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presence of censoring dependent on time-
varying covariates: application to a primary
prevention trial for coronary events with
pravastatin
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Abstract

Background: In the presence of dependent censoring even after stratification of baseline covariates, the Kaplan–
Meier estimator provides an inconsistent estimate of risk. To account for dependent censoring, time-varying
covariates can be used along with two statistical methods: the inverse probability of censoring weighted (IPCW)
Kaplan–Meier estimator and the parametric g-formula estimator. The consistency of the IPCW Kaplan–Meier
estimator depends on the correctness of the model specification of censoring hazard, whereas that of the
parametric g-formula estimator depends on the correctness of the models for event hazard and time-varying
covariates.

Methods: We combined the IPCW Kaplan–Meier estimator and the parametric g-formula estimator into a doubly
robust estimator that can adjust for dependent censoring. The estimator is theoretically more robust to model
misspecification than the IPCW Kaplan–Meier estimator and the parametric g-formula estimator. We conducted
simulation studies with a time-varying covariate that affected both time-to-event and censoring under correct and
incorrect models for censoring, event, and time-varying covariates. We applied our proposed estimator to a large
clinical trial data with censoring before the end of follow-up.

Results: Simulation studies demonstrated that our proposed estimator is doubly robust, namely it is consistent if
either the model for the IPCW Kaplan–Meier estimator or the models for the parametric g-formula estimator, but
not necessarily both, is correctly specified. Simulation studies and data application demonstrated that our estimator
can be more efficient than the IPCW Kaplan–Meier estimator.

Conclusions: The proposed estimator is useful for estimation of risk if censoring is affected by time-varying risk
factors.
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Background
Establishment of the long-term effectiveness of primary
prevention treatments often requires large randomized
controlled trials (RCTs) over a long time period. In such
RCTs, survival functions and risks between randomized
groups are compared using the Kaplan–Meier estimator
because censoring before the end of the follow-up can-
not be avoided. This approach assumes independent
censoring, such that censoring occurs randomly in each
treatment group. The standardization approach can pro-
vide a consistent estimate of risks in each group even if
censoring is not unconditionally independent, but the
conditionally independence of potential survival time
after stratification of treatment groups and baseline co-
variates [1–4]. In this paper, we call this type of censor-
ing as baseline-conditional independent censoring.
Even a baseline-conditional independent censoring as-

sumption can be dubious. Our motivating study is the
Management of Elevated Cholesterol in the Primary Pre-
vention Group of Adult Japanese (MEGA) study, which
is a large primary prevention RCT for coronary heart
disease (CHD) using pravastatin, where censoring before
the end of follow-up occurred in about 10% of patients
[5]. Patients enrolled in the MEGA study had hyperchol-
esterolemia (total cholesterol (TC) level: 220–270mg/
dl), were 40–70 years old, and received daily clinical care
during the follow-up period. When a patient with hyper-
cholesterolemia received a medical checkup and found
that their plasma lipids were worsening (e.g., increasing
TC), they may have required other drugs that were not
allowed in the study protocol. Patients who observed
worsening of their symptoms might go to see a doctor
other than their primary care doctor. These cases may
have led to censoring dependent on mid-course clinical
characteristics, and the censoring was correlated with fu-
ture CHD events. If censoring is dependent on potential
survival time even after stratification of treatment groups
and baseline covariates, the Kaplan–Meier estimator
provides inconsistent estimates of survival function [6].
In such a situation, one possibility to mitigate the de-
pendency is to use time-varying covariates measured
during the follow-up period.
The inverse probability of censoring weighted (IPCW)

Kaplan–Meier estimator is a semiparametric method
for estimation of risk that adjusts for censoring that
may depend on the observed past [7]. It requires fitting
a model for the probability of censoring at each time
conditional on past covariates. Calculation of the IPCW
Kaplan–Meier estimate needs to update censoring
probability at each time and to weight each subject in
the risk set. The weight depends on the time-varying
covariates, but not on the future prognosis. The draw-
back of the IPCW estimator is that it can be statistically
inefficient [8].
An alternative to IPCW methods is a g-formula-based
estimator, which can be estimated using two different
principles. First representation of the g-formula is an it-
erated conditional expectation, and targeted maximum
likelihood estimation can be applied, which was first in-
troduced by Bang and Robins [9]. Their method uses the
weight of the IPCW method and regression models for
the outcome process. It can produce doubly robust esti-
mates, meaning that the estimator is consistent if either
the regression model for the hazard of censoring or a
regression model for the outcome process is correctly
specified, but necessarily both [10–12]. However, only a
few researchers have applied this method. One of the
reasons may be that they are unintuitive because it re-
quires recursive regression models for an iterated condi-
tional expectation; first, we regressed the outcomes
measured at t = K on the covariates measured up to t = K
- 1, second, we regressed the predicted outcome on the
covariates measured up to t = K - 2, and we continue
these procedures until t = 1. The second representation
of the g-formula is the generalized version of
standardization [1, 2], and the parametric g-formula esti-
mator (g-computation algorithm formula) can be
applied. The parametric g-formula estimator requires
models for the outcome and covariate process [13]. It
can be regarded as a sequential, non-recursive
imputation-based methodology [14, 15], so it is intuitive
for applied researchers. It is flexible because it can easily
compare dynamic treatment regimens [16]. However, it
requires a specification of full-model likelihood, and ro-
bustness regarding model correctness can be a concern.
A doubly robust estimator for the parametric g-formula
estimator, involving the time-varying covariates, has not
been proposed.
In this paper, we propose an extension of the para-

