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Abstract

Background: The clinical progress of patients hospitalized due to COVID-19 is often associated with severe
pneumonia which may require intensive care, invasive ventilation, or extracorporeal membrane oxygenation
(ECMO). The length of intensive care and the duration of these supportive therapies are clinically relevant
outcomes. From the statistical perspective, these quantities are challenging to estimate due to episodes being time-
dependent and potentially multiple, as well as being determined by the competing, terminal events of discharge
alive and death.

Methods: We used multistate models to study COVID-19 patients’ time-dependent progress and provide a
statistical framework to estimate hazard rates and transition probabilities. These estimates can then be used to quantify
average sojourn times of clinically important states such as intensive care and invasive ventilation. We have made two
real data sets of COVID-19 patients (n = 24* and n = 53**) and the corresponding statistical code publically available.

Results: The expected lengths of intensive care unit (ICU) stay at day 28 for the two cohorts were 15.05* and 19.62**
days, while expected durations of mechanical ventilation were 7.97* and 9.85** days. Predicted mortality stood at 51%*
and 15%**. Patients mechanically ventilated at the start of the example studies had a longer expected duration of
ventilation (12.25*, 14.57** days) compared to patients non-ventilated (4.34*, 1.41** days) after 28 days. Furthermore,
initially ventilated patients had a higher risk of death (54%* and 20%** vs. 48%* and 6%**) after 4 weeks. These results
are further illustrated in stacked probability plots for the two groups from time zero, as well as for the entire cohort
which depicts the predicted proportions of the patients in each state over follow-up.

Conclusions: The multistate approach gives important insights into the progress of COVID-19 patients in terms of
ventilation duration, length of ICU stay, and mortality. In addition to avoiding frequent pitfalls in survival analysis, the
methodology enables active cases to be analyzed by allowing for censoring. The stacked probability plots provide
extensive information in a concise manner that can be easily conveyed to decision makers regarding healthcare
capacities. Furthermore, clear comparisons can be made among different baseline characteristics.
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Background
Most individuals infected with SARS-CoV-2 will experience
mild or moderate symptoms (such as cough, fever, short-
ness of breath) and do not need hospitalization. In contrast,
those with a severe pneumonia require clinical support.
The temporal dynamics of illness severity among hos-

pitalized Covid-19 patients can be described in terms of
length of stay in the intensive care unit, duration of inva-
sive ventilation, and the probability of death. The
present paper demonstrates the application of statistical
methods for analyzing these time-dependent types of
data from hospitalized Covid-19 patients. These models
effectively map the progression of diseased patients dur-
ing their ICU stay. The methodology also avoids com-
mon pitfalls and biases that arise during the analysis of
hospital data when using less sophisticated survival ana-
lysis methods [1, 2]. For example, treating exposures as
time-fixed at baseline that can, in fact, vary over time
leads to the time-dependent bias [3, 4]. Furthermore, ig-
noring competing events that can impede the observa-
tion of the event of interest can introduce bias and
facilitate false predictions [5]. The ability of multistate
models to avoid these biases was demonstrated in ana-
lyzing the effect of treatment with Oseltamivir (Tamiflu)
on hospital mortality and length of stay in confirmed
pandemic influenza A/H1N1 2009 infected patients [6,
7]. In this current demonstration, invasive mechanical
ventilation is treated as time-dependent while competing
risks are adequately accounted for, thus avoiding the
aforementioned biases.

For illustration of the methods used, we used two real
data examples extracted from figures in The New England
Journal of Medicine. The first one was a case series of 24
laboratory-verified COVID-19 intensive care patients ad-
mitted to hospital ICUs in the Seattle area [8]. The second
one was a sample of 53 COVID-19 patients from North
America, Europe, and Japan that we extracted from a fig-
ure depicting a recent study of patients treated with
compassionate-use Remdesivir [9]. It should be noted that
the two data sets are used for demonstration and not for
comparing the two cohorts. For both data sets we estimate
duration in the ICU and under mechanical ventilation
using multistate model methodology.

Methods
Multistate models are a powerful tool to study the
course of ICU stay of diseased patients. COVID-19 ob-
servational studies can, for example, be analyzed with
the model shown in Fig. 1. In this model, patients may
enter the study in one of two initial states: State 1: ICU
without invasive mechanical ventilation (“Non-MV”) and
State 2: ICU with mechanical ventilation (“MV). These
two states are called transient states. The model includes
two absorbing states from which a patient no longer
transitions: discharged alive from the ICU (State 3: “Dis-
charge”) and dead (State 4: “Death”). From ICU without
ventilation, a patient can either be ventilated, discharged,
or die. From ventilation, a patient can transition into
non-ventilation, discharge, or death. Patients can repeat-
edly transition between ventilation and non-ventilation.

