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Abstract

Background: Platform trials allow adding new experimental treatments to an on-going trial. This feature is attractive
to practitioners due to improved efficiency. Nevertheless, the operating characteristics of a trial that adds arms have
not been well-studied. One controversy is whether just the concurrent control data (i.e. of patients who are recruited
after a new arm is added) should be used in the analysis of the newly added treatment(s), or all control data (i.e.
non-concurrent and concurrent).

Methods: We investigate the benefits and drawbacks of using non-concurrent control data within a two-stage
setting. We perform simulation studies to explore the impact of a linear and a step trend on the inference of the trial.
We compare several analysis approaches when one includes all the control data or only concurrent control data in the
analysis of the newly added treatment.

Results: When there is a positive trend and all the control data are used, the marginal power of rejecting the
corresponding hypothesis and the type one error rate can be higher than the nominal value. A model-based
approach adjusting for a stage effect is equivalent to using concurrent control data; an adjustment with a linear term
may not guarantee valid inference when there is a non-linear trend.

Conclusions: If strict error rate control is required then non-concurrent control data should not be used; otherwise it
may be beneficial if the trend is sufficiently small. On the other hand, the root mean squared error of the estimated
treatment effect can be improved through using non-concurrent control data.

Keywords: Adding arms, Concurrent/ non-concurrent control, Platform trials

Background
The implementation of innovative trial designs for drug
development programmes has increased in recent years
[1]. A platform trial is one such innovative design that
helps improve efficiency. It has a multi-arm multi-stage
design where a single control group is utilized to evalu-
ate multiple experimental treatments for a single disease.
Apart from the feature of dropping arms, a platform trial
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allows adding arms when new experimental treatments
become available. This adds efficiency as adding arms
takes less time and has a lower cost than setting up new
trials from scratch.
A platform trial can be implemented through the spec-

ification of a master protocol [2–4]. Cohen et al [5]
review the statistical aspects on the adding arm adapta-
tion and present some trials that have adopted a plat-
form approach. For pairwise comparisons between the
effectiveness of newly added treatments and the control
treatment, there are different views on utilising the con-
trol data [5]. To be more specific, the control data of a
platform trial can be separated into non-concurrent and
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concurrent. The former (latter) corresponds to the con-
trol data of the patients who are recruited before (after)
a new experimental treatment is added. This definition
applies to each newly added arm independently; the con-
trol data can be concurrent to a newly added treatment,
and be non-concurrent to another treatment that is added
at a later time point.
To our knowledge, methodology and guidance for

adding arms remain limited and the operating character-
istics of platform trials have not been well-studied. The
literature on other trial adaptations such as dropping arms
and changing treatment allocation ratio are more com-
prehensive [6–11]. In particular, many have explored the
presence of time trends when more complex randomiza-
tion procedures are recommended/ explored [12–21]. A
trend may be present in a trial when there is a learning
curve among the study personnel; a shift in the popu-
lation baseline characteristics; and/ or the effect of the
control treatment may change due to other reasons (e.g.
improvement of the standard of care/ practice) [7, 22].
In order to minimise the impact caused by the pres-

ence of a trend, most researchers advocate the use of
concurrent control data when making inference about the
newly added treatment(s) [23–25]. Others stipulate that
non-concurrent control data may be used when making
inference about the newly added arm by adjusting for pos-
sible trends [26, 27]. Here we investigate whether using
non-concurrent control data is worthwhile in platform tri-
als. Several analysis approaches are considered. Within a
two-stage setting where a new treatment is added at the
end of stage one [25, 28], we explore the impact of i) the
timing of adding a new arm ii) the sample size of the new
arm and iii) the magnitude of a linear or a step trend
[15] on the inference about the newly added experimen-
tal treatment. We provide recommendations about under
which conditions non-concurrent control data should be
used.