metric g-formula estimator that is more robust at
modeling misspecification. The key idea is to combine
the IPCW estimator and the parametric g-formula es-
timator into doubly robust estimators [9, 17–19]
while incorporating time-varying covariates to adjust
for dependent censoring.
The paper is organized as follows. In the next section,

we briefly describe the MEGA study and introduce nota-
tions and assumptions. We also describe our proposed
estimator, and we give settings and the results of simula-
tion studies. Finally, the proposed estimator is applied to
the MEGA study data.

Methods
Data, notations, and assumptions
The MEGA study is a prospective, randomized, open-label,
blinded-endpoint-designed controlled trial conducted in
Japan to evaluate the primary preventive effect of prava-
statin against CHD in daily clinical practice. A total of 7832
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men and postmenopausal women aged 40–70 years with
hypercholesterolemia and no history of CHD or stroke
were randomized to dietary therapy only (diet group) or
dietary therapy plus 10–20mg daily pravastatin (diet plus
pravastatin group) between February 1994 and March
1999.
After randomization, laboratory tests were conducted

at months 1, 3, and 6, and annually thereafter. The
follow-up period was initially scheduled for 5 years.
Table 1 shows the types and number of events within 5
years. Although there were three reasons for censoring
during the study period (refusal of follow-up, death by
causes other than CHD, and loss to follow-up), we col-
lectively treated them as censoring before the end of the
follow-up period.
Let t = 1, …, T denote month of follow-up where

T + 1 = 60 months is the follow-up of interest. There
were 7832 patients at baseline, and observations of pa-
tients were assumed to be independently identically
distributed. R denotes the treatment assigned (R = 1
for assignment to the diet plus pravastatin group, and
R = 0 for assignment to the diet group). Ct and Yt de-
note the indicator of censoring and occurrence of a
CHD event by time t, respectively, with C0 = Y0 = 0 by
definition. Lt denotes time-varying covariates mea-
sured at time t, and V denotes baseline covariates that
are time-independent (e.g. sex, current smoker). We
assumed that baseline covariates V and L0 are always
observed. We denoted the history of a variable using
overbars. For example, Lt ¼ ðL0;…; LtÞ is the covariate
history through time t. We assumed the order (Ct, Yt,
Lt) within each interval (t - 1, t); therefore, Yt and fol-
lowing variables are missing if Ct = 1. We defined CT +

1 = 1 if CT = YT = 0 (follow-up completed).
We wanted to estimate the marginal event-free sur-

vival in each treatment group if any censoring was
absent in the study population. However, observed
data contains censoring, as in the MEGA study. The
usual the Kaplan–Meier estimator assumes independ-
ent censoring, that is, the hazard of Yt among
Table 1 Type and number of events within 5 years in the MEGA stu

Diet group

n

CHD event 85

Follow-up completed 3498

Refusal of follow-up 259

Death by causes other than CHD 60

Loss to follow-up 64

Total 3966
subjects at risk is the marginal hazard of Yt given the
treatment group. The standardization approach, or a
g-formula that adjusts for baseline covariates, assumes
baseline-conditional independent censoring, that is,
the hazard of Yt among subjects at risk is the condi-
tional hazard of Yt given the treatment group and
baseline covariates [1–4].
Even when these two assumptions are attainable, esti-

mators discussed in the next section provide a consistent
estimate of the marginal survival in each treatment
group if any censoring was absent in the study popula-
tion. These estimators assume positivity (Eq. 1) and are
conditionally independent of censoring (Eq. 2);

Pr Ct ¼ 0 Ct − 1 ¼ 0;Y t − 1 ¼ 0;R;V ;
�� Lt − 1

� �
>0

for t ¼ 1; 2;…;T

ð1Þ

Pr Ct ¼ 0 Ct − 1 ¼ 0;YT ¼ 0;R;V ; Lt − 1

��� �
¼ Pr Ct ¼ 0 Ct − 1 ¼ 0;Y t − 1 ¼ 0;R;V ; Lt − 1

��� �
for t ¼ 1; 2;…;T

:

ð2Þ

The conditional independence of censoring assump-
tion, Eq. (2), states that for t = 1, 2, … T, the variables
(Yt, …, YT) is independent of Ct, in other words, the dis-
tribution of (Yt, …, YT) is the same between Ct = 1 and
Ct = 0 among subjects who had a similar history of the
covariates. The conditionally independence of censoring
assumption is also referred to as no unmeasured con-
founders for the censoring assumption [7], which states
that conditional on the treatment groups, baseline covar-
iates, and the time-varying covariates measured until
time t - 1, the hazard of censoring at time t does not fur-
ther depend on unmeasured confounders for censoring
and unobserved CHD. In the next section, we describe
the existing estimators and our proposed estimator for
the hazard of Yt.
dy

Diet + pravastatin group

% n %

2.1 57 1.5

88.2 3353 86.7

6.5 364 9.4

1.5 42 1.1

1.6 50 1.3

100.0 3866 100.0
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Existing estimators and proposed estimator
Due to randomization, baseline factors are balanced be-
tween treatment groups. In this section, we focus on the
diet plus pravastatin group (R = 1) and suppress R for
notational simplicity. A similar argument holds for the
diet group (R = 0).

