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Abstract

Background: In increasingly ageing populations, there is an emergent need to develop a robust prediction model
for estimating an individual absolute risk for all-cause mortality, so that relevant assessments and interventions can
be targeted appropriately. The objective of the study was to derive, evaluate and validate (internally and externally)
a risk prediction model allowing rapid estimations of an absolute risk of all-cause mortality in the following 10 years.

Methods: For the model development, data came from English Longitudinal Study of Ageing study, which
comprised 9154 population-representative individuals aged 50–75 years, 1240 (13.5%) of whom died during the 10-
year follow-up. Internal validation was carried out using Harrell’s optimism-correction procedure; external validation
was carried out using Health and Retirement Study (HRS), which is a nationally representative longitudinal survey of
adults aged ≥50 years residing in the United States. Cox proportional hazards model with regularisation by the least
absolute shrinkage and selection operator, where optimisation parameters were chosen based on repeated cross-
validation, was employed for variable selection and model fitting. Measures of calibration, discrimination, sensitivity
and specificity were determined in the development and validation cohorts.
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Results: The model selected 13 prognostic factors of all-cause mortality encompassing information on
demographic characteristics, health comorbidity, lifestyle and cognitive functioning. The internally validated model
had good discriminatory ability (c-index=0.74), specificity (72.5%) and sensitivity (73.0%). Following external
validation, the model’s prediction accuracy remained within a clinically acceptable range (c-index=0.69, calibration
slope β=0.80, specificity=71.5% and sensitivity=70.6%). The main limitation of our model is twofold: 1) it may not be
applicable to nursing home and other institutional populations, and 2) it was developed and validated in the
cohorts with predominately white ethnicity.

Conclusions: A new prediction model that quantifies absolute risk of all-cause mortality in the following 10-years in
the general population has been developed and externally validated. It has good prediction accuracy and is based
on variables that are available in a variety of care and research settings. This model can facilitate identification of
high risk for all-cause mortality older adults for further assessment or interventions.

Keywords: Mortality, Survival, Prognostic factors, Statistical learning, Absolute risk, Population-based longitudinal
study

Background
Rapid population ageing is a worldwide phenomenon,
highlighting an emergent need to have a reliable predic-
tion model for estimating an individual mortality risk.
Similar to the prediction tools for coronary heart disease
[1], breast cancer [2] and cardiovascular disease [3],
which are now included in clinical guidelines for thera-
peutic management, a prediction model for all-cause
mortality in older people can be used to communicate
risk to individuals and their families (if appropriate) and
guide strategies for risk reduction.
Recently, closely following the methods developed by

American counterparts [4–6], a 10-item index was de-
rived for predicting a 10-year mortality risk in adults
aged 50–101 years old living in England [7]. Drawing on
stepwise regression for model building and utilising
complete-cases, the 10-item index was reported to have
an excellent ability to identify older individuals with
low- and high-risk for all-cause mortality in the next 10
years [7]. However, because stepwise regressions are
known to lead to overfitting and poor prediction of new
cases [8], the index may not predict all-cause mortality
equally well when applied to a new sample [9]. Consid-
ering the average life expectancy in England is 81 years
old [10], it is possible that high discriminative ability of
the 10-item index was a result of including adults who
were likely to die in the next 10 years due to their old
age. The authors also did not provide information about
the model calibration precluding estimating probabilities
of all-cause mortality, which are necessary for informed
clinical decision making [11, 12].
In the era of precision medicine, more computationally

demanding modern statistical learning algorithms, par-
ticularly regularised regression methods (RRMs), are
suggested as optimal methods for clinical and persona-
lised risk prediction [13], as they are able to overcome
the weaknesses of stepwise regressions. Therefore, using

the same dataset, as in the 10-item index of mortality
[7], but restricting individuals to a more representative
age, we employed RRMs to develop a new model to pre-
dict risk of all-cause mortality over a 10-year period. To
ensure our model is appropriate for routine use in clin-
ical practice [14], we externally validated it. Although
direct comparison with the 10-item index of mortality
will be difficult because of differences in the data hand-
ling and reporting, to aid understanding if our model of-
fered an improved prediction efficiency, we externally
validated the 10-item index [7], which has not been done
before.

Methods
Data sources and study population
For this study, we used data from England to develop
our mortality model and data from United States to ex-
ternally validate it. To ensure that the cohorts employed
were as representative of the general populations as pos-
sible, we did not limit them based on their help and
health statuses.

Derivation cohort (England)
The data for model development came from the English
Longitudinal Study of Ageing (ELSA), which is multidis-
ciplinary study of a nationally representative sample of
the English population aged ≥50 years [15]. The ELSA
study started in 2002–2003 (wave 1) with n=11,156 par-
ticipants recruited from the Health Survey for England
(HSE), which was an annual cross-sectional survey de-
signed to monitor the health of the general population.
As the inclusion criteria were being a member of a par-
ticipating household from HSE in which at least one
person had agreed to follow-up, born before 1 March
1952 and living in a private household in England at the
time of the first wave of fieldwork, the ELSA sample was
restricted to participants living in the community [15].
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Comparisons of ELSA with the national census showed
that the baseline sample was representative of the non-
institutionalised general population aged ≥50 in the UK
[15]. Subsequently, this sample was followed-up every
two years. In the present study, wave 1 formed our base-
line and follow-up data were obtained from wave 6
(2012–2013). To limit the overriding influence of age in
a “cohort of survivors”, we excluded participants who
were > 75 years old.

