclusion” sections highlights the importance of the
method when modeling observations subject to a detec-
tion limit.

Methods
Problemmotivation
Our application concerns left censored non-negative
observations arising from contrast sensitivity testing in
clinical trials for intraocular lenses implanted during
cataract surgeries.
Contrast sensitivity measures the visual quality experi-

enced by a subject by testing his or her ability to distin-
guish increasingly finer increments of light versus dark.
Being unable to distinguish objects when contrast is low,
i.e., when there is little difference between light and dark,
can make everyday tasks such as night driving, navigat-
ing new settings, or perceiving distances difficult [20].
Cataract patients tend to have especially poor contrast
sensitivity due to the clouding of the natural lens. The pri-
mary treatment for cataracts is surgery, during which the
natural clouded lens is removed and replaced with a new
synthetical intraocular lens (IOL). The patient should see
improvement in visual acuity and visual quality follow-
ing IOL implantation. As such, contrast sensitivity is an
important clinical outcome for patients who receive IOLs
during cataract surgery.
Contrast sensitivity testing is performed using standard-

ized charts with alternating light and dark bars, referred
to as gratings. To determine the contrast sensitivity of a
patient, the intensity of the contrast between the bars as
well as the spacing is reduced until the patient is no longer
able to perceive separate bars. The contrast is defined as
the relative difference in luminance of the bars from the
background and may be calculated using the Weber con-
trast, Lmax−Lmin

Lbackground , Michelson contrast, Lmax−Lmin
Lmax+Lmin

, or RMS
contrast, Lσ

Lμ
, where Lmax, Lmin, Lbackground , Lμ, and Lσ

are luminance maximum, minimum, background, mean
and standard deviation respectively [21]. Typically when
using gratings to test contrast, the Michelson contrast is
preferred. Contrast sensitivity is defined as the recipro-
cal of the threshold contrast, which is the lowest contrast
that the patient can identify the grating. The spacing
between the bars is measured in cycles per degree (CPD)
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with higher values of CPD indicating less space between
bars. The testing is performed across a variety of different
CPD levels, under either bright or dim lighting conditions,
and with or without glare. In general, contrast sensitiv-
ity scores are lower when testing is performed under dim
lighting with glare.
At each CPD level, the subject is presented with a

sample grating followed by 8 gratings that progressively
decrease the intensity of the image contrast. Figure 1
shows the testing setup used for 12.0 CPD, which is one
of the most common visual quality outcomes analyzed
in ophthalmic clinical trials. The subject is first asked if
they can identify the striped pattern in the sample image,
and is subsequently shown each column starting from col-
umn 1 and asked to identify whether the striped pattern
is in the top, bottom, or neither grating. A contrast sen-
sitivity score is recorded as the lowest level of identifiable
contrast, i.e., the lowest intensity contrast for which the
patient is able to correctly identify the striped pattern. The
contrast sensitivity score ranges from 0 to 8, with 0 rep-
resenting the ability to identify only the sample grating
and 8 corresponding to the last column with the lowest
image contrast. If a subject is unable to identify the sam-
ple grating, the value is recorded as -1. The scores of 0-8
are converted to continuous log contrast sensitivity values
based on the manufacturers’ recommendations as shown
in Table 1. Note that by definition, the contrast sensitiv-
ity values using theMichelson formula range from [ 1,∞),
meaning that the log contrast sensitivity scores must be
non-negative, i.e., [ 0,∞).
Problems arise using this scoring approach when

patients are unable to identify the sample grating, i.e., have
contrast sensitivity threshold score of -1. The true log con-
trast sensitivity values for these patients are only known
to be below the sample threshold. This is equivalent to
having left censored observations. However, we also know
that log contrast sensitivity values must be non-negative,
implying that the distribution of log contrast sensitivity
scores is left truncated at zero. Therefore, to accurately
estimate the mean and standard deviation of log contrast

sensitivity for a particular IOL, both the censoring and
truncation need to be accounted for.
Our data come from two prospective clinical trials for

IOLs implanted during cataract surgery. The first study,
ClinicalTrials.gov Identifier NCT01510717, compared a
monofocal lens and amultifocal lens in a double blind ran-
domized parallel group study with bilateral IOL implan-
tation, and the second study, ClinicalTrials.gov Identi-
fier NCT01424189, compared two different multifocal
lenses in a nonrandomized parallel assignment multi-
center study again with bilateral IOL implantation. Our
analysis will be restricted to data reported for binocu-
lar (both eyes open) testing, under dim lighting with and
without glare. All observations were taken 6 months after
surgery.
Figure 2 shows the marginal histograms with kernel

density smoothers of each IOL by glare condition. Visual
inspection of the data suggest that it may be reasonable to
assume an underlying normal distribution for the log con-
trast sensitivity scores, with scores being censored at the
lower-bound detection limit.
The goal of the analysis was to estimate the differ-

ence in mean log contrast sensitivity between the mono-
focal and each multifocal lenses. Historically, monofo-
cal lenses have provided patients with better contrast
sensitivity, but multifocal lenses are often preferred by
patients for visual acuity as they provide both distance
and near vision with increased spectacle independence.
A common clinical trial hypothesis is to test whether
the multifocal lens is non-inferior to the monofocal lens
with respect to contrast sensitivity. Based on regulatory
guidelines, losses of 0.3 log units are considered to be
clinically significant when they occur at two or more
spatial frequencies [22]. The non-inferiority margin for
log contrast sensitivity is set at half of this clinically
significant magnitude, i.e., loss of 0.15 log units. Our
goal was thus to estimate pairwise differences in mean
log contrast sensitivity between the monofocal lens and
each multifocal lens to test for non-inferiority of visual
quality.

Fig. 1 CSV-1000E1 Contrast Sensitivity Chart for 12.0 CPD. 1This testing chart is distributed by Vector Vision and was accessed from http://www.
vectorvision.com/csv1000-contrast-sensitivity/ on 29NOV2018

https://clinicaltrials.gov
https://clinicaltrials.gov
http://www.vectorvision.com/csv1000-contrast-sensitivity/
http://www.vectorvision.com/csv1000-contrast-sensitivity/


Williams et al. BMCMedical ResearchMethodology          (2020) 20:170 Page 4 of 25

Table 1 Manufacturer Log Contrast Sensitivity Value1

Contrast sensitivity threshold scores

0 1 2 3 4 5 6 7 8

CPD2

1.5 0.60 0.90 1.07 1.22 1.37 1.52 1.67 1.82 1.97

3.0 0.70 1.00 1.17 1.34 1.49 1.63 1.78 1.93 2.08

6.0 0.91 1.21 1.38 1.55 1.70 1.84 1.99 2.14 2.29

12.0 0.61 0.91 1.08 1.25 1.40 1.54 1.69 1.84 1.99

18.0 0.17 0.47 0.64 0.81 0.96 1.10 1.25 1.40 1.55

1 Based on scoring instructions from http://www.vectorvision.com/csv1000-norms/ accessed on 08NOV2018
2 CPD = Cycles per Degree
Data analyzed in “Application results” section is from 12.0 CPD test highlighted in grey
Detection limit (DL) for 12.0 CPD is 0.61 highlighted in the red box and therefore 1/2 DL is 0.31

Statistical methods
This section first develops maximum likelihood esti-
mation for a sample from a truncated normal distri-
bution with censored observations, i.e., a single mean
model. The methods are then extended to include a
linear predictor for the mean. We then propose an
extension to handle heteroskedastic variances. We focus
on the setting in which the truncation and censoring
occur only on the lower, or left, end of the distribution,

i.e., left truncation and left censoring. The results can
be generalized to right truncated and right censoring.
Finally, the process of finding the maximum likeli-
hood estimates is described using different optimization
techniques.