Estimators of hazard at t = 1
At time t = 1, the observed data is n copies of (V, L0, C1,
(1 - C1)Y1). We show three types of estimators for
Pr(Y1 = 1); the IPCW estimator, the parametric g-
formula estimator, and the doubly robust estimator.
To obtain the IPCW estimate, we need to fit a model

for C1 such as the logistic model Pr(C1 = 0|V, L0; α) =
e(V, L0; α) = {1 + exp(−α0 – α1V – α2L0)}

− 1. After fitting
the model, the IPCW estimator for Pr(Y1 = 1) is
expressed as n − 1 P

ið1 − Ci1ÞY i1=eðV i; Li0; α̂Þ . The
consistency of the IPCW estimator relies on the correct
specification of e(V, L0; α). If no censoring is observed at
t = 1, we set eðV i; Li0; α̂Þ ¼ 1; therefore, the IPCW esti-
mator equals the empirical risk.
To obtain the parametric g-formula estimate, we need to

fit a model for Y1 such as the logistic model Pr(Y1 = 1|C1 = 0,
V, L0; β) = p(V, L0; β) = {1 + exp(−β0 – β1V – β2L0)}

− 1. After
fitting the model for the subjects not censored at t= 1 (sub-
jects with C1 = 0), the parametric g-formula estimator for

Pr(Y1 = 1) is expressed as n − 1 P
i pðV i; Li0; β̂Þ . The

consistency of the parametric g-formula estimator relies on
the correct specification of p(V, L0; β).
To obtain the doubly robust estimate, we need to fit a

model for C1 and Y1 similarly as conducted for the
IPCW estimator and the parametric g-formula estimator,
respectively. After fitting the models e(V, L0; α) and p(V,
L0; β), the doubly robust estimator for Pr(Y1 = 1) is
expressed as

n − 1Σi
1 −Ci1ð ÞY i1

e V i; Li0; α̂ð Þ −
1 −Ci1ð Þ − e V i; Li0; âð Þ

e V i; Li0; α̂ð Þ p V i; Li0; β̂
� �� �

:

ð3Þ

The contributions of censored patients or patients
with an event are different; for censored patients, their

contribution is pðV i; Li0; β̂Þ like the g-formula estimator,

and for patients with an event, their contribution is Y i1=

eðV i; Li0; α̂Þ − f1 − eðV i; Li0; α̂ÞgpðV i; Li0; β̂Þ=eðV i; Li0; α̂Þ .
The doubly robust estimator is consistent if either the
model e(V, L0; α) or p(V, L0; β) is correctly specified [9,
17–19]. Intuitively, when the model for censoring is cor-
rectly specified, the term ð1 −Ci1Þ − eðV i; Li1; α̂Þ should
be zero, so (3) reduces to the IPCW estimator and is,
therefore, consistent. Inside the summation can be

expressed as ð1 − Ci1ÞfY i1 − pðV i; Li0; β̂Þg=eðV i; Li0; α̂Þ
þpðV i; Li0; β̂Þ , and when the model for an event is cor-
rectly specified, the term Y i1 − pðV i; Li0; β̂Þ should be
zero, so (3) reduces to the g-formula estimator and is,
therefore, consistent. Our proposed estimator utilizes
this doubly robust estimator for the hazard of Y1. In the
next subsection, we show how to extend it to estimate
the hazard of Yt (t > 1) incorporating time-varying
covariates.
We noted that with one categorical baseline covariate

and no parametric model needed for outcomes and cen-
soring, it can be shown that the IPCW estimator, the g-
formula estimator, and the doubly robust estimator are
equivalent. Specifically, given n subjects, all of whom
may be stratified into j levels of a baseline covariate,
such that aj, mj, and nj are the number observed (i.e. not
censored), number of events, and overall number at level
j of the covariate, respectively. The IPCW estimator can
be written as (1/n)Σj mj / (aj / nj) = (1/n) Σj njmj / aj, be-
cause Pr(C1 = 0| level j) = aj / nj. The g-formula estima-
tor can be written as (1/n) Σj nj (mj / aj), because
Pr(Y1 = 1| level j) = mj / aj. Finally, the doubly robust es-
timator can be written as (1/n) Σj [mj / (aj / nj) – {(nj -
aj) (0 - aj / nj) / (aj / nj) + aj (1 - aj / nj) / (aj / nj)} (mj /
aj)] = (1/n) Σj njmj / aj, which is exactly a common form
as the IPCW estimator and the g-formula estimator.