Method
Consider a two-stage multi-arm trial that initially has K
treatments and a control treatment with a total sample
size of N = N1 + N2 where Ns is stage s sample size,
s = 1, 2. Denote k = 0 for a control treatment, k = 1, ...,K
for the initial experimental treatments. Let nks be the sam-
ple size of treatment k in stage s with nk1 + nk2 = nk . At
the end of stage one, in particular after N1 = ∑K

k=0 nk1
patients have been randomized to the initial arms in stage
one, a new treatment (denoted by K + 1) is added to the
on-going trial with nK+1,2 patients. This increases the sec-
ond stage sample size toN2+nK+1,2 and the overall sample
size of the trial to N + nK+1,2.
Denote n01/n0 as the timing of adding a new arm. Small

n01/n0 indicates the newly available treatment is added
to the trial after a small number of patients have been

randomized to the initial arms in stage one. We consider
the case that all arms finish recruitment simultaneously
(although as long as controls continue to be recruited
while treatment K + 1 is allocated patients, results apply
more generally). For j = 1, ...,N + nK+1,2, denoting the
sequence of patient enrolment to the trial, let:

Xj =
K+1∑

k=0
μk · I(Tj = k) + τ(j) + εj (1)

be the response of treatment k of subject j; μk be the
true effect of treatment k; τ(j) be a trend that could be
a function of the patient ordering j; εj be the random
errors that are identically and independently normally dis-
tributed with mean 0 and variance σ 2; and Tj be the
allocated treatment of subject j, with I(·) is an indicator
function.
Let X̄k.s and X̄k denote the stage s sample mean response

of treatment k and the overall mean response of treatment
k. When there is no trend in the trial, i.e. τ(j) = 0(j), the
sample mean estimators X̄k.s

iid∼ N(μk , σ 2/nks) and X̄k
iid∼

N(μk , σ 2/nk).
For illustration purpose, we consider the following when

exploring the impact of a fixed trend on the inference:

• linear trend:

τ(j) = λ (j − 1)/(N + nK+1,2 − 1) (2)

• stepwise trend:

τ(j) = λ · cj (3)

where cj is an indicator that subject j is enrolled in stage
two, and λ is a positive fixed value. Both of these trends
inflate the value of the outcome variable in a sequential
manner; the responses of the patients who were enrolled
later are larger than those who were enrolled earlier.

Simple approach: Z-test
We first consider a simple method that is analogous to
ignoring the possibility of a trend or stage effect: a stan-
dard Z-test for testing each hypothesis

H0k : μk = μ0 against H1k : μk > μ0,
using the sample means. When there is no trend, the

(pairwise) marginal power of rejecting a null hypothesis to
detect a difference in treatment effect, δk = μk − μ0, is

�

[
δk

√
σ 2/nk + σ 2/n0

− �−1(1 − α)

]

,

where � and �−1 are the cumulative density function and
the inverse of the cumulative density function of a stan-
dard normal distribution. For the newly added treatment,
the power of rejecting H0,K+1 depends on whether all the
control data (of size n0) or only the stage two control data
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(of size n02) is used in the inference. Elm et al [28] describe
a t-test for the case where σ 2 is unknown.

Model-based approach: weighted linear regression
One way to account for the changes of a trial design is to
consider a model-based approach. Elm et al [28] consider
the following weighted linear regressionmodel. Let X̄(k)

s =
X̄k.s − X̄0.s be the stage-wise difference in mean responses;
fit a linear model to the samples of the stage-wise mean
differences:

X̄(k)
s = δk + η(k)

s

where η
(k)
s is normally distributed with mean zero and

variance σ 2/nks + σ 2/n0s. The covariance between mean
responses, cov(X̄(l)

1 , X̄(k)
2 ) = 0 ∀l and k = 1, ...,K , as

patient data are independent; whereas cov(X̄(l)
s , X̄(k)

s ) =
σ 2/n0s, ∀l �= k, where l, k = 1, ...,K , as the data of a shared
control group is used in all the pairwise comparisons. For
the newly added treatment, cov(X̄(K+1)

2 , X̄(k)
1 ) = 0 and

cov(X̄(K+1)
2 , X̄(k)

2 ) = σ 2/n02 for k = 1, ...,K , when only the
concurrent control data is used.
Elm et al [28] have not considered using all the con-

trol data in estimating the difference in mean responses of
treatment K + 1 and the control, i.e. defined as X̄(K+1)′

2 =
X̄K+1,2 − X̄0. This estimate has a smaller variance than
X̄(K+1)
2 , and cov(X̄(K+1)′