Singlemeanmodel
As a first step, we define the likelihood function for cen-
sored observations from a normal distribution. Assume a

Fig. 2Marginal Histograms for Monofocal and Multifocal Lens at 12 CPD under Dim Lighting. Log contrast sensitivity scores are converted from
contrast sensitivity threshold scores via Table 1. Detection limit for 12 CPD occurs at ν = 0.61. Histogram is shown in the background with Gaussian
kernel density estimate in the foreground with bandwidth set to 0.2

http://www.vectorvision.com/csv1000-norms/


Williams et al. BMCMedical ResearchMethodology          (2020) 20:170 Page 5 of 25

latent normal distribution with mean μ and variance σ 2

for the random variable X∗. Following [15], assume that
the values of X∗ are left-censored at ν, ν ∈ R, to produce
the random variable X defined as

Xi =
{

ν if X∗
i ≤ ν,

X∗
i if X∗

i > ν. (1)

Here, censored observations are reported as the DL ν.
The values of X represent the observed values in the sam-
ple, which are a partial representation of the values of
X∗. Assume that a total of n observations are indepen-
dently drawn with n0 observations censored, i.e., n0 =∑n

i=1 1{xi=ν}, and n1 observations uncensored, i.e., n1 =∑n
i=1 1{xi>ν}. The likelihood function for such data is

L(μ, σ) =
[
�

(
ν − μ

σ

)]n0 [ 1
σ

]n1 ∏
i∈S1

φ

(
xi − μ

σ

)
,

where φ(·) and �(·) denote the standard normal pdf
and cdf and S1 is the set of all uncensored observations.
Therefore the log-likelihood is

l(μ, σ) = n0 ln
[
�

(
ν − μ

σ

)]
− n1 ln(σ ) +

∑
i∈S1

ln
[
φ

(
xi − μ

σ

)]
.

Maximum likelihood estimates μ̂ and σ̂ can be found
using iterative optimization techniques, such as the
Newton-Raphson algorithm, as discussed in [15].
Now we replace the latent normal distribution above

with a latent truncated normal distribution, truncated
from the left at the value a. Call this random variable Y ∗,
which has the following pdf and cdf from [17]:

fY ∗
i

(
y∗
i
) = 1

1 − �
( a−μ

σ

)
[
1
σ

φ

(y∗
i − μ

σ

)]
,

FY ∗
i

(
y∗
i
) =

�
(
y∗i −μ

σ

)
− �

( a−μ
σ

)
1 − �

( a−μ
σ

) .

The distribution of Y ∗ is a scaled version of a normally
distributed random variable, obtained by dividing the pdf
by the constant 1 − �

( a−μ
σ

)
to obtain a proper prob-

ability density function that integrates to one. We will
denote a latent truncated normal random variable with
left truncation at a constant a ∈ R as

Y ∗ ∼ TN
(
μ, σ 2, a

)
,

where we assume that the truncation value a is known and
therefore fixed. For non-negative variables, a = 0.
Note that the parameter μ denotes the mean of the

underlying normal distribution prior to truncation, rather
than themean of the truncated normal distribution, which

is μTN = μ + φ
(
a−μ

σ

)

1−�
(
a−μ

σ

)σ [8]. Throughout the paper

we focus on the estimation of this underlying central
tendency parameter μ rather than μTN .

The log-likelihood for the truncated normal distribu-
tion with n independent observations drawn from this
distribution is

l(μ, σ) = −n ln
[
1 − �

(
a − μ

σ

)]
− n ln(σ ) +

n∑
i=1

ln
[
φ

( y∗
i − μ

σ

)]
.

There is no closed form for the maximum likelihood esti-
mates for μ and σ for the truncated normal distribution.
However, [17] described methods for iteratively solving
for the maximum likelihood estimates and [19] showed
that the estimates were consistent and asymptotically nor-
mal.
Further suppose that the values of Y ∗ are censored at

ν > a, ν ∈ R, to produce the random variable Y, defined
as

Yi =
{

ν if Y ∗
i ≤ ν,

Y ∗
i if Y ∗

i > ν, (2)

where ν is a known constant. For example in the
contrast sensitivity problem, the testing procedure has
an inherent detection limit and cannot detect val-
ues below 0.61 log units. The log contrast sensitivity
scores must also be non-negative as discussed earlier in
“Problem motivation” section, signifying an implicit trun-
cation value of a = 0.
The pdf for the truncated random variable with censor-

ing can be expressed as

fYi(yi) = 1{yi=ν}

[
�
(

ν−μ
σ

)− �
( a−μ

σ

)
1 − �

( a−μ
σ

)
]

+ 1{yi>ν}

[
1

σ
(
1 − �

( a−μ
σ

))φ
(
yi − μ

σ

)]
.

(3)

The first term of this equation captures censored observa-
tions, in which case the data are reported as the detection
limit value ν and the cdf of the truncated normal is used
to provide information for the likelihood. In the second
term, the observation is not censored and we simply use
the pdf for the truncated normal. Figure 3 shows an exam-
ple of the probability density function for such a random
variable.
Out of a total of n observations, again let n0 be censored

such that n0 = ∑n
i=1 1{yi=ν}, and n1 be uncensored, n1 =∑n

i 1{yi>ν}. Let S define the set of all observations, S1 be
the set of uncensored observations, and S0 be the set of
censored observations, i.e., S0∪S1 = S. Assuming that the
observations are drawn independently, the likelihood is
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Fig. 3 Truncated Normal Distribution with Censoring. Potential density for a left truncated normal distribution with left censoring. The density
above was created with μ = 0.8, σ = 0.5, a = 0, and ν = 0.61. In our application, a = 0 and ν = 0.61

L(μ, σ) =
(

1
1 − �

( a−μ
σ

)
)n [

�

(
ν − μ

σ

)
− �

(
a − μ

σ

)]n0
(
1
σ

)n1 ∏
i∈S1

φ

(
yi − μ

σ

)
.

(4)

Taking the log of the likelihood, we have

l(μ, σ) = − n ln
[
1 − �

(
a − μ

σ

)]

+ n0 ln
[
�

(
ν − μ

σ

)
− �

(
a − μ

σ

)]
− n1 ln(σ )

+
∑
i∈S1

ln
[
φ

(
yi − μ

σ

)]
.

(5)

Similar to the censored only and truncated only log-
likelihoods, the maximum likelihood estimators for μ and
σ for the truncated normal distribution with censoring
do not have a closed form but can be estimated using
the iterative process discussed in “Obtaining maximum
likelihood estimates” section.

Linear predictor for themean
The goal of many applications is to understand how cer-
tain predictors influence the mean or to compare the

means of different populations. This can be accomplished
by using the linear predictor XT

i β , i.e.,

Y ∗
i ∼ TN

(
XT
i β , σ 2, a

)
,

where β = (β1, . . . ,βp−1)T is a (p−1)×1 vector of param-
eters with p ≥ 2. Again, note that XT

i β is the mean of the
underlying normal distribution rather than the mean of
the truncated normal distribution, i.e., E[X∗

i ] rather than
E[Y ∗

i ]. All of the unknown parameters can be collected
into the vector θ = (β , σ 2)T which has length p. The
corresponding pdf and cdf are

fY ∗
i

(
y∗
i
) = 1

1 − �

(
a−xTi β

σ

)
[
1
σ

φ

(
y∗
i − xTi β

σ

)]

FY ∗
i

(
y∗
i
) =

�

(
y∗i −xTi β

σ

)
− �

(
a−xTi β

σ

)

1 − �

(
a−xTi β

σ

) .