Estimators of hazard at t > 1
In this subsection, we show the estimators of the hazard
of Yt (t > 1), which are extended versions of the IPCW
estimator and the parametric g-formula estimators for
Pr(Y1 = 1). Finally, we propose a doubly robust estimator
that extends Eq. (3).
To obtain the IPCW Kaplan–Meier estimate, we need

to fit a model for Ct such as the pooled logistic model,

logit Pr Ct ¼ 0 Ct − 1 ¼ 0;Y t − 1 ¼ 0;V ; Lt − 1

��� �
¼ α0t þ α1V þ α2Lt − 1: ð4Þ

In the model, it is possible to include L0, …, Lt – 2, but
in some cases, it may cause multicollinearity due to the
correlation between L0, …, Lt - 1. After fitting the model
using the maximum likelihood estimation, the IPCW
Kaplan–Meier estimator for the hazard of Yt is expressed

as cPrðY t ¼ 1jY t − 1 ¼ 0Þ ¼ P
iY itπitðα̂Þ=

X
i
Xitπitðα̂Þ ,

where πtðα̂Þ is obtained as

πt α̂ð Þ ¼
Yt
j¼1

Pr C j ¼ 0jC j − 1 ¼ 0;Y j − 1 ¼ 0;V ; Lj − 1; α̂
� �

;

and Xt is the at-risk indicator, which is 1 if the patient is
at-risk at time t and is 0 otherwise. Finally, the risk at t
can be obtained as 1 −

Qt
j¼1f1 − cPrðY j ¼ 1jY j − 1 ¼ 0Þg.

The consistency of the IPCW Kaplan–Meier estimator
relies on the correct specification of the model for Ct

(Eq. 4) [7]. Note that the IPCW Kaplan–Meier estimator
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reduces to the usual Kaplan–Meier estimator when α1
and α2 of Eq. (4) are 0, that is, the independent censor-
ing assumption is true [20].
To obtain the parametric g-formula estimate, we need

to fit a model for Yt. Unlike baseline covariates, time-
varying covariates will not be measured for patients who
were censored before time t. Thus, we need to specify
the full-model likelihood (likelihood for conditional
event probability and time-varying covariates) by fitting
models for Yt and Lt such as

logit Pr Y t ¼ 1jCt ¼ 0;Y t − 1 ¼ 0;V ; Lt − 1
� �

¼ β0t þ β1V þ β2Lt − 1; ð5Þ
and

E Lt jCt ¼ 0;Y t − 1 ¼ 0;V ; Lt − 1
� �
¼ γ0t þ γ1V þ γ2Lt − 1: ð6Þ

After fitting the models using the maximum likelihood
estimation, we sequentially imputed the conditional
probability of CHD event and time-varying covariates
from t = 1 to T. The parametric g-formula estimator for

the risk at t can be obtained as n − 1Pt
j¼1

P
imijðβ̂; γ̂Þ ,

where mtðβ̂; γ̂Þ is obtained as mtðβ̂; γ̂Þ ¼ PrðY t ¼ 1j
Y t − 1 ¼ 0;V ; Lt − 1; β̂; γ̂Þ

Yt − 1

j¼1
f1 − PrðY j ¼ 1jY j − 1 ¼ 0

;V ; Lj − 1; β̂; γ̂Þg . The consistency of the parametric g-
formula estimator relies on the correct specification of
the model for Yt (Eq. 5) and the model for Lt (Eq. 6) [16,
21, 22].
We propose an estimator of the hazard of Yt that ex-

tends the doubly robust estimator (Eq. 3). To obtain the
estimate, we need to fit models for Ct, Yt, and Lt as con-
ducted for the IPCW Kaplan–Meier estimator (Eq. 4)
and the parametric g-formula estimator (Eqs. 5 and 6).
After fitting these models, the proposed doubly robust cf
Yt is expressed as,

cPr Y t ¼ 1jY t − 1 ¼ 0
� �

¼
X

i
Zit

� � − 1X
i

"
1 − Citð ÞY itZit

πit α̂ð Þ −
1 − Citð Þ − πit α̂ð Þ

πit α̂ð Þ
Pr Y i;t ¼ 1jY i;t − 1 ¼ 0;V i; Li;t − 1; β̂; γ̂
� �

Zit

#
ð7Þ

where Zt is the at-risk or censored indicator, which is 1
if the patient is at-risk at time t or censored by t and is 0
otherwise. The contributions of patients censored by t
or patients with an event at t are different; for censored
patients, their contribution is PrðY t ¼ 1jY t − 1 ¼ 0;V ;

Lt − 1; β̂; γ̂Þ. For patients with an event, their contribution
of an event is weighted by the inverse probability of un-

censored until t. Finally, the risk at t is obtained as 1 −Qt
j¼1f1 − cPrðY j ¼ 1jY j − 1 ¼ 0Þg . The weights and pre-
dicted event probabilities are similar to the ones used in
the IPCW Kaplan–Meier estimator and the parametric
g-formula estimator, but we need to calculate the func-
tion (7) and risk at t. As demonstrated in the Add-
itional file 1 (Appendix A), this estimator is consistent if
either the model for Ct (Eq. 4) or models for Yt and Lt
(Eq. 5 and 6) is correctly specified. In the IPCW
Kaplan–Meier estimator, patients with Ct = 1 were out
of the risk set; therefore, they do not contribute to the
estimation of the hazard of Yt. On the other hand, pa-
tients with Ct = 1 contribute to the estimation of the
hazard of Yt in Eq. (7), which might lead to statistical ef-
ficiency. The variance estimate of the proposed estima-
tor can be obtained through a nonparametric bootstrap
[23]. We have provided a SAS code for the proposed es-
timator in an Additional file 1 (Appendix B).