2 , X̄(k)
s ) = σ 2/n0 for k = 1, ...,K ,

and s = 1, 2, as X̄0 can be re-expressed as n01
n0 X̄0.1+ n02

n0 X̄0.2.
Using weighted least squares estimation, an estimate of

the vector of treatment effects relative to control, δ =
(δ1, ..., δK , δK+1)T , can be obtained. The estimate, δ̂, is
unbiased and has a multivariate normal distribution with
mean δ when there is no trend. This joint distribution can
be used to test the hypotheses, {H01, ...,H0,K+1}, in a sim-
ilar way to the Dunnett test [29]. The marginal power of
rejecting a hypothesis can be computed by considering
the corresponding marginal distribution. Note that when
K > 0, the marginal power is different to the power
obtained from a Z-test (or a t-test) as the joint distribu-
tion accounts for the fact that a common control group is
used in the analysis. Note also that var(δ̂K+1) depends on
the number of control patients.
We label these approaches asWLSall andWLSs2 respec-

tively, when all the control data and when only the concur-
rent control data are used in the estimation of δK+1.

Model-based approach: linear regression
In the context of an adaptive randomisation procedure,
Villar et al. [19] considered fitting a linear regression
model to adjust for the presence of a trend in their inves-
tigation where all arms start recruiting at the same time.
We explore the following linear regression analyses for the
trial that adds an arm at the end of stage one:

• Ma1: Xj = α + ∑K+1
k=0 βk · I(Tj = k) + γ · j + εj

• Ma2: Xj = α + ∑K+1
k=0 βk · I(Tj = k) + ν · cj + εj

where β0 = 0 such that βk represents the difference in
mean responses of treatment k and the control treatment;
and

• Mb1:
Xj = α+β0 · I(Tj = 0)+βb1

K+1·I(Tj = K + 1)+γ ·j+εj
• Mb2: Xj =

α + β0 · I(Tj = 0) + βb2
K+1 · I(Tj = K + 1) + ν · cj + εj

where β0 = 0 such that βb1
K+1 and βb2

K+1 represent the dif-
ference in mean responses of the newly added treatment
and the control treatment. Note that models Ma1 and
Ma2 use all data to estimates all β1, ...,βK ,βK+1, whereas
model Mb1 (and Mb2) uses the data of the control arm
(both stages) and the newly added arm to estimate βb1

K+1
(and βb2

K+1) only. The parameter γ in Ma1 and Mb1 rep-
resents the effect of continuous recruitment, whereas ν

in Ma2 and Mb2 represents the effect of recruitment that
happens after the new treatment has been added (Elm et
al [28] interpret ν as a stage effect). It is worth mention-
ing that the amount of the control data used to estimate
βK+1 in Ma2 (and respectively βb2

K+1 in Mb2) is similar
to (same as) that of using only the second stage control
data, e.g. X̄K+1,2 − X̄0.2, since the newly added treatment
was not present in stage one and the stage one control
data would contribute to the estimation of the stage effect
and that of β1, ...,βK under such a model set-up. In other
words, the stage one control data contributes very little to
the estimation of the difference in mean responses of the
newly added treatment and the control treatment when
we adjust for ν · cj in the analysis.
We note that the inference from Ma1 without adjust-

ment for the linear term in patient ordering is similar to
that from WLSall; and that from Ma2 is similar to WLSs2.
This is because the joint distribution of {β̂1, ..., β̂K+1} is
equivalent to the corresponding joint distribution of δ̂.
The subtle difference is the former approach has one
more parameter (i.e. the intercept α) than the weighted
regression model, which reflects the mean response of
the reference group assuming the model is true. On the
other hand, testing βb1

K+1 and βb2
K+1 respectively are sim-

ilar to considering an independent Z-test (or a t-test
when assuming unknown variance) for the hypothesis of
H0,K+1.

Metrics
We explore the above analysis approaches and consider

• bias of estimators;
• the type one error rate;
• the marginal power of rejecting a false null hypothesis;
• the root mean squared error,
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rMSE =
√
bias of an estimate2 + variance of an estimate;

when including or excluding the stage one control data in
the analysis of the newly added treatment. As we assume
σ 2 is known, the presence of a trend would affect the accu-
racy of the estimate but not the variance of an estimate.
We include the following metric to explore the reduction
in the variance of the estimate:

BoS = V0 − Va
V0

where BoS stands for borrowing of strength [30], V0
and Va correspond to the variance of an estimate that
is computed with only the concurrent control data and
that with all the control data respectively. Note that BoS
increases as Va decreases. This measure is similar to the
R-squared that measures how close the data are to the
fitted regression model. Here BoS ≈ 0 indicates that
the variability of the response data around its mean can-
not be further explained by including non-concurrent
control data; whereas BoS ≈ 1 reflects that using all
the control data results in a perfect estimate that has
negligible variability. One may interpret BoS as an indi-
cator of the benefit of including non-concurrent con-
trol data in the analysis of the newly added treatments.
Small values show that including the non-concurrent con-
trol data provides little benefit to the estimation of the
parameters in terms of precision gain. High value is
desirable especially when the estimates of the variance
are unbiased and are not affected by the presence of a
trend.
In the next section, we consider K = 1 and a new arm

is added at the end of stage one. Let the effect size of the
difference in treatment effects be δ1 = δ2 = 0.15 under
the alternative scenario, and δ1 = δ2 = 0 under the null

scenario, with σ 2 = 1, n11 = n01 = N1/2, and n12 =
n02 = N2/2. We choose n0 = n1 = 550 to obtain 80%
power and 5% type one error rate of rejecting H01 using
the Z-test.
We conduct simulation studies to examine the impact

of a trend with the timing of adding a new treatment,
n01/n0 = {0.25, 0.5, 0.75}, and the sample size of the
new arm, n22 = {n02, n0, 2n0}. Following (1), we adjust
the generated responses post randomization with λ =
{0.02, 0.04, 0.06, 0.08} in the linear trend (2) and the step-
wise trend (3) respectively. These values indicate a trend
of λ × 100% of standard deviation. Each scenario is repli-
cated 100 000 times. We illustrate n22 = 2n0 as one of
the options to explore the marginal benefit of having more
patients (than necessary) in the newly added arm while
keeping the size of the control arm the same as the initial
plan.

Results
Analytical power and BoSwhen there is no trend
We now compare BoS and the power of rejecting H02
when there is no trend and either all, or only concurrent
control data are used in the inference.
We first demonstrate the differences between the inde-

pendent Z-test (computed with only concurrent control
data) and the model-based approach, WLSall and WLSs2,
in terms of power. For ease of presentation, we omit the
comparisons to the presented linear regression models as
they make adjustment for a trend (see the first row of plots
in Figs. 2 and 3 for the corresponding marginal power).
The left plot in Fig. 1 shows power curves when the indi-
vidual Z-test (red lines) andWLSs2, i.e. the approach with
the bivariate normal distribution of (δ̂1, δ̂2) (blue lines), are
used respectively for testing H02, both using only the con-
current control responses. The timing of adding the new

Fig. 1 Left: power curves when the individual Z-test (red lines) andWLSs2 (blue lines) are used respectively for testing H02, both using stage two
control responses. Right: reduction in var(δ̂2) when stage one control responses is used relative to not using stage one control responses. Line types
correspond to different values of n22 when the new arm is added to the on-going trial. The timing of adding the new arm is reflected by n01/n0 on
the x-axis
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arm to the on-going trial is reflected on the x-axis; small
values indicate the arm is added after a small number of
patients have been randomized to the initial treatment
arms. Different lines correspond to having different n22.
As expected, the power decreases with n01/n0 when

excluding stage one control responses in the inference
about the newly added treatment. Comparing the red lines
to the blue lines in the left plot of Fig. 1, the power of
the individual Z-test is lower than the marginal power
obtained from WLSs2 given the same n22. When n22 =
n02, the difference between the power curves computed
by the two approaches is less than 6% (shown by compar-
ing the dashed lines). When n22 ≥ n0, the magnitudes of
the differences between the power curves are larger espe-
cially for large n01/n0; e.g. compare the dotted-dashed
lines at n01/n0 = 0.8, the marginal power obtained from
WLSs2 is 15% more than that computed from the indi-
vidual Z-test. This finding highlights that considering the
joint outcomes of the hypotheses through the joint distri-
bution of the parameters is more efficient than using the
individual Z-test when only the concurrent control data
is used. This is because the former accounts for using a
shared control group in the inference, whereas the Z-test
uses the control data independently for each hypothesis
test as if they were from several trials. Besides that, com-
pare the (vertical) difference between the dotted-dashed
line (n22 = 2n0) and the dotted line (n22 = n0), either red
or blue, we see that the magnitude of the difference in the
power decreases as n01/n0 increases. This indicates that
the marginal benefit of having a larger sample size in one
arm than necessary can be small, depending on when the
new arm is added to the trial.
For WLSall with n22 = n02, the power curve coincides