Fig. 1 Multistate Model. Multistate model for patients admitted to the ICU with severe COVID-19. The boxes represent potential states for an ICU
patient. The arrows represent the potential transitions among the states
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Estimands
Formally the course of a patients ICU stay is described
with a time-inhomogeneous Markov chain given by
{X(t), t ≥ 0} with finite state space S = {1, 2, 3, 4} and
follow-up time τ. X(t) denotes the state occupied at time
t. Various estimands are of interest. First, we define the
probability to move from one state to another within the
multistate model. This includes, for example, the ICU
mortality risk and the discharge probability.
The (Markovian) transition probabilities are.

Plm s; tð Þ ¼ P X tð Þ ¼ m X sð Þ ¼ ljð Þ; with l;m ∈S; l≠m and 0≤s < t≤τ

ð1Þ
and interpreted as the probabilities to transition from

State l, occupied at time s, to State m within the time
interval (s, t]. The Markov property states that this prob-
ability depends only on the current time s and the
current state occupied at s, but not on past events. Using
formula (1) we can define the transition hazards as

αlmðtÞ ¼ limΔt→0
Plmðt; t þ ΔÞ

Δt
ð2Þ

The transition hazards are represented graphically by
the arrows between states in Fig. 1.
Subsequently, we can define cause specific cumulative

hazards as

AlmðtÞ ¼
Z t

0
αlmðuÞdu ð3Þ

For more details, we refer to [10–12].
We analyze the course of a patients hospital stay from

study entry (s = 0) in the following. The probabilities to
start either in State 1 or State 2 define the initial distri-
bution, which is given by.

P X 0ð Þ ¼ 1ð Þ and P X 0ð Þ ¼ 2ð Þ ð4Þ
The state occupation probabilities are

P1 tð Þ ¼ P11 tð Þ � P X 0ð Þ ¼ 1ð Þ þ P21 tð Þ
� P X 0ð Þ ¼ 2ð Þ ð5Þ

and

P2 tð Þ ¼ P12 tð Þ � P X 0ð Þ ¼ 1ð Þ þ P22 tð Þ
� P X 0ð Þ ¼ 2ð Þ ð6Þ

To determine estimands for the full cohort, we could
take into account the initial distribution and use (5) and
(6) in the equations that follow. However, to focus on
patients that start in a specific state, (5) reduces to

P1 tð Þ ¼ P X tð Þ ¼ 1ð Þ ð7Þ
for patients that start in State 1 and (6) reduces to

P2 tð Þ ¼ P X tð Þ ¼ 2ð Þ ð8Þ
for patients that start in State 2. We will use (7) and

(8) in what follows.
The state occupation probabilities can be used to de-

rive the length of stay in the ICU and the duration of
mechanical ventilation. The sojourn time spent in the
ICU non-ventilated (truncated after, for example, 28
days) is formally given by

Eτ¼28
Non − MV ;Non − MV ¼

Z 28

0
P X uð Þ ¼ 1ð Þdu; ð9Þ

if the patient started in State 1 and

Eτ¼28
MV ;Non − MV ¼

Z 28

0
P X uð Þ ¼ 1jX 0ð Þ ¼ 2ð Þdu; ð10Þ

if the patient started in State 2.
Similarly, the duration of MV is given by

Eτ¼28
Non − MV ;MV ¼

Z 28

0
P X uð Þ ¼ 2jX 0ð Þ ¼ 1ð Þdu; ð11Þ

if the patient started in State 1 and

Eτ¼28
MV ;MV ¼

Z 28

0
P X uð Þ ¼ 2ð Þdu; ð12Þ

if the patient started in State 2.
The total length of stay in the ICU (irrespective of be-

ing ventilated or not) up to a maximum of 28 days is
simply the sum

Eτ¼28
Non − MV ;Non − MV þ Eτ¼28

Non − MV ;MV ð13Þ
if the patient started in State 1 and

Eτ¼28
MV ;Non − MV þ Eτ¼28

MV ;MV ð14Þ
if the patient started in State 2.
We have limited S to the 4 states depicted in Fig. 1.