Suppose that this truncated normal distribution is then
censored at the value ν, where ν > a. Let the notation
a∗
i = a−xTi β

σ
denote a standardized version of the constant



Williams et al. BMCMedical ResearchMethodology          (2020) 20:170 Page 7 of 25

a. The likelihood of the truncated normal distribution
with censoring can be expressed as

l
(
β , σ 2) = −

n∑
i=1

ln
[
1 − �

(
a∗
i
)]

+
∑
i∈S0

ln
[
�
(
ν∗
i ) − �(a∗

i
)]− n1 ln(σ )

+
∑
i∈S1

ln
[
φ

(
yi − xTi β

σ

)]
.

(6)

Heteroskedastic variances
We now relax the assumption of homogeneous variance.
We consider the case of independent groups with different
variances. Assume we have samples drawn independently
from J truncated normals, with each population having a
common truncation value but possibly different variance,
according to the model

Y ∗
ij ∼ TN

(
XT
ij β , σ 2

j , a
)
, i = 1, . . . , nj and j = 1, . . . , J ,

where nj is the number of observations in group j and
Y ∗
ij⊥⊥Y ∗

i′j′ for all i �= i′ and j �= j′. Assume that obser-
vations are censored at the value ν to create a sample of
independent random variables with pdf

fYij (yij) =1{yij=ν}

⎡
⎢⎢⎣

�

(
ν−xTij β

σj

)
− �

(
a−xTij β

σj

)

1 − �

(
a−xTij β

σj

)
⎤
⎥⎥⎦

+ 1{yij>ν}

⎡
⎢⎢⎣ 1

σj

(
1 − �

(
a−xTij β

σj

))φ

(
yij − xTij β

σj

)⎤⎥⎥⎦ .

Because groups are independent, the log likelihood
becomes

l
(
β , σ 2

1 , . . . , σ
2
J
) =

J∑
j=1

nj∑
i=1

− ln
[
1 − �

(
a∗
ij

)]

+
∑
i∈S0j

ln
[
�
(
ν∗
ij

)
− �

(
a∗
ij

)]
− n1j ln(σj)

+
∑
i∈S1j

ln
[
φ

(
yij − xTij β

σj

)]
,

(7)

where a∗
ij = a−xTij β

σj
, S0j and S1j are the sets of censored

observations and uncensored observations respectively
in the jth group, and n1j is the number of uncensored
observations in the jth group.

Obtainingmaximum likelihood estimates
Our goal is to find the values θ̂ that maximize the

log-likelihoods of Eqs. 5, 6, and 7, where θ corre-
sponds to the appropriate mean and standard deviation
parameters, i.e., θ = (β , σ ). However, closed form solu-
tions do not exist. To obtain maximum likelihood esti-
mates, an iterative procedure is required. One approach
is to use the Newton-Raphson algorithm using Taylor
series expansion, as discussed in Chapter 14 in [23].While
the Newton-Raphson method has attractive local con-
vergence guarantees and reliable performance [24], each
step requires evaluation of the Hessian matrix, which
can become computationally expensive for a large set
of predictors. Alternative optimization routines, such as
the quasi-Newton BFGS [25–28] or the conjugate gradi-
ent [29], which require only evaluation of the likelihood
function and corresponding gradient, often require addi-
tional evaluations but have reduced memory and faster
computing time.
Within R, other optimization packages such as the max-

Lik package from [30] can also be used to find maximum
likelihood estimates. This package is called in the cen-
sored only and truncated only maximum likelihood esti-
mation packages in R such as censReg by [31] and truncreg
by [32].
We developed the standalone R package tcensReg avail-

able in CRAN to solve the novel likelihood equation of
the truncated normal distribution with censoring. This
software package uses analytic results of the gradient and
Hessian via Newton-Raphson optimization for the cor-
responding model of interest in either Eq. 6 or Eq. 7
derived in Appendix A. Several other optimization rou-
tines are available within the software including conjugate
gradient, maxLik, and BFGS. This package uses familiar
model syntax and has additional functionality to esti-
mate parameters for the censored only or truncated only
settings similar to the censReg and truncreg packages,
respectively.

Results
Simulation study
We conducted a simulation study to compare the perfor-
mance of our method to that of five methods of estimating
the mean and standard deviation from a truncated nor-
mal distribution with censored observations. Method 1
is the gold standard method which uses the true uncen-
sored observations, and accounts for the truncation in
the estimation procedure by using the appropriate trun-
cated log-likelihood. Method 2 uses the same uncensored
truncated data but does not adjust for truncation in the
normal distribution likelihood function. Methods 3-6 use
the censored truncated observations but differ in how
they treat censoring and truncation. Method 3 imputes
all censored values with the detection limit and uses

https://CRAN.R-project.org/package=tcensReg
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maximum likelihood estimation with a normal distribu-
tion likelihood, while Method 4 imputes all values as half
of the detection limit and also uses normal maximum like-
lihood estimation. Both the DL and 1/2 DL imputation
methods have been shown to perform poorly in cases with
censoring [1, 2, 4], and are expected to show even worse
performance in this setting since they do not account for
censoring or truncation. However, they are still sometimes
used in practice. Method 5 uses Tobit regression, which
incorporates censoring into the likelihood. This method
is often recommended when the assumption of normal-
ity seems reasonable. Finally, Method 6 is our proposed
maximum likelihood estimation procedure described in
the “Methods” section which takes into account not only
the censoring but also the truncation of the underlying
distribution. These six methods will be referred to as:
1) Gold Standard (GS), 2) Uncensored with no trunca-
tion adjustment (Uncens NT), 3) Detection Limit (DL), 4)
1/2 Detection Limit (1/2 DL), 5) Tobit regression (Tobit),
and 6) censored regression with truncation adjustment
(tcensReg), our proposed method.
Each of these methods makes different assumptions

about the underlying data generating process. Both the
GS and Uncens NT methods observe Y ∗

i . The GS
method uses the true generating distribution, i.e., Y ∗

i ∼
TN

(
μ, σ 2, a

)
. With Uncens NT, the distribution is incor-

rectly assumed to be not truncated, i.e., Y ∗
i ∼ N

(
μ, σ 2).

The remaining methods observe only the censored data,
Yi, along with the detection limit ν. For DL, 1/2 DL, and
Tobit methods, the observed data are assumed to be gen-
erated from a normal distribution Yi ∼ N

(
μ, σ 2), but

handle the censored observations differently. In DL and
1/2 DL, point masses are placed at either ν or ν/2 before
estimating the parameters μ and σ 2. The Tobit method
instead assumes that the censored observations fall within
the tail region below the detection limit, and an appro-
priate term is incorporated into the likelihood function.
The tcensRegmethod correctly assumes that the censored
observations are generated from an underlying truncated
normal distribution, Yi ∼ TN

(
μ, σ 2, a

)
, with informa-

tion in the censored observations incorporated using the
truncated normal tail probabilities. In simulation stud-
ies, we can test each of these methods against the gold
standard, since the complete data generating process is
known. However, in practice the true underlying distribu-
tion is unknown, meaning only the DL, 1/2 DL, Tobit, and
tcensReg methods are appropriate to implement.