with the red dotted line, i.e. the individual Z-test using
only the concurrent control data and with n22 = n0. This
is not surprising as the same number of patients are used

in the inference, albeit the number of patients randomized
to the newly added arm is different for the two com-
parators (i.e. WLSall considers n02 responses of the new
treatment and n0 responses of the control treatment; the
individual Z-test uses n0 responses of the new treatment
and n02 responses of the stage two control treatment).
For WLSall with n22 = n0 and n22 = 2n0, the marginal
power of rejecting H02 is 0.8 and 0.89 respectively across
all n01/n0, which is close to the respective power obtained
from Z-test using all the control data.
We now consider the BoS values that are computed

with var(δ̂2) obtained from WLSall and WLSs2 respec-
tively. The right plot in Fig. 1 shows that when all the
control data is included in the estimation, BoS increases
with n01/n0. When n22 = n02, BoS is close to 30% when
the new treatment is added at n01/n0 = 0.9. When n22
has the same number as n0, we see that BoS becomes
even larger. However, the marginal return of having large
n22 than necessary can be less notable: comparing the
dotted-dashed line to the dotted line shows that the mag-
nitudes of the differences between the BoS perhaps are
less impressive compared to the likely cost of enrolling an
extra n0 patients for the new arm.

Bias of the estimate when there is a trend
We now present the simulation findings of the inference
about the newly added treatment when there is a trend.
Consider the estimated difference in mean responses

of the newly added treatment and the control treatment.
Table 1 shows the maximum absolute bias (and median
absolute bias) in the parameter estimations when there
is a trend. Each row corresponds to a trend with a value
of λ for all the scenarios with different combination of
n01/n0 = {0.25, 0.5, 0.75} and n22 = {n02, n0, 2n0}. The
values with an order of magnitude of -4 are set to zero, as
we also obtain such a small number for the unbiased esti-

Table 1 The maximum (median) absolute bias of the estimated difference in mean responses of the newly added treatment and the
control arm when there is a trend. Values with -4 order of magnitude are set to zero

λ WLSall WLSs2 Ma1 Ma2 Mb1 Mb2

Linear trend

2% 0.007 (0.005) 0 (0) 0.001 (0) 0 (0) 0 (0) 0 (0)

4% 0.015 (0.010) 0 (0) 0.001 (0) 0 (0) 0 (0) 0 (0)

6% 0.022 (0.015) 0 (0) 0.001 (0) 0 (0) 0 (0) 0 (0)

8% 0.030 (0.020) 0 (0) 0.001 (0) 0 (0) 0 (0) 0 (0)

Step trend

2% 0.015 (0.010) 0 (0) 0.007 (0.004) 0 (0) 0.010 (0.005) 0 (0)

4% 0.030 (0.020) 0 (0) 0.015 (0.008) 0 (0) 0.019 (0.010) 0 (0)

6% 0.045 (0.030) 0 (0) 0.023 (0.012) 0 (0) 0.029 (0.015) 0 (0)

8% 0.060 (0.040) 0 (0) 0.031 (0.016) 0 (0) 0.038 (0.019) 0 (0)



Lee and Wason BMCMedical ResearchMethodology          (2020) 20:165 Page 6 of 12

mators when there is no trend in our simulation, which is
due to the Monte Carlo simulation error.
When there is a positive trend in the simulation, we

find that the estimates obtained from WLSs2, Ma2 and
Mb2 respectively are unbiased. For those obtained from
WLSall, the magnitude of the bias is larger when there
is a step trend than when there is a linear trend. This
is because the presence of a positive trend inflates the
estimate of the overall mean responses of the control
treatment while the mean responses of the newly added
treatment only have a trend that is similar to the mean
responses of the second stage control treatment.
For those obtained from Ma1 and Mb1, the estimated

parameter is almost unbiased when there is a linear trend
but is biased when there is a step trend. This shows that
adjustment with a linear term may not always yield accu-
rate estimate especially when the structure of a trend is
not linear.