However, S can take the value of a finite number of J
states and the methodology still holds. For an example
of an extended model, see Additional file 11.

Estimators
We used the R package mstate to estimate the transition
and state occupation probabilities for the patients over
the course of their ICU stay up to 28 days, implying ad-
ministrative censoring at day 28. The mstate package
employs Aalen-Johansen estimators which are imple-
mented within the R-function probtrans. The probabil-
ities can be estimated from both initial states (ventilated
(State 2) and non-ventilated (State 1) admission to the
ICU).
The Aalen-Johansen estimators are based on matrix

multiplication and therefore depend fundamentally on
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the Markov assumption. As described in detail by
Allignol et al. [13] and Beyersmann et al. [14], estimation
is based on the cause-specific cumulative hazards indi-
cated in formula (3). These are informally given by

Âlm tð Þ ¼
XL
k¼1

number of observed l→m transitions at tk
number of individuals at risk in state l just prior to tk

ð15Þ
where L is the total number of events up to time t and

tk, k = 1, …L, are the event times. Then, using a repre-
sentation of the state occupation probabilities as product
integral (explained in detail in Additional file 12), we
have

P̂ 0; tð Þ ¼
YL
k¼1

I þ ΔÂ tkð Þ� � ð16Þ

where ÂðtÞ is the matrix with entries ÂijðtÞ , I is the

identity matrix and ΔÂðtÞ are the difference in Â be-
tween t and the time just prior to t

ΔÂij tð Þ ¼ number of observed i→ j transitions at t
number of individuals at risk in state i just prior to t

ð17Þ
For example, the transition rate between the two states

(1: Non-MV, 2: MV) is calculated by substituting 1 for i
and 2 for j (i.e. Non-MV→MV) or substituting 2 for i and
1 for j (i.e. MV→Non-MV) into eq. (17). Eq. (17) is used
to calculate the state occupation probabilities in eq. (16).
Beyersmann and Putter [12] describe how to estimate

the sojourn times spent in State 1 and State 2 from the
state occupation probabilities. This approach is also based
on the Aalen Johansen estimators and implemented
within the R-function ELOS in the mstate package. Confi-
dence intervals can be obtained via bootstrapping.
In addition to describing the risk of death, giving the

chances to be discharged, and quantifying hospital cap-
acities (length of ICU stay, duration of mechanical venti-
lation), cause-specific hazard regression models can be
used to study the potential impact of factors on each of
the transition hazards.
For a more thorough treatment of the theoretical

background of the paper, see Additional file 12.

Data examples
Example 1: Case series of critically-ill COVID-19 patients in
Seattle, USA
In the first example, we reconstructed the patients in the
case series from Bhatraju et al. [8] by extracting the data
depicted in a figure in their paper. The study included 24
laboratory-confirmed COVID-19 patients admitted to ICUs
in the surrounding area of Seattle, USA. The paper provides
individual patient information including treatment with

invasive mechanical ventilation times, as well as final out-
comes (discharged alive, dead). Periods of acute care were
also provided but due to the small size of the sample, we di-
chotomized the patients into two states: “Non-MV” (ICU
without MV and acute care) and “MV” (ICU with MV).
This dichotomization matches the model presented in
Fig. 1. Maximum follow-up was 31 days with each patient
having at least 14 days of follow-up. At admission, 13 (54%)
patients were Non-MV while 11 (46%) were MV. Seven pa-
tients were censored. Table 1 shows a portion of the data
set extracted from the published figure and adapted to the
model in Fig. 1. For example, patient with id 1 started Non-
MV (‘from’ = 1) at ICU admission (‘entry’ = 0) and transi-
tioned into MV (‘to’ = 2) on day 5 (‘exit’ =5). Patient 1 then
moved back into Non-MV on day 16, before being cen-
sored on day 25 (‘to’ = 0). ID 2 died (‘to’ = 4) on day 1. The
patient with ID 3 started MV, transitioned into Non-MV
on day 12, and then is discharged (‘to’ = 3) on day 15. Data
is required to be put into this form for the functions that
are provided. The format can be easily adjusted to take into
account baseline and time-dependent covariates. The entire
data set for example 1 is provided in Additional file 2.

