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Abstract

Background: To accurately predict the response to treatment, we need a stable and effective risk score that can be
calculated from patient characteristics. When we evaluate such risks from time-to-event data with right-censoring,
Cox’s proportional hazards model is the most popular for estimating the linear risk score. However, the intrinsic
heterogeneity of patients may prevent us from obtaining a valid score. It is therefore insufficient to consider the
regression problem with a single linear predictor.

Methods: we propose the model with a quasi-linear predictor that combines several linear predictors. This provides a
natural extension of Cox model that leads to a mixture hazards model. We investigate the property of the maximum
likelihood estimator for the proposed model. Moreover, we propose two strategies for getting the interpretable
estimates. The first is to restrict the model structure in advance, based on unsupervised learning or prior information,
and the second is to obtain as parsimonious an expression as possible in the parameter estimation strategy with
cross-L1 penalty. The performance of the proposed method are evaluated by simulation and application studies.

Results: We showed that the maximum likelihood estimator has consistency and asymptotic normality, and the
cross-L1-regularized estimator has root-n consistency. Simulation studies show these properties empirically, and
application studies show that the proposed model improves predictive ability relative to Cox model.

Conclusions: It is essential to capture the intrinsic heterogeneity of patients for getting more stable and effective risk
score. The proposed hazard model can capture such heterogeneity and achieve better performance than the ordinary
linear Cox proportional hazards model.

Keywords: Cox’s proportional hazards model, Generalized average, Heterogeneity, Mixture model, Survival analysis

Background
Medical science has made dramatic progress in recent
years and reached the stage of trying to develop treat-
ment tailored to patients’ individual characteristics. In
particular, it is becoming standard for doctors to pre-
scribe selective therapeutic agents to cancer patients with
specific oncogenes. Such personalized medicines are not
only effective, but also economical and practical: if per-
sonalization fulfills its promise, patients no longer have
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to try expensive but ineffective treatments, or suffer from
unnecessary side effects.
The idea of treatment individualization arose from the

fact that patients often show different responses, in terms
of both therapeutic and side effects, to the same spe-
cific treatments. Therefore, in order to realize individu-
alized treatment, it is necessary to predict treatment risk
accurately and carefully based on patients’ characteris-
tics. Because such a prediction should be performed in
an objective manner, we need some quantified measure-
ment of risk. This is usually achieved by a risk score,
estimated by a regression model derived from various
types of datasets. Survival time datasets are among the
most popular source of data in medical science because
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they focus on extension of time-to-event (in this case,
an undesirable or bad event). Several types of events can
be considered, including cancer prognosis or metastasis,
myocardial infarction, and death. For time-to-event data
with right-censoring, it is standard to apply the relative
risk model. The main feature of the model is the assump-
tion that hazards are proportional; i.e., the hazard ratio
of two different subjects depends only on their covariates.
Despite requiring this somewhat strong assumption, this
type of model is used in a broad range of applications.
Although the relative risk model covers a wider range, the
exponential relative risk model, known as Cox’s propor-
tional hazards model, is most common for these applica-
tions. For simplicity, in the rest of this paper we assume
that all covariates are time-independent and that there
are no event ties, but these assumptions can be relaxed.
In the Cox model, it is assumed that the log hazard is
decomposed into and time-independent linear predictor
of covariates vector x as log(h(t|x)/h0(t)) = β�x, where
h(t|x) is a hazard rate at time t, h0(t) = h(t|0) is called the
baseline hazard function, and β is a coefficient vector.
However, the relationship between the hazard and

covariates may not be common among subjects. For
example, recent clinical studies focused on the fact that
heterogeneity among such populations can result in dif-
ferent responses to the same treatment. Such complex
relationships can no longer be described in a single hazard
model. Therefore, we should consider a mixture hazard
model to capture the different hazard patterns in the het-
erogeneous population. In fact, [1] and [2] introduced a
general family of mixture hazard models to describe mul-
timodal hazards, although these models were described
in a limited situation under a parametric approach. Also,
in the context of a cure model, a binary hazard mixture
model was proposed in a semi-parametric manner [3]. In
this paper, we propose a natural extension of Cox’s propor-
tional hazards model using a quasi-linear predictor that
leads to a proportional model with mixture hazards.
The rest of the article is organized as follows. In

“Methods” section, we derive the mixture hazard model
via the quasi-linear predictor and two strategies are devel-
oped to obtain parsimonious expression: the restricted
quasi-linear model and the cross-L1-penalty estimation.
In “Results” section, we investigate the estimators’ asymp-
totic properties. Moreover, we present numerical sim-
ulations and applications to real data sets, respectively.
The proofs for all propositions and theorems given as
Appendix are available in Additional file 1.