Marginal power in the presence of a trend
The first row of plots in Figs. 2 and 3 show the marginal
power of rejecting H02 when there is no trend; other rows
of plots correspond to different magnitudes of λ when
there is a linear and a step trend respectively. The x-axis of
the plots indicates the value of n22 and n01/n0. Each col-
umn of plots has a different range of y-axis due to having
different values of n22 when the new arm is added to the
on-going trial. As expected, the marginal power obtained
fromWLSs2 is similar to that fromMa2: the blue line (with
×) superimposes the red line (with �).
We see that the marginal power obtained from WLSall

is the highest and from Mb2 is the lowest among all the
comparators. However, themarginal power obtained from
WLSall is inflated when there is a positive trend. From our
simulation, we find that relative difference in the inflated
power to the non-inflated power is larger when n22 = 550
compared to when n22 = 1100. The reason could be when
n22 is small (relative to the fixed n01), stage one control
responses deviate more on average from the responses in
stage two, which leads to a larger bias when using all the
control data and hence increases the average number of
rejected hypotheses.
On the other hand, the marginal power obtained from

Ma1 and Mb1 respectively when there is a linear trend
remains the same as when there is no trend (i.e. compare
the black lines and cyan lines respectively across the row
of plots in Fig. 2); but it is inflated when there is a step
trend. The magnitude of the inflation increases with the
values, λ, of the step trend (see Fig. 3).
We find that the marginal power obtained from WLSs2,

Ma2 andMb2 respectively remains unchanged when there
is a trend. This is not surprising as the impact of a posi-
tive trend in the mean responses of the newly added arm
and the second stage control arm are of similar magni-

tude, which is being removed when the difference in mean
responses is considered.

Type one error rate in the presence of a trend
Figures 4 and 5 show the type one error rate of reject-
ing H02 in the presence of a linear trend and of a step
trend respectively, when δ1 = δ2 = 0. A subtle difference
in the type one error rate obtained from WLSs2 and Mb2
respectively can be seen in the plots.
We observe that the presence of a step trend would lead

to a larger inflation in the type one error rate obtained
from WLSall than when there is a linear trend with the
same λ, i.e. from comparing the green line (with + sign)
in Fig. 4 to those in Fig. 5. Besides, the magnitude of infla-
tion is the largest when both the values of n01/n0 and λ are
the largest. Having larger n22 also causes more inflation in
the type one error rate given the same n01/n0. This may be
because, given the same magnitude of the bias, large n22
makes the denominator of the test statistics smaller, and
hence increases the number of hypothesis rejections.
For the type one error rate obtained fromMa1 andMb1,

we see a similar finding to that of themarginal power. That
is, when there is a linear trend, the type one error rate
is maintained within the Monte Carlo simulation error,
whereas it is inflated when there is a step trend (see the
black line and cyan line respectively in Fig. 5). We find
that the type one error rate obtained fromWLSs2,Ma2 and
Mb2 respectively is maintained within the Monte Carlo
simulation error when there is a trend.

rMSE in the presence of a trend
The plots of rMSE are presented in Additional file 1:
Figures 1 and 2 in the supplement. When there is a posi-
tive trend, we find that Mb2 has the highest rMSE, which
remains the same across all the considered values of λ.
This is not surprising as the least amount of the data is
used. The rMSE values obtained fromWLSs2 andMa2 also
remain unchanged when there is a trend.
When there is a linear trend, the rMSE obtained from

WLSall increases with λ while remaining smaller than that
from Ma1 and Mb1 (which remain unchanged across the
linear trends). However, when there is a step trend, the
rMSE obtained from these approaches are inflated; the
rMSE obtained fromWLSall is higher than that fromMa1
when λ ≥ 4%. Nevertheless, across all the considered
scenarios, the rMSE obtained from Ma1 is always smaller
than the approaches that use less data, i.e.Ma2,Mb1,Mb2,
andWLSs2.
These findings highlight that even though the presence

of a small trend would lead to a small bias in the estima-
tion, the quality of the estimate computed using all the
control data can be better than that computed using only
the concurrent control data. This does not hold for larger
trends.
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Fig. 2 The power of rejecting H02 in the presence of no trend or a linear drift with a magnitude of λ > 0 standard deviation (row-wise); x-axis
indicates the value of n22 and the timing of adding the new arm

Inference about the initial treatment
For the inference about the initial treatment, we find that
the bias, type one error rate and power of rejecting H01
are maintained at the same levels as those when there is
no trend in the simulation. This finding is observed for
all the model-based approaches. This may be due to using
the restricted randomization procedure within each stage

of the trial in the simulation, which ensures that not all nks
patients are being enrolled to a particular arm k during
the early or the late phase of the trial. As a result, the aver-
age impact of a trend on the stage-wise mean responses of
the initial treatment and of the control treatment are sim-
ilar, which are then being subtracted when the difference
in the mean responses is considered. This observation is
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Fig. 3 The power of rejecting H02 in the presence of no trend or a step trend with a magnitude of λ > 0 standard deviation (row-wise); x-axis
indicates the value of n22 and the timing of adding the new arm

consistent with the finding of Ryeznik and Sverdlov [17]
who compare different randomization procedures in the
context of the standard ANOVA F-test.