Set-up
Four different sets of simulation studies were conducted
to compare the six methods. In the first simulation study,
values from a single mean model were drawn to com-
pare performance of the methods in terms of bias and
mean squared error (MSE) for estimating the mean and

standard deviation of the underlying latent distribution.
The second simulation study focused on estimating the
difference of the means of two independent populations
and their common variance. In the third simulation study,
the performance of the methods in a non-inferiority test
setting similar to that of our motivating example was
assessed. Finally, the last simulation study examined the
consistency of the maximum likelihood estimation proce-
dures as a function of sample size in a single mean model.
The simulations were conducted in R version 3.6.2[33].
For the first simulation study, values were simulated

from a truncated normal distribution,

Y ∗
i ∼ TN

(
μ, σ 2, a

)
,

and then censored. A constant value of a = 0 was used
to represent zero-truncation. The values of μ and σ 2 were
chosen to approximate the marginal distributions of the
log contrast sensitivity scores from the application intro-
duced in “Problem motivation” section. Typical values of
mean log contrast sensitivity ranged from 0.7 to 1.1, and
thus we used μ ∈ {0.7, 0.8, 0.9, 1.0, 1.1}. Based on standard
deviations observed in the contrast sensitivity data, for the
simulation we used σ ∈ {0.40, 0.45, 0.50}. This created a
total of 15 (5 × 3) parameter combinations for μ and σ 2.
Observations from a truncated normal distribution,

Y ∗
i ∼ TN

(
μ, σ 2, a

)
, can be simulated by transforming

samples from a uniform distribution on the interval [ 0, 1]
using the inverse probability transformation:

Y ∗
i =�−1

{
p ×

[
1 − �

(
a − μ

σ

)]
+�

(
a − μ

σ

)}
×σ+μ,

where p represents the sample from the uniform distribu-
tion [34]. This method of inverse transformation sampling
is implemented with the tcensReg software package. After
transforming to the appropriate truncated normal distri-
bution, another dataset was generated by censoring the
observations at ν = 0.61. Values that fell below ν were
either replaced with the DL (0.61), 1/2 DL (0.305), or
marked as censored for Tobit and tcensReg estimation.
Each of the six estimation methods was used to estimate

μ and σ . The data simulation and estimation procedures
were repeated for B = 10, 000 replications with a sample
size of n = 100. For each of the six methods, two perfor-
mance metrics were calculated for θ ∈ {μ, σ }: average bias
( ¯̂θ −θ ) and mean squared error (MSE; 1/B

∑B
k=1[ θ̂k−θ ]2)

where ¯̂
θ = 1/B

∑B
k=1 θ̂k . When reporting results for sim-

ulations throughout this manuscript, log MSE rather than
MSE was used as the MSE for the various procedures
sometimes differed by orders of magnitude. Applying this
monotonic transformation allowed for easier comparison
among methods.
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In the second simulation study, we simulated values
from two truncated normal populations with different
means but common variance and truncation value, i.e.,

Y ∗
1 ∼ TN

(
μ1, σ 2, a

)
Y ∗
2 ∼ TN

(
μ2, σ 2, a

)
.

A constant value of a = 0 was used to represent zero-
truncation and a range of values of μ1, μ2, and σ 2 were
selected to produce data similar to the application. Popu-
lation 1 approximated a monofocal intraocular lens, while
Population 2 approximated a multifocal intraocular lens.
Means for monofocal lenses took values μ1 ∈ {1.0, 1.1},
and the difference between multifocal and monofocal
lenses was set to range from no difference to a clini-
cally significant difference of 0.3 log units [22], i.e., δ ∈
{−0.3,−0.2,−0.1, 0}. Therefore the mean of Population 2
was set as μ2 = μ1 + δ. The common standard devia-
tion was assumed to take values σ ∈ {0.40, 0.45, 0.50}. The
two-population simulation had a total of 24 (2 × 4 × 3)
parameter combinations for μ1, μ2, and σ 2.
A total of 100 observations from each population were

sampled. Again, for each population a separate censored
dataset was generated using the censoring threshold ν =
0.61, and values that fell below ν were replaced with the
DL (0.61), 1/2 DL (0.305) or marked as censored for Tobit
and tcensReg estimation. Each of the six estimation meth-
ods was used to estimate the mean difference between
Population 1 and 2, δ, and the common standard devia-
tion, σ . Data simulation and estimation were repeated for
B = 10, 000 replications. For each of the six methods,
average bias and MSE were calculated.
The third simulation study assessed the performance

of the methods in the context of a non-inferiority test.
Here we focused on the Type I error rates of the various
methods. Type I error rates are particularly important for
non-inferiority tests because, if non-inferiority is falsely
accepted, patients may decide between products based on
non-efficacy factors such as price and side effects assum-
ing the products to be similar when in fact one is truly
superior. For the non-inferiority test, data were simulated
with a true difference of δ = −0.15 in the two pop-
ulation model, while varying μ1 ∈ {1.0, 1.1} and σ ∈
{0.40, 0.45, 0.50} for a total of 6 different non-inferiority
scenarios. Then each of the six methods was used to con-
struct 1−α confidence intervals for δ. The test is specified
as one-sided because it is known that multifocal contrast
sensitivity is less thanmonofocal contrast sensitivity. Con-
structing 1 − α confidence intervals and comparing the
lower bound to the non-inferiority margin will result in a
one-sided hypothesis test at the α level. If the lower bound
of the confidence interval does not cover the true value
of δ, then the non-inferiority hypothesis would be falsely
accepted. A total of 100 observations were drawn from
each population to construct the confidence intervals. The
hypothesis test was repeated for B = 10, 000 replications

and the Type I error rate was calculated as the percent of
replications where the lower bound of the 1−α confidence
interval was greater than −0.15.
The final simulation study compared the performance

of the methods as a function of the number of observa-
tions (n). The procedure from the first simulation was
repeated fixing μ = 0.9 and σ = 0.45, but sample size
varied from n ∈ {100, 200, 400, 800, 1600}. Average bias
and MSE were calculated for estimation of μ and σ . To
compare the rate of Type I error as a function of sample
size, the procedure for the third simulation was repeated
with μ1 = 1.0 and σ = 0.45 while allowing the sample
size per population to vary as above, i.e., n = n1 = n2 ∈
{100, 200, 400, 800, 1600}.
The choice of initial starting values θ (0) for the tcensReg

method is important since optimization algorithms can
provide local rather than global convergence. To ensure
that the starting values are reasonable, we recommend
using initial estimates from a censored regression, i.e.,
Tobit, model. These estimates showed excellent rates of
convergence for our simulation settings.

Simulation results
Table 2 shows expected censoring and truncation per-
centages and the ratio of censoring to truncation for each
of the 15 parameter value scenarios in the single mean
model. The expected percent of censoring ranges from
10.8%-38.6% and truncation was typically ≤ 5% but was

Table 2 Expected Percentages of Truncation and Censoring in
Single Mean Simulation Study