Example 2: Cohort study of patients with severe COVID-19
and treated with compassionate-use Remdesivir
Our second data example of COVID-19 patients is a re-
construction of the study population from Grein et al.
[9]. The study included patients with severe COVID-19
that were treated with Remdesivir. Inclusion criteria
were confirmed SARS-CoV-2 infection and an oxygen
saturation of ≤94% or oxygen support. Follow-up was
28 days. Missing data regarding level of oxygen support
was imputed by the method of last observation carried
forward (LOCF). In this study we have detailed informa-
tion not only on episodes of MV but also on other forms
of intubation. To match the model shown in Fig. 1, we
again dichotomized the patients into two groups: “Non-
MV” (noninvasive positive pressure ventilation, nasal
high-flow oxygen therapy, low-flow oxygen, ambient air)
and “MV” (extracorporeal membrane oxygenation and

Table 1 Example structure of data set. Portion of data set from
example 1 as extracted from Bhatraju et al. [8]. Full data set
provided in Additional file 2. id: patient id, from: state entered at
time ‘entry’, to: state entered at time ‘exit’, entry: time of entry
into state ‘from’, exit: time of entry into state ‘to’

id from to entry exit

1 1 2 0 5

1 2 1 5 16

1 1 0 16 25

2 1 4 0 1

3 2 1 0 12

3 1 3 12 15
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invasive mechanical ventilation). At admission, 19 (36%)
patients were non-MV while 34 (64%) were MV.
Twenty-one patients were censored.
The data set for example 2 is provided in

Additional file 7.

Results
Example 1
Predictions of the expected length of stay for patients in
this cohort are shown in Table 2. For example, a patient
starting unventilated at the beginning of his/her ICU stay
had a much shorter expected duration of ventilation (4.34
days) than a patient already ventilated at ICU admission
(12.25 days). Using the initial distribution, the weighted
average of the expected durations in each state deter-
mined the expected total ICU time (15.05 days). This in-
formation is vital for advance planning of both ventilation
and ICU capacities. The same is true for Fig. 2: we multi-
plied the transition matrix (eq. (16)) by the initial distribu-
tion to produce the stacked probability plot that illustrates
the predicted proportions of the states throughout the en-
tire follow up. At day 21 after ICU admission, for instance,
a predicted 21% of patients are already discharged, 18%
are not invasively ventilated, 10% need invasive mechan-
ical ventilation, and mortality is predicted at 51%. With re-
spect to the relatively high level of predicted mortality
based on this cohort, it should be noted that 4 deceased
patients had do-not-resuscitate orders in place before their

admission. R code to reproduce the analysis for example 1
is provided in Additional file 5.

Example 2
The expected sojourn times and lengths of stay for this
data are presented in Table 3. Figure 3 provides a
visualization of the clinical course of the full cohort for
example 2. Similar to example 1, patients initially MV
had a longer expected ICU stay (20.71 vs. 17.67 days) at
28 days. Figure 4 sheds light onto this finding by com-
paring the clinical progression for patients starting in
the two initial states. The increased size of the sample in
example 2 allows such visual comparisons to be made.
At 21 days of follow-up, patients starting in Non-MV
had a higher probability of being discharged alive (60%
vs. 31%) and a lower probability of dying (6% vs. 20%).
ICU duration is shortened by a higher death probability
in initially MV patients and a higher discharge probabil-
ity for initially non-MV patients. This underlines the in-
fluence these competing events have on the lengths of
stay. Figure 4 visually illustrates the marked difference in
the progression of the hospital stay of patients in these
two groups. It indicates that the ventilator demands of
patients who are initially admitted non-ventilated are
different from those who are ventilated at admission. R
code to reproduce the analysis for example 2 is provided
in Additional file 8.

Fig. 2 Example 1 Plot. Stacked probability plot for the data from example 1 [8] using the model in Fig. 1. Non-MV: intensive care unit without
mechanical ventilation and acute care, MV: intensive care unit with mechanical ventilation
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Discussion
We have demonstrated how researchers can model the
hospital stays of COVID-19 patients to determine the
expected duration of mechanical ventilation, expected
overall ICU stay, and patients’ predicted clinical progres-
sion while avoiding common pitfalls and biases in mod-
eling such settings. Given the need for reliable evidence,
we believe that the application of multistate models to
this kind of data represents the best way to generate an
extensive amount of valid evidence from observational
studies.
Although the limited number of patients in the two

data examples made it difficult to identify predictors or
analyze treatment effects, visualizations of the results
provide easy-to-interpret and comprehensive informa-
tion of the patients’ clinical courses. The results of the
two re-analyses provide insights into time-dependent
event-probabilities, while estimates regarding the condi-
tional length of stay are of major interest for capacity
planning. To maintain transparency and further help re-
searchers, code in the programming language R and the
data examples are provided in the additional files.
The model selected in Fig. 1 facilitated a harmonization