Discussion
When there is no trend, the advantages of including the
non-concurrent control data are greater when the new

arm is added at a later time point. Our simulation studies
show that given the same magnitude of λ > 0, the pres-
ence of a step trend affects the validity of the inference
more than that of a linear trend when all the control data
are used in the analysis of the new arm. We also exam-
ine that using a linear regression model adjusting for a
linear term may lead to spurious findings when there is a
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Fig. 4 The type one error rate of rejecting H02 in the presence of a linear trend with a magnitude of λ > 0 standard deviation (row-wise); x-axis
indicates the value of n22 and the timing of adding the new arm

non-linear trend, though the rMSE of the corresponding
estimate can be lower than other approaches that use only
the concurrent control data. This represents a caveat for
including non-concurrent control data in the analysis plan
as it is impossible to know the structure of a trend at the
planning stage of a trial. After data collection, one can only
test the presence of a trend using some quality control
techniques such as control charts and CUSUM analy-
sis, see for example a review by Noyez [31]. The analogy
between clinical trials and industrial processes is becom-
ing clearer especially when the trial has a long enrolment
period. [32–38]
This work has highlighted the impact of a trend when

the variance of the observations is known. We emphasise

that not all methods assume known variance. We con-
jecture that the presented results would hold when an
estimated variance is unbiased, i.e. the estimate is robust
to the presence of a trend. Otherwise, the over- or under-
estimated variance would cause the test statistics to be
biased and hence provide a spurious result [28]. We also
note that when there is a negative trend, i.e. λ < 0, the
type one error and the marginal power will be deflated,
i.e. smaller than the nominal value. This is a direct conse-
quence of a trend that causes responses to be smaller than
the true values as the trial progresses.
All things considered, we would recommend that at

the design stage of phase III trials, sample size calcula-
tions assume only concurrent control information will be
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Fig. 5 The type one error rate of rejecting H02 in the presence of a step trend with a magnitude of λ > 0 standard deviation (row-wise); x-axis
indicates the value of n22 and the timing of adding the new arm

used. When the magnitude of a trend is small, we find
including the non-concurrent control data in the analy-
sis can improve the efficiency of estimating the parameter
of interest. However there could be an inflation (or defla-
tion) in the type one error rate and the marginal power
of testing the corresponding hypothesis unless the posi-
tive (or negative) trend has a magnitude of less than 0.5%
of the standard deviation (based on simulation results not
presented here). This finding is similar to the finding of
Kopp-Schneider et al [39] for the situation where exter-
nal information is used in the inference of clinical trials:
power gain is not possible when requiring a strict type one
error rate control. When the recruitment to all arms do
not finish simultaneously, the control data can be sepa-

rated into before and after adding an arm and those after
the initial treatment arms finish recruitment. In this case,
the presence of a trend across the three stages can be
tested before utilising all the control data to increase the
precision of the inference.
We acknowledge that an inflated power is not an issue

if we are confident that the intervention is effective. How-
ever, using the trial result for other purposes may lead
to negative consequences since an inflated power could
mean that the estimated effect size is likely to be higher
than it should. For example, doing a cost-effectiveness
analysis using the estimated effect size may over-estimate
the value of the intervention due to the presence of a pos-
itive trend. Future work could review real trials that add
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arms and explore the presence of trends and their struc-
ture in the data. One can also investigate the potential
of using non-concurrent control data for the situations
where i) there are more than one treatment arm being
added to the on-going trial; ii) there are more than two-
stages; and iii) adaptive randomization procedures are
considered.

Conclusion
Platform trials can potentially speed up the drug devel-
opment processes. The feature of continuous recruitment
to the control arm may increase the precision of the
inference about the newly added interventions in some
situations; or reduce the required sample size for the
evaluation of the newly added interventions at the cost
of having a less stringent control of the error rates. In
light of the presence of a potential trend, it is wise to
compare the results of including and excluding non-
concurrent control data in the analysis of the newly added
interventions.
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