μ σ Expected
Censoring %

Expected
Truncated %

Censoring:Truncation
Ratio∗

1.1

0.50 15.17% 1.39% 10.91

0.45 13.18% 0.73% 18.05

0.40 10.76% 0.30% 35.87

1.0

0.50 19.95% 2.28% 8.75

0.45 18.23% 1.31% 13.92

0.40 15.96% 0.62% 25.74

0.9

0.50 25.42% 3.59% 7.08

0.45 24.24% 2.28% 10.63

0.40 22.47% 1.22% 18.42

0.8

0.50 31.44% 5.48% 5.74

0.45 31.04% 3.77% 8.23

0.40 30.15% 2.28% 13.22

0.7

0.50 37.84% 8.08% 4.68

0.45 38.38% 5.99% 6.41

0.40 38.64% 4.01% 9.64

Note that censoring threshold set at ν = 0.61 and truncation value at a = 0.
*This column compares the expected percent of censoring to the expected percent
of truncation, e.g., when μ = 1.1 and σ = 0.50 we expect 10.91 times more
censoring than truncation.
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slightly higher when the mean was closer to the trunca-
tion value of 0, i.e., μ ∈ {0.7, 0.8}. The ratio of censoring to
truncation varies from 4.68 to 35.87 where values greater
than 1 indicate more censoring than truncation. In gen-
eral, for a fixed μ, as σ increases the expected censoring
and truncation increase while the ratio of censoring to
truncation decreases.
Performance metrics of the six methods forμ are shown

in Fig. 4. The left panel shows results with respect to aver-
age bias. The figure shows that the gold standard was
essentially unbiased with only slight negative bias for low
values of μ. The average bias of tcensReg was slightly neg-
ative for all scenarios, meaning that the estimated mean
was smaller than the true value. The slight negative bias
increased as the amount of censoring increased, i.e., as μ

decreased for a fixed σ and as σ increased. However, the
absolute bias remained small and was always below 2% of
the true μ value. The Tobit, Uncens NT and DL methods
consistently had positive bias, with the estimated mean
consistently larger than the true value. The amount of bias
also increased more rapidly for these other methods as
censoring increased, compared to tcensReg. The 1/2 DL
method had variable trends in bias with positive bias in
some settings and negative bias in others. In particular,
when σ = 0.40, the 1/2 DLmethod overestimatedμwhen
μ ≤ 0.8 and underestimated it when μ > 0.8.
The tcensRegmethod was consistently closer to the gold

standard compared to the Tobit method, especially in sit-
uations with high censoring, i.e., σ = 0.50. There were

high censoring settings in which the tcensRegmethod and
Tobit method performed similarly; for example, absolute
bias was similar when μ = 0.9 and σ = 0.40, which
had 22.47% expected censoring. For this scenario, the
ratio of censoring to truncation is 18.42 meaning that
there is more than 18 times more expected censoring than
truncation. For cases where the ratio of censoring to trun-
cation is low, the tcensReg method tends to outperform
the Tobit method. When the ratio of censoring to trunca-
tion is greater, the Tobit method is comparable in terms of
absolute bias to the tcensReg method, but with different
directions of bias.
The precision of the estimates of the mean as reflected

by their log MSE is shown in the right panel of Fig. 4.
MSE was transformed to the log scale as there was a great
disparity between the values for the DL point imputation
method and the other five methods. Here, the average log
MSE of each method should be compared to that of the
gold standard. The DL method consistently had the high-
est log MSE of all of the methods. The tcensReg method
had higher log MSE than the Tobit, 1/2 DL, and Uncens
NT methods, suggesting that these methods were outper-
forming tcensReg. However, the average logMSE for these
three methods often fell below that of the gold standard,
which reflects an underestimation of the true sampling
variance. In contrast, the tcensReg method always main-
tained a log MSE greater than or about equal to the
gold standard. Overall, the tcensReg method avoided false
precision.

Fig. 4 Performance Metrics for μ from Six Different Estimation Methods in Single Mean Model. GS = Gold Standard, i.e., uncensored observations
with truncation adjustment; Uncens NT = Uncensored data with no truncation adjustment; DL = detection limit; Tobit = Tobit censored regression
with no truncation adjustment; tcensReg = Censored regression with truncation adjustment
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The left panel of Fig. 5 provides evidence that other
methods such as Tobit, 1/2 DL, and Uncens NT also sys-
tematically underestimated the variance of the underlying
distribution. The Tobit and Uncens NT always have nega-
tive bias, meaning that these methods underestimated σ ,
with this bias being especially pronounced when σ is large
and μ is small. Similar to the bias for μ, the bias for the
1/2 DLmethodwhen estimating σ is variable with positive
bias in low censoring scenarios and negative bias in higher
censoring scenarios. Overall the average bias for the tcen-
sReg method was generally closest to the gold standard
with only slight overestimates of σ . However, we note that
again the ratio of censoring to truncation appears to play
an important role when comparing the Tobit and tcen-
sReg methods. The Tobit method slightly outperforms the
tcensReg method for scenarios with σ = 0.4. In these set-
tings the censoring to truncation ratio is higher as shown
in Table 2, meaning that censoring is expected to occur
much more frequently than truncation.
On the right panel of Fig. 5 we see results for the

log MSE for each method. Again, the tcensReg method
protected against false precision, with log MSE slightly
greater than that of the gold standard. The 1/2 DLmethod
had artificially low MSE for almost all parameter scenar-
ios, while the Uncens NT alternated between over- and
underestimation. The Tobit method was often the closest
method to the gold standard.
In the two population simulation study, the parame-

ter of primary interest was the difference of the means,

δ. Figure 6 shows the performance of each method with
respect to average bias for δ. For all values of δ, the
tcensReg and gold standard methods were essentially
unbiased. The other four methods all had positive bias,
corresponding to underestimation of the true difference
in means. Similar to the single mean model, the great-
est difference between the tcensReg method and the
other methods occurred when the amount of censoring
was greater, i.e., when μ1 = 1.0 and |δ| is large for a
fixed σ .
For all six methods, the average bias of δ̂ when δ = 0

was approximately 0. As our simulation study for the sin-
gle mean model showed, bias generally increases as the
mean decreases for fixed σ ; see Fig. 4. When the two
means were equal, i.e., δ = 0, the biases for estimating
each mean were also equal and thus there was no bias for
estimating δ.
Additional performance results for log MSE of δ and

common standard deviation σ in the two-population sim-
ulation are available in Appendix B, Figs. 11 and 12 respec-
tively. These results were similar to those from the single
mean model with tcensReg avoiding errors of false preci-
sion and having optimal average bias compared to the gold
standard.
Results for testing the non-inferiority hypothesis with

α = 0.05 are shown in Table 3. For all scenarios, the
tcensReg method had slightly higher Type I error rates
than the gold standard and the Tobit method had slightly
higher Type I error rates than the tcensReg method. The

Fig. 5 Performance Metrics for σ from Six Different Estimation Methods in Single Mean Model. GS = Gold Standard, i.e., uncensored observations
with truncation adjustment; Uncens NT = Uncensored data with no truncation adjustment; DL = detection limit; Tobit = Tobit censored regression
with no truncation adjustment; tcensReg = Censored regression with truncation adjustment
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Fig. 6 Average Bias for δ from Six Different Estimation Methods in Two Population Model. The vertical dashed black line corresponds to the case
when δ = 0, i.e., μ1 = μ2. GS = Gold Standard, i.e., uncensored observations with truncation adjustment; Uncens NT = Uncensored data with no
truncation adjustment; DL = detection limit; Tobit = Tobit censored regression with no truncation adjustment; tcensReg = Censored regression with
truncation adjustment

DL method had Type I error rates 2.5-4 times higher than
the nominal value. The other single imputation method,
1/2 DL, had inflated Type I errors in the medium and
high variance settings. Especially when censoring was
higher, i.e., μ1 = 1.0 and μ2 = 0.85, the other methods
had significantly higher Type I error rates compared to
tcensReg.
Performance results for the numerical consistency of

the maximum likelihood estimates with respect to μ in
a single mean model are displayed in Fig. 7. In the left

panel average bias for the tcensReg and gold standard
methods decreased as sample size increased, and is near
zero for sample sizes above 200. All other methods show
no noticeable differences in average bias as the sample
size increased. As shown in the right panel of Fig. 7, the
average log MSE remains approximately constant for the
tcensReg method as sample size increases, while Tobit,
Uncens NT, and DL begin to perform noticeably worse.
The 1/2 DL method still shows evidence of false precision
as the average log MSE is below the gold standard for all