Comparison with existing doubly robust estimators
In this subsection, we briefly compare our proposed esti-
mator (7) with existing doubly robust estimators [9, 24,
25]. Zhang et al. [24] and Bai et al. [25] proposed doubly
robust estimators for survival functions, which can be
summarized as follows:

Confounding between treatment groups: present due to
the observational study setting
Censoring mechanism: baseline-conditional independent
censoring (censoring may depend only on the baseline
covariates)

On the other hand, we proposed an estimator for sur-
vival functions,

Confounding between treatment groups: absent due to
randomization
Censoring mechanism: conditional independent
censoring (censoring may depend on time-varying
covariates)

In RCT settings considered here, where no baseline
confounding occurs between the treatment groups, the
proposed estimator that specifies an empty set as Lt
(thus models are unnecessary for the joint density of Lt)
essentially results in the existing doubly robust estima-
tors provided in [24, 25]. In other words, these existing
estimators assume a baseline-conditional independent
censoring mechanism, although they also attempt to ad-
just for baseline-confounding between the groups in
observational-study settings.
Bang et al. [9] proposed a doubly robust estimator for

the g-formula represented by an iterated conditional ex-
pectation. The estimator needs recursive fitting of the it-
erative conditional expectation. However, as Bang et al.
[9] noted, the parametric models can be incompatible
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with each other, so it is difficult to specify all the models
correctly.

Simulation study
To evaluate the performance of the proposed estimator,
we carried out simulation studies with dependent cen-
soring due to a time-varying covariate. We simulated
data from two treatment groups, coded as R = 0 (control
treatment) and R = 1 (test treatment). The simulations
were based on 1000 replications. We considered the
situation where baseline covariates were measured at
time t = 0, and time-varying covariate and censoring
were investigated at time t = 1, … 4, on the other hand,
event time was measured from time t = 0 to t = 5 on a
continuous time scale. We were interested in the treat-
ment group-specific risks and the risk ratio at t = 3 and
t = 5.
For each patient i (= 1, …, 8000), a baseline covariate

V was generated from the Bernoulli distribution of suc-
cess probability 0.5. Independently, the time-varying co-
variate at t (= 0, …, 4) was generated from the following
mixed effect model,

Lit ¼ 2 − 0:1 1 − Rið Þt − 0:5Rit þ bi0 þ bi1t þ ϵit :

Random variables (bi0, bi1) were generated from a bi-
variate normal distribution with means of 0 and variance
of 1.0 and 0.5, respectively, with a covariance of 0.5. The
random error ϵit was generated from the standard nor-
mal distribution. Distributions of Lt were the same in
both treatment groups at t = 0 but declined more steeply
in the test treatment group such that Lt mimicked TC in
the MEGA study.
First, we generated a time to event Ti from the piece-

wise exponential model, whose hazard function was, for
t > 0 and k ≤ t < k + 1 (k = 0, …, 4),

λ tjV ; Lt;R
� � ¼ exp − 5þ 1:5V þ 1:2Uk þ 1:2 1 − Rð Þf g

where Ut = 1 if Lt < 0, otherwise Ut = 0. Therefore, poten-
tial event time was shorter in the control treatment
group through the effect of group and time-varying
covariate.
Next, we generated censoring Ct at t (= 1, …, 4) from

the Bernoulli distribution, whose probability was gener-
ated using the following logistic model,

logitPr Ct ¼ 1jCt − 1 ¼ 0;T > t;V ; Lt − 1;R
� �

¼ α0 þ t þ 1:5V þ 1:2Ut − 1 þ αR 1 − Rð Þ:

C4 = 0 and Ti > 5 indicates that the follow-up was
completed. The direct dependence between the event
and the censoring time is shown in Additional file 1
(Appendix C).
We considered three scenarios for α0 and αR.: censor-

ing probabilities in the control and test treatment groups
are both 30% (scenario 1), both 20% (scenario 2), and 9
and 12%, respectively (scenario 3). The probabilities in
scenario 3 were derived from Table 1.
We created 20,000,000 simulated patients without cen-

soring to calculate the true value of survival probability
using their empirical distribution. To understand the
performance of estimators, we considered eight situa-
tions: all combinations of correct or incorrect censoring
models, event models, and covariate models. We defined
correct models for censoring, event, and covariate as a
model that specified the same covariates with the data-
generating model. We defined incorrect models for cen-
soring and event as a model that specified by replacing
Ut by exp(Lt) without incorporating V. An incorrect co-
variate model was specified without incorporating the
interaction term of bi1 and t.
Simulations were evaluated in terms of the bias (mean

difference between estimated and true parameter value)
and relative efficiency (the ratio of the Monte Carlo
standard deviation of the IPCW Kaplan–Meier estimator
to that of the estimator) of the estimated survival prob-
abilities at time t = 3 and t = 5.