Methods
Quasi-linear Cox Model
Formulations
Let t be the survival time of a subject with baseline covariate
vector x. Then we define the quasi-linear Cox model as

h(t|x,π ,β) = h0(t) exp (fQ(x,π ,β)). (1)

Here, fQ is a quasi-linear predictor function defined by
the log-sum-exp averages of K linear predictors [4] as

fQ (x,π ,β) = log
( K∑
k=1

πk exp
(
β�
k x

))
, (2)

where π� = (π1, · · · ,πK ) is a vector of mixing propor-
tion with

∑K
k=1 πk = 1, and β� = (β�

1 , · · · ,β�
K ) is the

coefficient vector. The relationship between hazard and
covariates differs among subpopulations; the parameter K
relies on the total number of subpopulations that satisfy
this condition. We find that the quasi-linear Cox model
can be understood as a mixture hazard model because
from (1) and (2)

h (t|x,π ,β) =
K∑

k=1
πkh0(t) exp

(
β�
k x

)
. (3)

The underlying hazard model in (3) is described as
h(t|x,π ,β) = ∑K

k=1 πkhk(t|x,βk), where hk(t|x,βk) =
h0k(t) exp(β�

k x) with the assumption that h0k(t) = h0(t)
for any k. Thus the proposed model can be under-
stood as the special case of the mixture of Cox’s pro-
portional hazards models. The assumption about equal-
ity of the baseline hazard function may seem some-
what stronger, but this simplifies the model formulation
and interpretability. Simulations and application studies
in “Simulations” section and “Application” section show
that model (3) has sufficient predictive ability. A more
general model that removes the assumption of equal-
ity of the baseline hazard function is discussed in the
“Discussion” section.

Partial likelihood andmaximum likelihood estimator
Consider the data (xi, ti, δi) (i = 1, 2, · · · , n) from n sub-
jects, where xi is a p-dimensional covariates vector, ti is
observed survival or censored time, and δi is an event indi-
cator which takes a value of 1 if the sample experiences the
event by t = ti and 0 otherwise. We assume that ti and δi
are independent for all subjects. Let θ� = (π�,β�) and
θ�
k = (πk ,β�

k ) for any k. Then, the partial log-likelihood
function of the parameter θ is written as

l(θ) =
n∑

i=1
δi

⎧⎨
⎩log

( K∑
k=1

ηi(θk)

)
− log

⎛
⎝ ∑

�∈R(ti)

K∑
k=1

η�(θk)

⎞
⎠

⎫⎬
⎭ , (4)

where R(ti) = {l ∈ {1, · · · , n}|ti ≤ t�} and ηi(θk) =
πk exp (β�

k xi). The R(ti) denotes the risk set at time
ti. The maximum partial likelihood estimator θ̂ of (4)
has consistency and asymptotic normality, as shown in
“Asymptotic properties” section. Because we cannot get
the estimates analytically, as with the Cox’s proportional
hazards model, we need some numerical optimization
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method. As an example of such a method, the outline
of the Minorization-Maximization (MM) algorithm [5] is
shown here. The convergence property of the algorithm is
demonstrated in Appendix A.
First, the score function of the partial likelihood (4)

consists of the following elements:

∂

∂πm
l(θ) =

n∑
i=1

δi

(pmi(θ) − p∗
mi(θ)

πm

)
(5)

and

∂

∂βm
l(θ) =

n∑
i=1

δi

(
pmi(θ)xi − p∗

mi(θ)

∑
�∈R(ti) η�(θm)xl∑
�∈R(ti) η�(θm)

)
,

(6)

where

pmi(θ) = ηi(θm)∑K
k=1 ηi(θk)

= πm exp
(
β�
mxi

)
∑K

k=1 πk exp
(
β�
k xi

) ,

p∗
mi(θ) =

∑
�∈R(ti) η�(θm)∑

�∈R(ti)
∑K

k=1 η�(θk)

=
∑

�∈R(ti) πm exp
(
β�
mxi

)
∑

�∈R(ti)
∑K

k=1 πk exp
(
β�
k xi

) .
We remark that the function l(θ) is rather complicated
relative to the one of Cox’s model, which typically con-
tains summands in the logarithmic function. In fact, when
K = 1, (4) is reduced to the standard form of the partial
log-likelihood function l(β1) in which the gradient vector
becomes

∂

∂β1
l(β1) =

n∑
i=1

δi

(
xi −

∑
�∈R(ti) exp

(
β�
1 x�

)
x�∑

�∈R(ti) exp
(
β�
1 x�

)
)
.