Table 3 Type I Error Rates for Non-inferiority Test in Simulation Study

μ1 μ2 δ σ GS1 Uncens NT2 DL3 1/2 DL Tobit4 tcensReg5

1.1 0.95 -0.15 0.40 0.0552 0.0609 0.1240 0.0477 0.0576 0.0555

1.0 0.85 -0.15 0.40 0.0563 0.0709 0.1874 0.0577 0.0652 0.0594

1.1 0.95 -0.15 0.45 0.0606 0.0736 0.1424 0.0648 0.0712 0.0642

1.0 0.85 -0.15 0.45 0.0642 0.0863 0.2046 0.0766 0.0776 0.0682

1.1 0.95 -0.15 0.50 0.0582 0.0755 0.1456 0.0687 0.0670 0.0599

1.0 0.85 -0.15 0.50 0.0603 0.0887 0.1996 0.0831 0.0754 0.0641

Note: nominal α set to 0.05
1GS = Gold Standard, i.e., uncensored observations with truncation adjustment
2Uncens NT = Uncensored data with no truncation adjustment
3DL = detection limit
4Tobit = Tobit censored regression with no truncation adjustment
5tcensReg = Censored regression with truncation adjustment
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Fig. 7 Performance of Maximum Likelihood Estimate for μ as Function of Sample Size. The vertical dashed black line on the left figure corresponds
to zero bias. GS = Gold Standard, i.e., uncensored observations with truncation adjustment; Uncens NT = Uncensored data with no truncation
adjustment; DL = detection limit; Tobit = Tobit censored regression with no truncation adjustment; tcensReg = Censored regression with truncation
adjustment

values of n. Similar results for the estimates of σ , shown in
Appendix B Fig. 13, demonstrate that the bias of the tcen-
sReg method decreases as a function of sample size with
consistent MSE performance. Finally, Table 4 shows that
Type I error rates for GS and tcensReg generally decrease
as a function of sample size. Other methods have Type I
error rates that escalate with sample size, with Uncens NT,
DL, 1/2 DL, and Tobit all having more than 2.9 times the
nominal value with a sample size of n = 1600.

Table 4 Type 1 Error Rates as Sample Size Increases for
Simulation Study

n GS1 Uncens NT2 DL3 1/2 DL Tobit4 tcensReg5

100 .0569 .0762 .1835 .0645 .0662 .0578

200 .0633 .1020 .2974 .0831 .0813 .0661

400 .0610 .1286 .4698 .1023 .0945 .0640

800 .0580 .1794 .7238 .1303 .1102 .0606

1600 .0576 .2707 .9410 .1861 .1452 .0616

Note: nominal α set to 0.05
1GS = Gold Standard, i.e., uncensored observations with truncation adjustment
2Uncens NT = Uncensored data with no truncation adjustment
3DL = detection limit
4Tobit = Tobit censored regression with no truncation adjustment
5tcensReg = Censored regression with truncation adjustment

Application results
We now apply the methods to our contrast sensitivity
application introduced in “Problem motivation” section.
The goal was to compare visual quality, measured as
contrast sensitivity, for monofocal vs multifocal lenses
implanted following cataract surgery, using data collected
from two clinical trials. Table 5 shows the number of par-
ticipants who received each type of IOL and the percent
of patients whose observation was censored under each
glare condition. Each group has over 150 patients; Mul-
tifocal 2 is larger than the others due to a 2:1 allocation
ratio in that trial. As mentioned previously, the amount of

Table 5 Observed Censoring Percentage for Intraocular Lenses
(IOLs) under Dim Lighting at 12.0 CPD

Observed Censoring %

IOL Type n With Glare Without Glare

Monofocal∗ 159 17.6% 12.6%

Multifocal 1∗ 153 29.4% 20.9%

Multifocal 2∗∗ 377 24.7% 11.4%

Multifocal 3∗∗ 185 28.1% 18.4%

*Data from ClinicalTrials.gov Identifier NCT01510717
**Data from ClinicalTrials.gov Identifier NCT01424189

https://clinicaltrials.gov
https://clinicaltrials.gov
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censoring is greater with glare than without glare, with an
average difference of 9% censoring. However, all groups
have at least moderate levels of censoring, ranging from
11%-29%.
Separate models were fit for each pairwise compari-

son between the monofocal lens and each multifocal lens
with and without glare. Initially, each pairwise compari-
son was fit assuming the standard deviation for lens type
was heteroskedastic. Figure 8 displays result for the 95%
confidence interval of each groups standard deviation,
σ̂j. The standard deviations for the multifocal lenses are
sufficiently close to the monofocal lens for both glare
conditions with a high level of overlap in the confidence
intervals. This suggested that a common standard devia-
tion for lens type is appropriate. In the subsequent analy-
sis, each model was re-run assuming a common standard
deviation in the two groups. The parameters of inter-
est included the mean of each population (monofocal
or multifocal), the mean difference between populations,
and the common standard deviation. Unlike the simula-
tion design, we observe only the censored observations
meaning we are restricted to four methods to estimate
the parameters. DL imputation for censored observations,
1/2 DL imputation, Tobit regression and our censored
truncated method, tcensReg.

We also tested whether the multifocal lens is non-
inferior to the monofocal lenses with respect to con-
trast sensitivity. Based on regulatory guidelines, the non-
inferiority margin for contrast sensitivity is set at -0.15 log
units [22]. The non-inferiority test was one-sided test with
α = 0.05, conducted by constructing a two-sided 90%
confidence interval (CI) for δ and comparing the lower
bound of the CI to the non-inferiority margin. To establish
non-inferiority, the lower bound for the CI must be above
the non-inferiority margin.
Figure 9 shows 90% CIs for δ using the four methods.

For all of the methods, the lower bound of the CIs are
below the non-inferiority margin, for all three lens com-
parisons and both glare conditions. Thus using any of
these methods, we would be unable to conclude that a
particular multifocal lens is non-inferior to the monofocal
lens in terms of contrast sensitivity. For each compari-
son, the tcensReg method had the largest estimate of |δ|
and the DL method had the smallest estimate. The point
estimates of δ from the Tobit and 1/2 DL methods were
intermediate and similar.
The tcensReg method yielded the longest CIs (mean

length = 0.164 log units). Mean CI lengths for the Tobit,
1/2 DL and DL methods were 0.158, 0.156 and 0.133
log units, respectively. The differences in CI length are a

Fig. 8 95% Confidence Intervals for Separate Standard Deviation for Monofocal vs Multifocal Lens at 12 CPD
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Fig. 9 90% Confidence Intervals for Difference in Monofocal vs Multifocal Lens at 12 CPD. The horizontal dashed line at δ = −0.15 indicates the
non-inferiority margin. DL = detection limit; Tobit = Tobit censored regression with no truncation adjustment; tcensReg = Censored regression with
truncation adjustment

reflection of differences in estimates of σ , shown in Fig. 10.
The DLmethod had consistently low estimates of σ , while
the tcensReg method had the highest estimated values of
σ . The 1/2 DL and Tobit methods gave similar estimates
intermediate between the other two methods.
Interpreting these results in light of our simulation stud-

ies, if the latent normality assumption holds for these data,
we would expect the estimates from the tcensReg method
to have the least bias. The other methods typically under-
estimated both the difference inmeans and the population
standard deviation, which would tend to lead to confi-
dence intervals that are more likely to falsely exclude the
non-inferiority margin and thus to higher Type I error
rates, especially when there is a high rate of censoring.
The wider confidence intervals observed in Fig. 9 from the
tcensReg may better protect against Type I errors.
As an additional way to compare the proposed tcen-

sReg model against potential competitors, we compared
goodness of fit. As suggested by [35], we focused on mea-
sures of fit based on the Pseudo R2. For limited dependent
variables, such as those arising from a censored truncated
normal distribution, the authors found that the Pseudo
R2 metric from [36] performed best for model compari-
son. Table 6 shows the results for this Pseudo R2 metric

for each pairwise comparison with glare. The tcensReg
method consistently had the highest value of the Pseudo
R2, providing evidence that this model was the most
appropriate for the data.