Results
Simulation results
We present our simulation results in Table 2. In Table
2, if the bias exceeded half of the standard error of the
estimates, the printed bias was is shown in bold. In sce-
nario 1, the bias for each group at t = 5 was seen for the
IPCW Kaplan–Meier estimator when the censoring
model is incorrect, for the parametric g-formula estima-
tor when one of the event model or covariate model is
incorrect. However, our proposed estimator is unbiased
when at least one of the censoring model or event model
is correctly specified. This result reflected the double ro-
bustness of our proposed estimator; when the censoring
model or set of event and covariate models are correct,
the estimate is unbiased. Unexpectedly, our proposed es-
timator is less biased than the parametric g-formula esti-
mator, even when the covariate model was incorrect.
We consider that this property is only in this simulation
because if the covariate model is incorrect, the estimated
event probability is also incorrect for true probability. At
t = 3, the parametric g-formula estimator showed less
bias for the test treatment group even when the event
model is incorrect. Regarding the bias, similar results
can be seen in the other two scenarios.
Regarding the relative efficiency using the IPCW

Kaplan–Meier estimator as the reference, both the para-
metric g-formula estimator and our proposed estimator
were more efficient at t = 3 than the reference in scenar-
ios 1 and 2. The parametric g-formula estimator was
more efficient than the reference even at t = 5. However,
our proposed estimator had a similar standard error to



Table 2 Simulation results

Estimator Model specification Bias (×100) at t = 3 Bias (× 100) at t = 5

Censoring Event Covariate Control Test Log of risk ratio Control Test Log of risk ratio

Scenario 1: 30% censoring in both control and test groups.

IPCW Correct – – 0.0 0.0 −0.2 − 0.1 0.0 − 0.4

Kaplan–Meier Incorrect 0.5 0.4 −0.2 1.9 1.5 −0.9

Parametric – Correct Correct 0.0 (1.23) 0.0 (1.22) −0.2 (1.23) 0.0 (1.10) 0.0 (1.08) −0.3 (1.09)

g-formula Correct Incorrect 0.1 0.1 0.1 1.2 0.4 3.9

Incorrect Correct 0.5 0.1 3.4 2.0 1.7 −2.2

Incorrect Incorrect 0.5 0.1 3.4 1.9 1.7 −2.4

Proposed Correct Correct Correct −0.1 (1.04) 0.0 (1.01) −0.3 (1.02) − 0.3 (1.00) − 0.1 (0.99) − 0.8 (1.01)

doubly robust Correct Incorrect 0.0 0.0 − 0.1 0.2 0.0 0.8

Incorrect Correct 0.0 0.0 −0.2 0.0 0.0 −0.4

Incorrect Incorrect 0.0 0.0 −0.2 0.0 0.0 −0.4

Incorrect Correct Correct −0.1 0.0 −0.2 − 0.3 −0.1 − 0.7

Correct Incorrect 0.0 0.0 −0.1 0.2 0.0 0.9

Incorrect Correct 0.5 0.4 −0.2 1.9 1.5 −1.0

Incorrect Incorrect 0.5 0.4 −0.2 1.9 1.6 −0.9

Scenario 2: 20% censoring in both control and test groups.

IPCW Correct – – 0.0 0.0 −0.3 − 0.1 0.0 − 0.3

Kaplan–Meier Incorrect 0.3 0.2 −0.2 1.3 1.0 −0.5

Parametric – Correct Correct 0.0 (1.25) 0.0 (1.24) −0.2 (1.26) 0.0 (1.06) 0.0 (1.04) −0.3 (1.04)

g-formula Correct Incorrect 0.0 0.0 0.2 1.1 0.3 3.9

Incorrect Correct 0.1 −0.2 4.2 1.4 1.2 −1.4

Incorrect Incorrect 0.1 −0.2 4.2 1.3 1.2 − 1.6

Proposed Correct Correct Correct −0.1 (1.03) 0.0 (1.03) −0.3 (1.05) − 0.2 (1.00) − 0.1 (0.99) −0.6 (1.01)

doubly robust Correct Incorrect 0.0 0.0 −0.2 0.1 0.0 0.5

Incorrect Correct 0.0 0.0 −0.3 0.0 0.0 −0.3

Incorrect Incorrect 0.0 0.0 −0.3 0.0 0.0 −0.3

Incorrect Correct Correct −0.1 0.0 −0.3 − 0.2 −0.1 − 0.4

Correct Incorrect 0.0 0.0 −0.2 0.1 0.0 0.5

Incorrect Correct 0.3 0.2 −0.2 1.3 1.0 −0.5

Incorrect Incorrect 0.3 0.2 −0.2 1.3 1.0 −0.5

Scenario 3: 9% censoring in control group and 12% censoring in test group

IPCW Correct – – 0.0 0.0 −0.3 −0.1 0.0 −0.3

Kaplan–Meier Incorrect 0.1 0.1 −0.8 0.5 0.6 −1.6

Parametric – Correct Correct 0.0 (1.26) 0.0 (1.25) −0.2 (1.28) 0.0 (1.03) 0.0 (1.02) −0.3 (1.02)

g-formula Correct Incorrect 0.0 0.0 0.1 1.0 0.2 3.8

Incorrect Correct −0.3 −0.5 3.4 0.6 0.8 −2.2

Incorrect Incorrect −0.3 − 0.5 3.3 0.6 0.7 −2.4

Proposed Correct Correct Correct 0.0 (1.00) 0.0 (1.00) −0.3 (1.00) −0.1 (1.00) − 0.1 (1.00) −0.4 (1.00)

doubly robust Correct Incorrect 0.0 0.0 −0.3 0.0 0.0 0.1

Incorrect Correct 0.0 0.0 −0.3 0.0 0.0 −0.3

Incorrect Incorrect 0.0 0.0 −0.3 0.0 0.0 −0.3

Incorrect Correct Correct 0.0 0.0 −0.3 −0.1 −0.1 0.0
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Table 2 Simulation results (Continued)