(7)

Compared with (7), repeated calculation of (5) and (6)
is computationally hard. We therefore consider a simpler
function as

G(θ , θ0) = l(θ0) +
n∑

i=1

K∑
k=1

δipki(θ0) log
πk exp

(
β�
k xi

)
π0k exp

(
β�
0kxi

)
−

n∑
i=1

δi

{ ∑
�∈R(ti)

∑K
k=1 πk exp

(
β�
k x�

)
∑

�∈R(ti)
∑K

k=1 π0k exp
(
β�
0kx�

) − 1
}
,

which has only feasible terms of log hazard and log cumu-
lative hazard functions. Thus, we observe that

∂

∂πm
G(θ , θ0) =

n∑
i=1

δi

{
pmi(θ0)

πm
− p∗

mi(θ0)

πm

∑
�∈R(ti) πm exp

(
β�
mx�

)
∑

�∈R(ti) π0m exp
(
β�
0mx�

)
}

(8)

and
∂

∂βm
G(θ , θ0) =

n∑
i=1

δi

{
pmi(θ0)xi

− p∗
mi(θ0)

∑
�∈R(ti) πm exp

(
β�
mx�

)
x�∑

�∈R(ti) π0m exp
(
β�
0mx�

)
}
,

(9)

which leads to ∂
∂θ
l(θ) = ∂

∂θ
G(θ , θ0)|θ0=θ . Explor-

ing these properties, we propose a learning algo-
rithm

{
θ (s) = (π (s),β(s))|s ∈ S

}
for the maximum partial

likelihood estimator of θ by sequential maximization
of G(θ , θ0) as θ (s+1) = argmaxθG

(
θ , θ (s)

)
for all s

in S = {1, 2, · · · , S}, where θ (1) is an initial value
and S denotes a stopping time. By definition, we
obtain G

(
θ (s+1), θ (s)) ≥ G(θ (s), θ (s)

)
. It follows from (8)

and (9) that the iteration step is given by θ (s+1) =(
π̃k

(
θ (s)

)
, β̃k

(
θ (s)

))
, where

π̃k(θ) = 1
z(θ , β̃k(θ

(s)))

∑n
i=1 δipki(θ)

∑n
i=1 δip∗

ki(θ)

∑
�∈R(ti) exp

(
β̃

�
k x�

)
∑

�∈R(ti) exp
(
β�
k x�

)
πk ,

(10)

β̃k(θ) = argsolvebk |θ

{ n∑
i=1

δipki(θ)xi

=
n∑

i=1
δip∗

ki(θ)

∑
�∈R(ti) exp

(
b�
k x�

)
x�∑

�∈R(ti) exp
(
β�
k x�

)
⎫⎬
⎭ ,

(11)

where

z
(
θ , β̃k

(
θ (s)

))
=

K∑
k=1

∑n
i=1 δipki(θ)

∑n
i=1 δip∗

ki(θ)

∑
�∈R(ti) exp

(
β̃

�
k x�

)
∑

�∈R(ti) exp
(
β�
k x�

)
πk .

We observe that estimating equation in (11) is a
weighted variant of standard partial likelihood equation.
Furthermore, we observe that the minus Hessian matrix
of G(θ , θ0) with respect to θ is positive-definite, which
guarantees that θ (s+1) =

(
π̃k

(
θ (s)

)
, β̃k

(
θ (s)

))
, as dis-

cussed above, is the unique minimizer of G(θ , θ (s)) in θ .
We observe the basic property of the learning algorithm,{
θ (s) =

(
π(s),β(s)

) ∣∣s ∈ S
}
, as follows.