of the two data examples. The data sets could have, in fact,
been merged if not for differing time origins (time from
ICU admission vs. time from Remdesivir treatment initi-
ation). Nonetheless, the harmonization reveals the poten-
tial for use in metanalyses and systematic literature
reviews. In contrast, the flexibility of the methodology is
illustrated in the various models that could have been
chosen for each of the data examples. Although we

dichotomized the states into Non-MV and MV, example
1 also provided information on acute care while example
2 included information on 6 different levels of oxygen sup-
port. Additionally, a transition state of ‘ICU after invasive
ventilation’ could be modeled to give further insights into
the healthcare demands of ventilated COVID-19 patients.
To demonstrate the flexibility of the methodology, an
extended model analysis for example 2 is provided in
Additional file 11. A researcher can adapt the choice of
multistate model to the data or outcome of interest.
Since publication, several researchers [15] have

pointed out biases in the analyses performed by Grein
et al. The bias stems from the censoring of deceased pa-
tients, whose risk of improving is not similar to non-
censored patients (i.e. informative censoring). This re-
sults in an overestimated cumulative incidence of clinical
improvement. It should be noted that this bias would
have been avoided with our proposed multistate meth-
odology as death and discharge from the ICU are ab-
sorbing states from which patients are no longer at risk
of clinical improvement.
In addition to the biases common to survival analysis

already mentioned, Lipsitch et al. [16] review biases that
can occur during the outbreak of both known and un-
known infectious diseases. They describe a “survivorship
bias” that can occur when many infected patients die be-
fore being hospitalized, thus implying a protective effect
of hospitalization on mortality. This bias is related to
“length bias” [6, 7] which can be addressed by incorpor-
ating left-truncation. Lipsitch et al. suggest comparing
the risk of death among patients hospitalized and non-

Table 2 Example 1 Results. Predicted sojourn times and mortality for patients in data example from Bhatraju et al. [8] at 28 days of
follow-up. Start: time of ICU admission, Non-MV: ICU without MV and acute care, MV: ICU with MV, (): 95% confidence interval for
duration estimates, (): standard error for risk estimates

24 critically-ill COVID-19 patients in Seattle, USA (Bhatraju et al.), results at day 28

Non-MV Duration in Days MV Duration in Days Total Length of ICU Stay in Days Death Risk

Start Non-MV 9.82 (5.84, 14.42) 4.34 (1.65, 7.7) 14.16 (7.49, 22.12) 47.8% (10.5)

Start MV 3.84 (1.12, 7.44) 12.25 (9.00, 16.03) 16.09 (10.12, 23.47) 54.4% (10.7)

Full Cohort 7.08 (4.00, 10.48) 7.97 (5.29, 11.18) 15.05 (9.29, 21.66) 50.8% (10.6)

Table 3 Example 2 Results. Predicted sojourn times and mortality for patients in data example from Grein et al. [9] at 28 days of
follow-up. Start: time of treatment initiation, Non-MV: noninvasive positive pressure ventilation, nasal high-flow oxygen therapy, low-
flow oxygen, and ambient air, MV: ECMO and MV (): 95% confidence interval for duration estimates, (): standard error for risk
estimates

53 patients with severe COVID-19 treated with Remdesivir (Grein et al.), results at day 28

Non-MV Duration in Days MV Duration in Days Total Length of ICU Stay in Days Death Risk

Start Non-MV 16.26 (13.87, 18.56) 1.41 (0.27, 2.96) 17.67 (14.14, 21.52) 6.2% (3.3)

Start MV 6.14 (3.86, 8.41) 14.57 (11.99, 17.31) 20.71 (15.85, 25.72) 19.8% (6.4)

Full Cohort 9.77 (7.76, 11.81) 9.85 (7.68, 12.14) 19.62 (15.44, 23.95) 15.0% (5.3)
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Fig. 3 Example 2 Plot. Stacked probability plot for the data from example 2 [9] using the model in Fig. 1. Non-MV: noninvasive positive pressure
ventilation, nasal high-flow oxygen therapy, low-flow oxygen, and ambient air. MV: extracorporeal membrane oxygenation and invasive
mechanical ventilation