Estimator Model specification Bias (×100) at t = 3 Bias (× 100) at t = 5

Censoring Event Covariate Control Test Log of risk ratio Control Test Log of risk ratio

Correct Incorrect 0.0 0.0 −0.3 0.0 0.0 0.1

Incorrect Correct 0.1 0.1 −0.8 0.5 0.6 −1.6

Incorrect Incorrect 0.1 0.1 −0.8 0.5 0.6 −1.6

Numbers in parentheses are the relative efficiency compared with the IPCW Kaplan–Meier estimate with a correctly specified censoring model. If the bias
exceeded half of the standard error of the estimates, the printed bias is shown in bold. True values calculated from a large simulated dataset were (0.89, 0.92,
0.69) (at t = 3) and (0.81, 0.86, 0.74) (at t = 5) for control group, test group, and risk ratio, respectively. The biases (×100) from the method assuming the baseline-
conditional independent censoring at t = 5 for the control and test groups were (0.5, 0.4) (scenario 1), (0.4, 0.3) (scenario 2), and (0.2, 0.2) (scenario 3)
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the reference. In scenario 3, where the censoring prob-
ability was the lowest among the scenarios, our proposed
estimator had a similar standard error as the reference
at both t = 3 and 5. The coverage probability of the pro-
posed estimator using the bootstrap method with the
correctly specified models was close to the nominal level
of 95%. In summary, the efficiency recovery of our pro-
posed estimator may be affected by the censoring prob-
abilities (comparing between the scenarios) and the
number of time points (comparing t = 3 and t = 5).
When the censoring probability is high but the number
of time points is less than five, our proposed estimator
might be more efficient than the IPCW Kaplan–Meier
estimator.

Data applications
Our proposed estimator was applied to the MEGA study
data to estimate treatment group-specific risks at 5 years
after randomization. As baseline covariates, we included
age (years), gender, body mass index, history of hyper-
tension and diabetes, hypercholesterolemia medication
history, current smoking, current alcohol drinking, tri-
glyceride, high-density lipoprotein cholesterol, and low-
density lipoprotein cholesterol. As the time-varying co-
variate, we used recent TC.
After transforming our data into one record per

person-time, we estimated the survival curve using our
proposed estimator. First, we fitted the models for cen-
soring Ct, event Yt, and covariate Lt. We fitted pooled lo-
gistic models for Ct and Yt, where the time-varying
intercept was included as a restricted cubic spline with 4
knots at 1–4 years after randomization. We fitted a lin-
ear model for Lt. By fitting the pooled logistic model for
Yt, classical risk factors for CHD (age, male, hyperten-
sion, and diabetes) were found to be the prognostic fac-
tors (Additional file 1, Appendix D). By fitting the model
for Ct, those without hypertension, diabetes, or no his-
tory of medication for hyperlipidemia, tended to be cen-
sored before the end of the follow-up period (Additional
file 1, Appendix E). Unexpectedly, time-varying TC
hardly affected the event or censoring after adjusted for
those important baseline covariates; therefore, baseline-
conditional independence assumption rather than
conditional independence assumption might be plausible
in the MEGA study.
We estimated the risk of CHD incidence at 5 years

from randomization using the Kaplan–Meier estimator,
IPCW Kaplan–Meier estimator, the parametric g-
formula estimator, and our proposed estimator. The re-
sults are shown in Table 3. In the MEGA study dataset,
the risk of CHD estimated using the usual Kaplan–Meier
estimator and the risk estimated by other estimators
were very similar. This may be due to the small impact
of dependent censoring in the MEGA study and correct-
ness of model specification for censoring and events. Be-
cause the ordinal Kaplan–Meier estimator showed
similar results as the other three estimators that adjust
for the possible dependent censoring, the impact of
dependent censoring must be very mild. If the censoring
model or event model was misspecified, the results from
the other three estimators might be more different.
Therefore, the results from the three estimators may in-
dicate that the postulated models were nearly correctly
specified. The estimated confidence interval of the para-
metric g-formula estimator was narrower than the other
estimators. The estimated confidence interval for the
risk of diet + pravastatin group of our proposed estima-
tor was narrower than the IPCW Kaplan–Meier
estimator.