Proposition 1 Let
{
θ (s) =

(
π(s),β(s)

) ∣∣s ∈ S
}

be the
fixed-point algorithm defined by the iteration rules (10)
and (11). Then, the partial log-likelihood function l(θ)

increases on the sequence
{
θ (s)|s ∈ S

}
as l

(
θ (s+1)

)
≥

l
(
θ (s)

)
for any s = 1, · · · , S − 1.
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The proof of Proposition 1 is given in Appendix
B. The convergence of the algorithm

{
θ (s) : s ≥ 1

}
to

the maximum partial likelihood estimator θ̂ is not
directly connected to Proposition 1. We need to make
some assumption about the model in order to guar-
antee convergence, similar to that of expectation–
maximization (EM) algorithm [6] for the analytic con-
ditions. For example, we assume that l(θ) is unimodal,
with θ∗ being the only stationary point. We note that
∂G(θ , θ0)/∂θ is continuous for θ and θ0. Thus, the
sequence {θ (s)} converges to the unique maximizer θ∗ [7].
In fact, the partial likelihood function l(θ) is expressed
as a difference of two concave functions ψ1(θ) and
ψ2(θ), where ψ1(θ) = − ∑n

i=1 δi log
∑K

k=1 πk exp
(
β�
k xi

)
and ψ2(θ) = − ∑n

i=1 δi log
∑

j∈R(ti)
∑K

k=1 πk exp
(
β�
k xj

)
.

Hence, the assumption for the unimodality is necessary
for convergence.

Parsimonious Model
The quasi-linear Cox model consists of a relatively large
number of parameters. Moreover, each covariate has mul-
tiple roles in every linear predictor. These complexities
compromise the stability of parameter estimation and the
interpretability of the model overall. Accordingly, we need
a more parsimonious expression as shown in Fig. 1. To
obtain a more parsimonious model, we propose a vari-
ant of the proposed model and parameter estimation
procedure: restricted quasi-linear Cox model and cross-
L1-penalty method. The former idea relies on restricting
the model structure in advance based on prior informa-
tion. If there is prior knowledge that some factors strongly
depends on the hazard of subpopulation and weakly on
the hazards of other subpopulations, then we use the
restricted quasi-linear form to insert the knowledge into
consideration. If this is not the case, then a penalty is
needed to bring full model (3) closer to the parsimonious
model (13). We achieve this by using cross-L1 penalty
introduced in “Quasi-linear Cox model with cross L1
penalty” section.

Restricted quasi-linear Coxmodel
The first strategy is to use the idea of disjoint sets
of covariates, as proposed by [4]. In the strategy, we
assume that we know the disjoint decomposition of xi as
xi(1), · · · , xi(K) with a fixed group size K, and that this is
identical among individuals. We denote the size of xi(k) as
pk , where

∑K
k=1 pk = p. We note that such decomposition

is given by prior knowledge about the disjoint structure
of x. The disjoint sets of covariates yield the restricted
quasi-linear predictor defined by

f ResQ
(
x(1), x(2), · · · , x(K),π ,β

)= log
( K∑
k=1

πk exp(β�
k x(k))

)
. (12)

The mixture hazard model (1) is modified by replacing fQ
with f ResQ as

hRes
(
t|x(1), · · · , x(K),π ,β

)
= h0(t) exp

(
f ResQ

(
x(1), · · · , x(K),π ,β

))
. (13)

Themaximumpartial likelihood estimator is calculated by
the fixed-point algorithm proposed for the non-restricted
version, with easy modifications.

Quasi-linear Coxmodel with cross L1 penalty
In the second strategy, we regularize the log-likelihood
function by cross-L1 penalty defined by

Pc(β) = nλc
∑
� �=m

p∑
j=1

|β�jβmj|
|β̂�jβ̂mj|

, (14)

where λc is a regularization parameter and βkj and β̂kj are
the j-th component of k-th coefficient vector βk and cor-
respondingmaximumpartial likelihood estimator, respec-
tively. When λc goes to infinity, the estimated parameter
of the βk ’s would be cross-sparse; if β�j �= 0, then βkj = 0
for any k �= �, and the estimated model belongs to the
class of restricted quasi-linear models (13). We define
the regularized log-likelihood function with cross-L1
penalty as

lpen(θ) = l(θ) − P2(β) − Pc(β), (15)

where P2(β) = nλβ�β , known as the L2 penalty. We note
that an additional regularization factor such as L1 penalty
yields the elastic net-type regularization lpen∗(θ) = l(θ) −
νP1(β)− (1− ν)P2(β)−Pc(β). We refer to the maximizer
(π̃ , β̃) of lpen(θ) as CLASSO (Cross least absolute shrink-
age and selection operator) estimator. The penalty (14)
is a variant of adaptive L1 penalty originally introduced
by [8]. The adaptive weights |β̂�jβ̂mj| are needed to equip
CLASSO estimator with root-n consistency (see Theorem
2 in “Asymptotic properties” section). We make the fol-
lowing proposition regarding the CLASSO estimator.