Fig. 4 Example 2 Plot, Non-Ventilated vs. Ventilated on Day 0. Stacked probability plots for the data from example 2 [9] using the model in Fig. 1.
Plots illustrate the clinical progression of patients who were not invasively ventilated at treatment initiation (left plot) and those who were (right
plot). Non-MV: noninvasive positive pressure ventilation, nasal high-flow oxygen therapy, low-flow oxygen, and ambient air. MV: extracorporeal
membrane oxygenation and invasive mechanical ventilation
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hospitalized on a specific day since a patient has become
a case, and combining the estimates over several days.
Here multistate methodology could be applied by mod-
eling the transient states of “hospitalized” and “non-hos-
pitalized” with a transition into “death” from both states.
There are several advantages to this model. First, all
patients can be included in one analysis through assign-
ment into one of the initial states (“hospitalized” and
“non-hospitalized). Similar to our comparison of stacked
probability plots in Fig. 4, we could then compare the
risk of death for these two groups. Second, the model ac-
counts for the time-dependent nature of hospitalization
by allowing for several admission and discharge transi-
tions. The allowance of repeated transitions among initial
states is an advantage over standard competing risk
models. This further highlights the utility of the proposed
methods in epidemic/pandemic settings.
Although the sizes of our two data samples are rather

modest, the volume and availability of COVID-19 data is
expanding. These methods applied to more detailed pa-
tient data could produce very informative plots for com-
paring age, gender, underlying health condition, or even
different treatment arms [17]. This expanding capability
to compare groups visually as data sets increase in size
was demonstrated in Fig. 4, which was informative for
the larger of our two real data sets. Furthermore, depic-
tions like the second figures in Bhatraju et al. [8] and
Grein et al. [9] provide an impression for the viewer
when the sample sizes are small. However, such depic-
tions are overwhelming and difficult to read with larger
data sets. In contrast, the stacked probability plots in-
corporate all of the information in the aforementioned
figures into one easy-to-view illustration regardless of
the size of the sample. Naturally, the precision of the
stacked probability plots increases with an expanding
number of patients.
There are several limitations to our demonstration.

First, we chose the model in Fig. 1 as it reflected the ob-
served transitions recorded in the two data sets. The ob-
servations included patients who were discharged from
the ICU directly from being mechanically ventilated; in
other words without first being non-ventilated in the
ICU. From a clinical standpoint, these observed transi-
tions do not occur. Either the patients were extubated
and remained in the ICU for a couple hours, or were
transferred to another ICU unit. In either case, there
may be reason to adjust the data set by censoring these
observations. Second, the lengths of stay estimates do
not distinguish between the final outcomes of discharge
alive and death. While these estimates are relevant for
planning capacities, they are less clinically relevant. An
alternative would be to evaluate, for example, time alive
without mechanical ventilation. Third, we performed
LOCF on the example 2 data to handle periods of

missing information on a patient’s level of oxygen sup-
port. While this simplified the analysis, it is likely that
transitions between states occurred for longer periods of
missing information.
A further strength of this methodology is that it allows

for censoring, thus acknowledging active cases. It there-
fore lends itself to ongoing as well as completed studies.
Considering the wealth of COVID-19-related research
being produced currently, the multistate approach is an
invaluable addition to a COVID-19 researcher’s toolkit.

Conclusions
Applying multistate methodology to ICU settings with
COVID-19 patients gives important insights into mech-
anical ventilation duration, length of ICU stay, and mor-
tality. The visualization of these results, in the form of a
stacked probability plot, is both easy-to-read and com-
prehensive. The approach also allows for clear compari-
sons among different baseline characteristics, and even
treatment arms. The tools described here offer import-
ant aid to decision makers with regard to healthcare
capacities.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12874-020-01082-z.
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Additional file 7. format: csv, title: Example2_Data.csv, description: Data
set for data example 2.

Additional file 8. format: R, title: Example2_Analysis.R, description: R
code to reproduce the results for data example 2. Additional files 3, 4,
and 7 must be in R working directory with Additional file 8.

Additional file 9. format: txt, title: README_Example2_Extended.txt,
description: README file with instructions so that a researcher can
produce results for extended data example 2.

Additional file 10. format: csv, title: Example2_Extended_Data.csv,
description: Data set for extended data example 2.

Additional file 11. format: R, title: Example2_Extended_Analysis.R,
description: R code to produce the results for extended data example 2.
Additional files 3, 4, and 10 must be in R working directory with
Additional file 11.

Additional file 12. format: docx, title: Theoretical_Background.docx,
description: Theoretical aspects of the analyses of the real data examples.
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