Discussion
In this manuscript, we developed a maximum likelihood
method for estimating parameters from a truncated nor-
mal distribution when observations are subject to censor-
ing. We have also developed the R package tcensReg to
implement the method. We showed in simulations that
our method has substantially less bias for estimating the
mean and standard deviation than other commonly used
methods for a range of simulation settings. Our method
also had close to the nominal Type I error rate for non-
inferiority testing, while single imputation with either
the detection limit or half the detection limit and Tobit
regression often had inflated Type I error rates when the
censoring rate was high.
The single mean simulation study showed that as the

levels of censoring and truncation increased, the bias
for all other methods generally increased, often dramati-
cally. As expected, point imputation of the detection limit
was consistently the worst performing method, but even
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Fig. 10 Estimate of Common Standard Deviation in Monofocal vs Multifocal Lens at 12 CPD. DL = detection limit; Tobit = Tobit censored regression
with no truncation adjustment; tcensReg = Censored regression with truncation adjustment

the Tobit method had large bias under certain condi-
tions. An important factor when comparing the Tobit and
tcensReg method in the single mean model was not only
the raw levels of censoring and truncation but the ratio
of censoring to truncation. For low censoring to trun-
cation ratios, generally below 20, the tcensReg method
outperformed Tobit, while high ratios tended to have
similar performance in mean estimation and worse per-
formance in standard deviation estimation. This trend
may point to the scenarios where the censoring domi-
nates truncation in terms of estimation and thus using
the Tobit method can lead to more precise estimates,
particularly of the standard deviation. It is important to
note that the tcensReg method was the only method to
have positive bias in estimation of the standard devia-
tion while other methods were typically negatively biased.
Positive bias in this sense leads to conservative hypothesis
testing.
In the two population simulation study, we observed

trends similar to those for the single mean model. The
tcensReg method uniformly outperformed all other meth-
ods in estimating the average difference and standard
deviation between the populations with respect to aver-
age bias. The greatest difference between the meth-
ods occurred when the censoring rate was high and

the difference between the population means was large.
Unlike the single mean model, the ratio of censoring
to truncation did not appear to play a significant role
in the accuracy of parameter estimation for the two-
population method. Similar to the single mean model, the

Table 6 Goodness of Fit Metrics for Intraocular Lenses (IOLs)
under Dim Lighting at 12.0 CPD with Glare

IOL Comparison Method Psuedo R2∗

Multi 1 vs. Mono

DL 0.0100

1/2 DL 0.0137

Tobit 0.0150

tcensReg 0.0180

Multi 2 vs. Mono

DL 0.0112

1/2 DL 0.0124

Tobit 0.0132

tcensReg 0.0159

Multi 3 vs. Mono

DL 0.0182

1/2 DL 0.0216

Tobit 0.0234

tcensReg 0.0292

*Pseudo R2 is calculated based on definition from [36]
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precision of alternative methods was also inaccurate, lead-
ing to values of the mean squared error that appeared
to outperform the gold standard. Across all parameter
scenarios, the tcensReg method had significantly lower
average bias and did not fall victim to the false precision
fallacy.
Results from the non-inferiority simulation study con-

firmed the trends observed in the previous simulation
studies. Methods other than tcensReg tended to underes-
timate the true variability of the underlying data generat-
ing mechanism, which led to precise but biased results.
This bias tended to increase as the censoring increased,
and this combined with underestimated values of the true
standard deviation led to substantially inflated Type I
error rates. The tcensReg method consistently had esti-
mates closest to the gold standard.
In the simulation study, the maximum likelihood esti-

mates were shown to be numerically consistent for the
tcensReg method. The average bias for population mean
and standard deviation tended towards 0 as the sample
size grew, and Type I error rates approached the nominal
level.
In the application, the main difference among the meth-

ods was a greater estimate of the difference between
means when using the tcensReg method. The tcensReg
method also had the widest confidence interval length due
to higher estimates of the variance. TheDLmethod results
suggested that it would be the most likely method to lead
to a finding of non-inferiority, but as shown in the simu-
lation study, this method can have highly inflated Type I
error rates. The 1/2 DL, Tobit, and tcensReg methods are
more likely to capture the true difference and variability
in the estimate, with the tcensReg method showing evi-
dence that the true difference may be even greater than
previously thought using either of the other two methods.
In our particular application, none of these methods dif-
fered with respect to the ultimate conclusion of the non-
inferiority hypothesis test. However, in cases in which
non-inferiority is more marginal, the choice of method
could make a difference. Goodness of fit metrics based on
Pseudo R2 provided additional evidence that the tcensReg
method was appropriate to model the observed contrast
sensitivity scores. These goodness of fit metrics can be
used in conjunction with subject matter knowledge about
the data generating process when selecting a model to be
used.
The goal of the estimation methods presented here

is to estimate the mean and standard deviation of the
latent normal distribution rather than the mean and stan-
dard deviation of the truncated normal distribution. This
affects the interpretation of the results. When censoring
is less than 50 percent, the mean of the latent normal cor-
responds to the mode of the truncated normal. In many
settings the mode of the truncated normal may be a more

clinically meaningful measure of central tendency than
the mean of the truncated normal. For example, in con-
trast sensitivity testing, it may be clinically relevant to
understand what factors affect the mode rather than the
mean in order to target where the greatest proportion of
patients lie.
The methodology as presented makes a strong para-

metric assumption of normality. For studies with small
to moderate sample sizes, checking the reasonableness
of the normality assumption may be difficult and the
assumption may be increasingly tenuous as the amount
of censoring and truncation increase. While the unob-
served data may not be exactly normal, a normality
assumption at least reflects an assumption that the unob-
served part of the distribution has a monotone decreas-
ing shape, which is frequently a reasonable assumption.
In general, whenever an analysis involves unverifiable
assumptions, conducting a sensitivity analysis is prudent.
The tcensReg method can be viewed as an option in
the toolkit of the statistician that can be used as part
of a sensitivity analysis, which might also include Tobit
regression.
Another potential limitation is that the detection

threshold and truncation value are assumed to be known.
While assuming that the detection threshold is known is
often reasonable, the truncation value is not observable in
the data due to the censoring and so must be incorporated
in the analysis based on subject matter expertise.
In this manuscript, we have focused on the setting

of left censoring and left truncation. The methods can
be easily extended to handle right censoring with right
truncation. Future work could extend the methods to
handle censoring in both tails of the distribution. In
our application, we noted some suggestion of censor-
ing due to an upper detection threshold; see Fig. 2.
Conducting the analysis adjusting for left and right cen-
soring could potentially improve the accuracy of the
estimates.
Other possible extensions include to other non-normal

parametric distributions, or to linear mixed effect models
with repeated measurements using the extended Newton-
Raphson technique proposed by [37]. An additional area
for future work is criteria for model and variable selec-
tion. Work by [38] introduced the concept of using
Focused Information Criteria when performing variable
selection for Tobit models. Based on our work, we sug-
gest using Pseudo R2 from [36] when comparing mod-
els and AIC or BIC for variable selection in tcensReg
models.