Proposition 2 Let Rc be a region in R
pK defined as

Rc = {
β ∈ R

pK |Pc(β) ≤ c,P2(β) ≤ c
}
. Then the region

Rc is a convex set.

Due to the convexity of the sum of cross-L1 and -L2
penalties, the CLASSO estimator also has consistency and
asymptotic normality as shown in Theorem 2. Empirically,
however, we do not need to regularize the partial log-
likelihood by P2(β) for stable estimation. Therefore, we
consider only theCLASSO penalty in the empirical studies
in the Simulations and Applications sections.
To get the CLASSO estimator, we use the full gradient

algorithm [9] in the updating step for each βk (9). For
each s-th iteration, we need to update β(s−1) to get β(s)
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Fig. 1 The conceptual diagram of the full and parsimonious models in the setting of p = 4 and K = 3 are drawn. The left figure shows the full
model by the quasi-linear predictor fQ . The right figure shows the parsimonious model written in the same predictor but has some zero-coefficients

by gradient algorithm. Let Ss be the stopping time in the
s-th iteration step. The initial value β

(s+1,0)
k = β

(s,Ss)
k is

repeatedly updated as

β(s+1,u+1)
m = β(s+1,u)

m + min
{
topt(π (s),β(s+1,u)), tedge(π (s),

β(s+1,u))
}
dm

(
π (s),β(s+1,u)

)
,

(16)

where

dm(θ) = (dm1(θ), dm2(θ), · · · , dmp(θ))�,

tedge(θ)= min
1≤j≤p

(
− βmj

dmj(θ)
: sign(βmj) = −sign(dmj(θ)) �= 0

)
,

and

topt(θ) = |dm(θ)|
dm(θ)�

{
∂2l(θ)

∂β∂β�
}
dm(θ)

.

Here

dmj(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂G(θ ,θ (s))
∂βmj

− λc
(∑

k �=m|βkj|
)
sign(βmj) if βmj �= 0

∂G(θ ,θ (s))
∂βmj

− λc
(∑

k �=m|βkj|
)
sign

(
∂G(θ ,θ (s))

∂βmj

)
if βmj = 0,∣∣∣∣∣ ∂G

(
θ ,θ (s)

)
∂βmj

∣∣∣∣∣ > λc
(∑

k �=m|βkj|
)

0 otherwise

(17)

for j = 1, · · · , p, where sign(·) is a sign function defined
by setting sign(z) equal to 1 for z > 0, 0 for z = 0 and −1
for z < 0. In each step, topt provides the optimal solution
of the gradient descent algorithm, and tedge controls the
direction of the gradient so as not to change the signs of
parameters.
For all analysis in Simulations and Applications sections,

the initial values of parameters were set to the equal prob-
ability weighting parameters πk = 1/K for k = 1, 2, · · · ,K
and the coefficient vectors of Cox’s proportional hazard
models estimated from random K-samples sets on the
parameter estimation of the quasi-linear Cox model. The
tuning parameter λc is determined by any model selection
criteria such as AIC or estimated test AUC from boot-
strap estimates other than BIC. In this paper, we use Bayes
Information Criteria (BIC) [10] because (i) it is one of
the most popular information criteria, (ii) it is compu-
tationally easy to calculate compared with the estimator
which relies on the bootstrap sampling and (iii) it has the
consistency in model selection.