Discussion
In this paper, we proposed a doubly robust estimator of
risk that adjusts for dependent censoring due to time-
varying covariates in RCT settings. The novelty of our
proposed estimator is as an extension of the existing es-
timator [9, 19] for more complex data with t > 1 and
time-varying covariates. The IPCW Kaplan–Meier esti-
mator is routinely used in the analysis of RCTs for the
purpose of adjusting for dependent censoring with time-
varying covariates measured throughout the follow-up
period. We have also provided SAS codes (Additional
file 1, Appendix B) and an example of simulation data
(Additional file 2). The important property of our pro-
posed estimator is the double protection against model
misspecification. Because risk factors for the endpoints
are often identified before the beginning of the RCT, by



Table 3 Risk of coronary heart diseases in the MEGA study at 5 years after randomization

Diet group Diet + pravastatin group

Method Risk (%) 95% CI Risk (%) 95% CI Risk Ratio 95% CI

Kaplan–Meiera 2.34 (1.90, 2.89) 1.63 (1.26, 2.11)

IPCW Kaplan–Meier 2.39 (1.91, 2.95) 1.60 (1.19, 2.10) 0.68 (0.40, 1.06)

Parametric g-formula 2.36 (1.97, 3.01) 1.66 (1.30, 2.05) 0.71 (0.47, 0.98)

Proposed estimator 2.38 (1.91, 2.95) 1.61 (1.22, 2.06) 0.69 (0.42, 1.03)

CI confidence interval
aThe confidence intervals of the Kaplan–Meier estimator was obtained using the Greenwood formula
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measuring them longitudinally at as many time points as
possible and by using them when constructing the
models, we are in a better position to approximate the
true regression function.
The second property of our proposed estimator is the

efficiency recovery over the IPCW Kaplan–Meier esti-
mator, as shown in the simulation study. The degree of
efficiency recovery could depend on either the censoring
probability, event probability, the dependency of vari-
ables, or all of these factors combined. As studied previ-
ously [8], we considered that the censoring probability is
an important factor. Further studies will involve under-
standing the factors that affect the degree of efficiency
recovery using further simulations. In the simulation
study and analysis of the MEGA study, the parametric g-
formula estimator outperformed regarding efficiency.
This phenomenon was expected because the asymptotic
variance of the classical doubly robust estimator is no
smaller than that of the g-formula estimator [26].
Our estimator relies on the assumption that censoring

and event time are independent conditional on observed
covariates including time-varying ones. However, in a
situation that censoring and event time are not inde-
pendent even if we condition on time-varying covariates,
our proposed estimator and other existing estimators
cannot correct for selection bias. We also need the as-
sumption of correct model specification. We need to in-
corporate the covariates that affect both event and
censoring probabilities, and moreover, we need to spe-
cify the model form that approximates the true regres-
sion function.
In this study, we considered the estimation of a survival

function in a specific group. If we compare two or more
survival functions that may be observed with different in-
terventions, we also need an additional exchangeability
assumption (or the no-unmeasured confounders assump-
tion) between the intervention groups [27]. In the simula-
tions and data analysis, the exchangeability assumption is
satisfied at baseline owing to the randomized design. In a
future study, it will be interesting to extend our estimator
into the observational study setting [24, 25].
All the estimators in this study can be applied to right-

censored data. We consider that our proposed estimator
cannot be applied to the data with interval or left-
censored data in its current form. With those censoring,
we know that an event has occurred only before a spe-
cific time. In this situation, how to predict event prob-
ability and how to weight uncensored subjects are not
obvious. Note that the MEGA study corrects exact event
time, so we consider that interval censoring or left cen-
soring is absent in the real data.
There are several reasons for censoring in the MEGA

study, as shown in Table 1. We treated refusal of follow-
up, death by causes other than CHD, and loss to follow-
up as reasons for censoring in the censoring model.
Three estimators, including our proposed estimator,
assessed the hypothetical survival function when there
was no censoring. It may be meaningful to consider
whether a survival function can be obtained if refusal to
follow-up and loss to follow-up did not occur. When we
separately accounted for the two reasons for dropouts,
the survival curve was similar to the one using the
Kaplan–Meier method [28]. However, death by causes
other than CHD needs additional consideration, because
it is difficult to cease such competing risks for CHD
without lowering the risk of CHD. Therefore, if there
was no death by causes other than CHD, the survival
function would be slightly lower than we estimated. Be-
cause in the MEGA study the proportion of censoring
due to death by causes other than CHD was less than
1.5%, we believe the estimated survival functions are
close to the true survival function, which would be ob-
tained if these censorings had not occurred.
There are two limitations in this study. First, we were

not able to verify the assumptions with the measured
data. The positivity assumption will be satisfied unless
the conditional probabilities of censoring are zero for all
patients at t = 1,…, T. In the analysis of the MEGA study
data, there were no patients who had an estimated prob-
ability of censoring near 1 (data not shown); therefore,
we considered that the positivity assumption is accept-
able. Conditional independence assumption implies that
the treatment group, measured baseline, and time-
varying covariates can completely explain censoring.
However, given a rich collection of measured prognostic
factors, the conditional independence assumption can be
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approximated. Several clinically important prognostic
factors were measured in the MEGA study, and we used
all of the baseline covariates and a time-varying covari-
ate, TC. We considered time-varying TC was important
for event and censoring probability, but the hazard ratio
was close to 1; therefore, the impact of dependent cen-
soring was very mild. In the future, we need to apply our
estimator to data with censoring dependent on time-
varying factors. The second limitation was the range of
the simulation study. Because we were interested in the
statistical properties of the estimators with fitted cor-
rect/incorrect models, the behavior of the estimators
when other assumptions, such as positivity, were violated
is unknown. We need further simulation studies to
understand the performance of the estimators.

Conclusions
The proposed estimator is useful for the estimation of
risk if censoring affected by time-varying risk factors oc-
curred because of the doubly robust property and statis-
tical efficiency over the IPCW Kaplan–Meier method.
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