Conclusion
In the presence of detection limits, the values of observa-
tions below the detection limit are censored. In addition,
in many settings, the response domain is known to be
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restricted, often with zero truncation. We demonstrated a
new estimation method that accounts for this restriction
and thereby substantially improves inferences.

Appendix A: Analytic derivations

Formula for the gradient
In the model discussed in “Linear predictor for the
mean” section, the parameters to be estimated are θ =
(β , σ)T where β = (β1, . . . ,βp−1)T from Eq. 6. The single
mean model is a special case of the linear equation where
XT
i β = μ.
Investigating the log likelihood from Eq. 6, it is evi-

dent that calculating the partial derivatives with respect
to ln(σ ) rather than σ is optimal. Then to obtain esti-
mates and standard errors for σ , one can apply the inverse
transformation and delta method.
Note that another possible parametrization using one-

to-one functions is δ = β
σ

and η = 1
σ

used by [15].
However, we present results for the derivation using β and
ln(σ ) analogous to methods used by [31] in the R package
censReg.
Throughout this derivation, let c∗i = c−xTi β

σ
for some

constant c. The following properties will be used to calcu-
late the appropriate derivatives:

• ∂
∂x�(x) = φ(x)

• ∂
∂xφ(x) = −xφ(x)

• ∂
∂ ln(σ )

σ = ∂
∂ ln(σ )

exp [ln(σ )] = σ

• ∂
∂ ln(σ )

c∗i = −c∗i
We define the gradient as

∇l(θ) =

⎛
⎜⎜⎜⎜⎜⎝

∂l
∂β1
...
∂l

∂βp−1

∂l
∂ ln(σ )

⎞
⎟⎟⎟⎟⎟⎠
, for p ≥ 2.

Taking the derivative of the log-likelihood with respect
to βk ,

∂l
∂βk

= −
n∑

i=1

xikφ
(
a∗
i
)

σ
[
1 − �

(
a∗
i
)] −

∑
i∈S0

xik
[
φ
(
ν∗
i
)− φ

(
a∗
i
)]

σ
[
�
(
ν∗
i
)− �

(
a∗
i
)]

+ 1
σ 2

∑
i∈S1

xik
(
yi − xTi β

)
for k = 1, . . . , p − 1.

(8)

Then taking the derivative with respect to ln(σ ),

∂l
∂ ln(σ )

= −
n∑

i=1

a∗
i φ
(
a∗
i
)

1 − �
(
a∗
i
) −

∑
i∈S0

[
ν∗
i φ
(
ν∗
i
)− a∗

i φ
(
a∗
i
)]

�
(
ν∗
i
)− �

(
a∗
i
)

− n1 + 1
σ 2

∑
i∈S1

(
yi − xTi β

)2

(9)

Therefore, the gradient vector is

∇l(θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−∑n
i=1

xi1φ(a∗
i )

σ [1−�(a∗
i )]

−∑i∈S0
xi1[φ(ν∗

i )−φ(a∗
i )]

σ [�(ν∗
i )−�(a∗

i )]
+ 1

σ 2
∑

i∈S1 xi1
(
yi − xTi β

)
...

−∑n
i=1

xi(p−1)φ(a∗
i )

σ [1−�(a∗
i )]

−∑i∈S0
xi(p−1)[φ(ν∗

i )−φ(a∗
i )]
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i )]
+ 1
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(
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−∑n
i=1
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i φ(a
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+ 1
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i∈S1
(
yi − xTi β

)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(10)

Formula for the hessian
The Hessian is the matrix of second derivatives,

∇2l(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2l
∂β2

1
· · · ∂2l

∂β1∂βp−1
∂2l

∂β1∂ ln(σ )

...
. . .

...
...

∂2l
∂βp−1∂β1

· · · ∂2l
∂β2

p−1

∂2l
∂βp−1∂ ln(σ )

∂2l
∂ ln(σ )∂β1

· · · ∂2l
∂ ln(σ )∂βp−1

∂2l
∂ ln2(σ )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that this Hessian matrix is symmetric so that
∇2l(θ)ij = ∇2l(θ)ji for i �= j.
The individual components of this matrix are calculated

as

∂2l
∂βk∂βl

= −
n∑

i=1

xikxil
{
a∗
i
[
1 − �

(
a∗
i
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φ
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i
)}
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(
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i
)]2

−
∑
i∈S0
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[
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i φ
(
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i
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i φ
(
a∗
i
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�
(
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i
)− �

(
a∗
i
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+ [φ (ν∗
i
)− φ(a∗

i )
]2

⎫⎬
⎭

σ 2[�(ν∗
i ) − �(a∗

i )]2

− 1
σ 2

∑
i∈S1

xikxil for k = 1, . . . , p − 1 and l = k, . . . , p − 1,

(11)
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∂2l
∂βk∂ ln(σ )

=
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(13)

Gradient for heteroskedastic model
Assuming that there are samples from J independent populations as discussed in “Heteroskedastic variances” section,
the parameters to be estimated are θ = (

β , σ1, . . . , σJ
)T where β = (

β1, . . . ,βp−1
)T . Again, the form of log likelihood

from Eq. 7 suggests calculating the partial derivatives with respect to ln
(
σj
)
rather than σj is optimal. Let c∗ij = c−xTij β

σj
for some constant c.
We define the gradient as

∇l(θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂l
∂β1
...
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∂l
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...
∂l

∂ ln(σJ )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, for p ≥ 2 and J ≥ 1.

Note that the case where J = 1 is equivalent to the case in “Formula for the gradient” section.
Taking the derivative of the log-likelihood with respect to βk ,
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⎭ for k = 1, . . . , p − 1,

(14)
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and with respect to ln
(
σj
)
,
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(15)

Therefore, the gradient vector is

∇l(θ) =
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Hessian for heteroskedastic model
The Hessian matrix for parameters θ in “Gradient for heteroskedastic model” section is derived by taking further partial
derivatives. This matrix takes the form

∇2l(θ) =

⎡
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Note that since the groups are assumed to be independent, ∂2l
∂ ln(σj)∂ ln(σk)

= 0 for all j �= k, which reduces the Hessian
matrix to

∇2l(θ) =
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The individual components of this matrix are calculated as
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Appendix B: Additional figures

Fig. 11 Average Log Mean Squared Error for δ from Six Different Estimation Methods in Two Population Model. The vertical dashed black line
corresponds to the case when δ = 0, i.e., μ1 = μ2. GS = Gold Standard, i.e., uncensored observations with truncation adjustment; Uncens NT =
Uncensored data with no truncation adjustment; DL = detection limit; Tobit = Tobit censored regression with no truncation adjustment; tcensReg =
Censored regression with truncation adjustment
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Fig. 12 Performance Metrics for Common σ from Six Different Estimation Methods in Two Population Model. The vertical dashed black line
corresponds to the case when δ = 0, i.e., μ1 = μ2. GS = Gold Standard, i.e., uncensored observations with truncation adjustment; Uncens NT =
Uncensored data with no truncation adjustment; DL = detection limit; Tobit = Tobit censored regression with no truncation adjustment; tcensReg =
Censored regression with truncation adjustment

Fig. 13 Performance of Maximum Likelihood Estimate for σ as Function of Sample Size. The vertical dashed black line on the left figure corresponds
to zero bias. GS = Gold Standard, i.e., uncensored observations with truncation adjustment; Uncens NT = Uncensored data with no truncation
adjustment; DL = detection limit; Tobit = Tobit censored regression with no truncation adjustment; tcensReg = Censored regression with truncation
adjustment
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