Results
Asymptotic properties
In this section, we provide an asymptotic property of the
maximum likelihood estimator θ̂ and the coefficient part
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of CLASSO estimator β̃ . In the following, our discussion
is based on the stochastic process. For the i-th individual,
let Ni(t) = 1{ti≤t,δi=1}(t) be the right-continuous counting
process, where each Ni(t) counts the number of observed
events on (0, t], and let Yi(t) = 1{ti≥t,ci≥t}(t) be the left-
continuous at-risk process that shows the observation sta-
tus at time t, where ci and ti are censoring and true survival
times. Here 1E is an indicator function defined by setting
1E(t) equal to 1 for t ∈ E and equal to 0 for t /∈ E. Let us
denote Ft = σ

{
Ni(u),Yi(u+); i = 1, · · · , n; 0 ≤ u ≤ t

}
as

the σ -algebra generated by all Ni(u) and Yi(u), 0 ≤ u ≤
t. Then, the corresponding intensity process of Ni(t) is
defined by�i(t)dt = P(dNi(t) = 1|Ft−) and the proposed
model is described as

P(dNi(t) = 1|Ft−) = Yi(t)h0(t) exp(fQ(x, θ0)), (18)

where θ0 = (π�
0 ,β

�
0 )�. Then we get two theorems about

the maximum partial likelihood estimator and CLASSO
estimator.

Theorem 1 Let θ̂ = (π̂
�, β̂�

)� be the maximum par-
tial likelihood estimator in the quasi-linear Cox model.
Assume that the regularity conditions A-D (in Appendix C)
hold. Then it follows that

1. (Consistency) θ̂
p−→ θ0

2. (Asymptotic Normality)√
n(θ̂ − θ0)

d−→ N(0, I−1(θ0))

Theorem 2 Let θ̃ = (π̃�, β̃�
)� be the CLASSO estima-

tor in the quasi-linear Cox model with cross L1 penalty.
Assume that condition A-D (in Appendix C) hold. If√
nλn → ∞, then ||β̃ − β0|| = Op(n−1/2).

Theorem 1 shows that the partial maximum likelihood
estimator has the consistency and asymptotic normality.
Theorem 2 shows that by choosing a proper sequence
λn, there exists a

√
n-consistent CLASSO estimator. The

proofs are given in Appendix C and D.

Simulations
Settings
We conducted the simulations described in this section
with two objectives in mind. The first was to ascer-
tain whether the consistency of the maximum partial-
likelihood estimator can be observed empirically. The
second was to ascertain whether tuning parameter λ(c)

selection can be performed efficiently using the BIC.
In all simulation studies introduced here, the inverse

function method was used for data generation. First, the
covariates x were generated from the multivariate nor-
mal distribution, the apparent censored time T1 was

generated from the exponential distribution with mean
1000, and the random variable U was generated from the
uniform distribution on [ 0, 1]. Let the baseline survival
time be followed the exponential distribution with mean
100. Then, the true survival time corresponding to the
log relative risk function f ResQ (x; θ) was given as T2 =
−(log(U)/100) exp

(
f ResQ (x; θ)

)
. Based on T1 and T2, let

T = min(T1,T2) be the observational survival time and
δ = I(T1 < T2) be the censored indicator before the event
time.
Sample size was set to N = 400 in all scenarios, and

it was assumed that the true number of the groups were
known for all settings. The tuning parameter λ of cross-L1
penalty was determined by BIC. We note that the maxi-
mum candidate value of the tuning parameter λ was con-
trolled sufficiently to achieve the restricted quasi-linear
form for every setting. We had the following options:

• Independent Setting (IS) or Dependent Setting (DS)
Each covariate vector xi was sampled from the
standard normal distribution N(0p,), where
ap = (a, a, · · · , a) ∈ R

p. In IS,  = 22Ip, where Ip is
an identity matrix of size p. In DS,  = (sij) ∈ R

p×p,
where sij = 22 × 0.7|i−j|.

• Group Size and Coefficients
A number of combined linear predictors, namely
group size, was set to K = 2 or K = 3. A number of
covariates, namely dimension size, was set to p = 2,
p = 3, or p = 5. A coefficients vector was set to
cross-sparse (Scenario 1,3,5) or overlapped (Scenario
2,4,6) according to the following settings.

1. K = 2, p = 2, π� = (0.3, 0.7) and
β� = (β�

1 ,β�
2 ) = ((1, 0), (0, 1.5))

2. K = 2, p = 2, π� = (0.3, 0.7) and
β� = (β�

1 ,β�
2 ) = ((1, 0.5), (0, 1.5))

3. K = 2, p = 5, π� = (0.3, 0.7) and
β� = (β�

1 ,β�
2 ) = ((1, 1, 1, 0, 0), (0, 0, 0, 1.5, 1.5))

4. K = 2, p = 5, π� = (0.3, 0.7) and β� =
(β�

1 ,β�
2 ) = ((1, 1, 1, 0, 0.5), (0, 0.25, 0.5, 1.5, 1.5))

5. K = 3, p = 3, π� = (0.2, 0.3, 0.5) and β� =
(β�

1 ,β�
2 ,β�

3 ) = ((1, 0, 0), (0, 1.5, 0), (0, 0, 1))
6. K = 3, p = 3, π� = (0.2, 0.3, 0.5) and β� =

(β�
1 ,β�

2 ,β�
3 ) = ((1, 0.5, 0), (0, 1.5, 0.5), (0.5, 0, 1))

Simulation results
For each scenario, the mean values of the estimated coef-
ficients and the mean-squared errors (MSEs) are shown
in Table 1. Throughout the whole scenario, all coeffi-
cients were estimated with only a little bias. In partic-
ular, in the disjoint setting (Scenario 1,3,5 for IS and
DS) we could almost certainly distinguish the zero coeffi-
cients from non-zero coefficients, indicating that BIC and
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cross-L1 penalty work well in these scenarios. Dependent
situations did not have a strong effect on parameter esti-
mation, although a slightly larger MSE was observed in
comparison with the independent situations. Especially in
Scenario 6 for DS, we hadmoderate biases in estimation of
the coefficients of the first linear predictor (β11 and β12).
This is because the other two groups had enough informa-
tion for fitting the model to the data. In fact, the estimated
risk scores between the estimated and true parameters
were almost equal. This shows that the loss of model
identifiability sometimes yields bias in parameter estima-
tion for the overlapped situation; however, the predictive
performance of the estimated score is sufficient.

Application
In this section, we show the results of application stud-
ies for the breast cancer dataset in order to evaluate the
performance of the quasi-linear Cox model. To evaluate
the predictive ability of the learned model, we calculated
the Area under the curve (AUC) of time-dependent ROC
[11] using test dataset. The predictive performance was
compared between Cox’s proportional hazard model and
the quasi-linear Cox model. A dataset from [12] was used
as the training data, and a dataset from [13] as the test
data. These datasets include expression levels of 70 genes
and survival time with some censors. Except for samples

with missing values, there were 75 samples in the training
dataset and 220 samples in the test dataset. In this applica-
tion, we extracted the top 10 relevant genes to evaluate the
model performance. Such marker preselection has been
performed in many studies [14].
Since we had no prior knowledge for these genes,

we applied the proposed model with cross-L1 penalty
introduced in “Quasi-linear Cox model with cross L1
penalty” section. The number of groups K and the reg-
ularization parameter of the cross-L1 penalty λc were
determined using BIC from K ∈ {2, 3, 4, 5} and λc ∈
{0, 0.1, 0.2, · · · , 5.0}. All gene expressions are standardized
to have mean zero and variance one among the training
sample to compare the estimated coefficients. The same
transformation was applied for the test sample.
As a result, a group size K = 2 was selected. The time

series of test AUCs and the bootstrap 95% intervals for
each year are shown in Figs. 2 and 3. For every time point,
the test AUC of the quasi-linear relative risk model was
larger than that of Cox’s proportional hazard model. The
estimated coefficients for linear and quasi-linear Cox’s
proportional hazard models are shown in Fig. 4. While
the overall trend was not much different between lin-
ear and quasi-linear models, the cross-L1 penalty gave
contrast to the fitted quasi-linear model. Five out of ten
genes have zero coefficient in the hazard function in the

Fig. 2 The time series changes in test AUC of the breast cancer dataset. Two line graphs show the AUC values at each time (days) calculated from
time dependent ROC for the linear (red) and quasi-linear (blue) predictor



Omae et al. BMCMedical ResearchMethodology          (2020) 20:182 Page 9 of 12

Fig. 3 Boxplots of the test AUC by the bootstrap sample from the breast cancer dataset, where eight boxplots show the AUC values at each year (1,
2, 3 and 4) calculated from time dependent ROC for the linear (each left) and quasi-linear (each right) predictor

first or second group. As a representative of them, we
focus on the set of genes with the first (“gene6") and sec-
ond largest (“gene4") coefficients in the first group. Those
are called NUSAP1 (Nucleolar And Spindle Associated
Protein 1) and TSPYL5 (Testis-Specific Y-Encoded-Like
Protein 5), respectively. TSPYL5 is a well-known prog-
nostic factor of poor outcome in breast cancer patients.
Higher expression of TSPYL5 suppresses p53 protein lev-
els causing damage tomammary cells. It may be important
that those two genes have zero coefficient in the second
group. Interestingly, it was reported that the TSPYL5 and

NUSAP1 are biologically correlated with the same hall-
marks of cancer: limitless replication potential [15]. While
further investigation is needed, the proposed model thus
suggests there are roughly two subpopulations which have
different hazards.

Discussion
We developed a mixture hazard model, an extension of
Cox’s proportional hazards model, via a quasi-linear pre-
dictor. Theoretical discussion revealed that the maximum
partial-likelihood estimator has properties of consistency
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Fig. 4 The estimated coefficients for linear and quasi-linear Cox’s proportional hazard models. The cross marks show the coefficients which equal
exactly to zero

and asymptotic normality. Furthermore, we showed com-
bining the cross-L1 penalty makes the estimated model
stable and interpretable. Empirical simulations and appli-
cations confirm these superior properties, and BIC have
been shown to work well as a measure for selecting the
number of groups and the tuning parameter of cross-L1
penalty.
We will discuss the relationship between our study and

previous work. First, the quasi-linear predictor was pro-
posed in [16] to extend the logistic regression model
for capturing heterogeneous structure in biomarkers. The

quasi-linear logistic model was motivated by a Bayes risk-
consistent predictor in binary classification between the
mixture normal distribution and single normal distribu-
tions. The quasi-linear predictor enables us to model
intrinsic heterogeneity using some linear predictors, and
can be used as an extension from the standard to the het-
erogeneous setting of several models that rely on the lin-
ear predictor. Second, as introduced in the Introduction,
several studies have proposed a mixture hazard model
[1, 2], but these were limited to parametric ones. Our pro-
posed method is one extension that is possible without
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assuming a specific distribution. Also, several mixture dis-
tribution model proposals have been developed in past
studies [17–19]. We note that the concepts of themixture
hazards model and mixture density model are completely
distinct. In fact, while the mixture density model gives
the simple weighted average of each survival function as
the whole survival function S̃(t) = ∑K

k=1 π̃kS̃k(t), the
mixture hazard model gives the weighted average of log-
survival function of each survival function as the whole
log-survival function: log S(t) = ∑K

k=1 πk log Sk(t). In this
context, the survival function is understood as the geo-
metric mean of each survival function, S(t) = ∏K

k=1 S
πk
k .

We note that the density function is analogue to the
probability while the hazards function is also, i.e. instan-
taneous rate of mortality. In this sense, both models can
be regarded as the special case of latent variable models.
It is not yet well understood what such a formal difference
yields for the modeling in survival analysis, and it will be
very important for our future work.
In this paper, we restricted the baseline hazard functions

to be identical. There are three reasons for the restric-
tion. First, it stabilizes estimation of model parameters.
In addition to the high computational cost of the mixture
model, it will be difficult to estimate the separate baseline
hazard functions. Second, it improves the interpretability
of the model. The assumption of different baseline haz-
ards functions may seem a somewhat strange idea. This
is because baseline hazard function refers to a hazard
function when all observed covariate values are consid-
ered to be a reference for all patients. When a different
baseline hazard function is required for each group, it
means that there is heterogeneity that cannot be observed
with the dataset in question. Instead, the quasi-linear Cox
model enables us to model the intrinsic but observable
heterogeneity. Third, regardless of such restrictions, the
proposed model empirically had better predictive ability
than the standard Cox’s proportional hazards model. We
thus achieved simultaneous modeling of group-wise pro-
portional hazards models. On the other hand, although
a stratified Cox model focuses on the heterogeneity for
hazards in the population with different baseline hazards,
it assumes the same relative risk function among groups.
These twomodels thus have dualistic roles to capture haz-
ard heterogeneity in the population. Finally, we note that
in theory we should be able to loose these restriction for
baseline hazard function in the proposed model, based on
similar ideas for density mixture models proposed by [19].

Conclusions
In this paper, we focused on hazards mixture model. The
quasi-linear Cox proportional hazards model was natu-
rally derived by the quasi-linear predictor. It is essential to
capture the intrinsic heterogeneity of patients for getting
more stable and effective risk score. The proposed hazard

model can capture such heterogeneity and achieve better
performance than the ordinary linear Cox proportional
hazards model.
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