Validation cohort (United States)
The external validation of our model was performed
using data from the Health and Retirement Study (HRS)
[16], which is a nationally representative, biannual longi-
tudinal survey of adults ≥50 years old residing in the
United States (US). Since ELSA was developed as a com-
panion study to the HRS facilitating opportunities for
cross-national analyses [15], the HRS sample was also
restricted to participants living in the community. The
HRS encompasses the detailed information collected on
respondents’ characteristics and death recorded from an
exit interview with a relative or proxy [17]. A more de-
tailed description of the HRS sample is provided in Sup-
plementary Materials. For the purpose of validating our
mortality model, we included information on mortalities
that occurred from 30 January 2004 to 1 August 2015
giving us a 10-year follow-up period, which is in line
with the derivation cohort. To make the external sample
more consistent with the derivation data, we further lim-
ited it to those who were aged 50–75 years old.

Outcome
The outcome was all-cause mortality that occurred from
2002 to 2003 through to 2013, which was ascertained
from the National Health Service central register, which
captures all deaths occurring in the UK. All participants
included in this study provided written consent for link-
age to their official records. Survival time was defined as
the period from baseline when all ELSA participants
were alive to the date when an ELSA participant was re-
ported to have died during the 10-year follow-up. For
those who did not die during follow-up, the survival
time was calculated using the period spanning from
baseline until the end of the study.

Prognostic factors
114 prognostic factors related to participants’ general
health, comorbid health conditions, mental health, cog-
nitive domains, life satisfactions, mobility, physical activ-
ity, social-economic status and social relationships were
considered for the model development (Additional file
1). Following a previous research protocol [18], we ex-
cluded prognostic factors shown to have a high collin-
earity with other variables, or had > 50% missing values

(Additional file 2); 84 prognostic factors were retained
for the analyses.

Power calculations
To ensure we had sufficient power to develop a predic-
tion model for all-cause mortality accurately, we calcu-
lated a sample size required for development a
prediction model according to the recent guidelines [19].
Accordingly, we estimated all-cause mortality events in
the derivation cohort that occurred during the 10-year
follow-up period; since all variables included in the Cox-
Lasso regression were either continuous or binary, we
included 84 degrees of freedom worth of prognostic fac-
tors (i.e., parameters) in the power calculations. Assum-
ing the value of R2 corresponds to an R2

Nagelkerke of 0.15
(i.e., R2

CS =0.15* × max((R2
CS)) [19] sample size required

for our new model development was n=8978 with 1118
outcome events. These power calculations highlighted
that we had an effective sample size of 15 mortality
events per predictor, which is higher than with the rec-
ommended 13.3 cases per each predictor as estimated
using calculations developed by Riley et al. [19]. We have
presented the sample size calculations in Additional file
3.

Statistical analysis
The process of model development, evaluation and val-
idation was carried out according to methodological
standards outlined by Steyerberg et al. [13]; results were
reported according to the Transparent Reporting of a
multivariable prediction model for Individual Prognosis
Or Diagnosis (TRIPOD) guidelines [20]. A more detailed
description of these methods is provided in the Supple-
mentary Methods.

Imputation of missing values
The missing data were imputed using missForest, which
is a nonparametric imputation method based on random
forest [21]; it handles continuous and categorical vari-
ables equally well and accommodates non-linear relation
structures [21, 22]. Distribution of the variables before
and after imputation is presented in Additional file 3.

Variable selection and model fitting
To build the prediction model and identify which of 84
prognostic factors were important for estimating an indi-
vidual risk of all-cause mortality during the 10-year
follow-up, we applied Cox proportional hazards model
with regularisation by the least absolute shrinkage and
selection operator (Cox-Lasso) [23]. Cox-Lasso entails
fitting a model, which, by imposing penalty (λ) on the
size of regression parameter estimates to shrink them to-
wards 0 [24, 25], simultaneously selects predictors, esti-
mates their effects and introduces parsimony. Therefore,
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if a suitable λ is chosen, Cox-Lasso automatically per-
forms variable selection and deals with collinearity. Se-
lection of the tuning parameter λ optimising the model
performance is described below.

Model estimation
The tuning parameter λ optimising the partial log-
likelihood was chosen from a grid of 100 λ values
through 10-fold repeated cross-validation (CV) [23]. 10-
fold CV divided data randomly into 10 non-overlapping
data partitions; individuals included in the first 9 parti-
tions were considered as the test sample, and the
remaining individuals as the training sample. To reduce
a potential variance, 10-fold CV was repeated 100 times
computing the partial log-likelihood for each λ value.
The optimal λ was chosen as the one that generated the
largest partial log-likelihood. The model that corre-
sponded to the optimal λ was referred to as “modelbest”.
As modelbest may still select a large proportion of noise
variables, even if their inclusion leads to an optimal per-
formance [25], λ that had a partial log-likelihood within
one-standard error (SE) of the maximum was suggested
to be a better compromise between a higher proportion
of true prognostic factors among the selected predictors
and good prediction accuracy [26]. We referred to this
model as “model1-SE”. As a parsimonious model is desir-
able for practice [27] and may generalise better to differ-
ent populations [28], though often at the expense of a
lower predictive performance, we additionally considered
a model with a stronger penalty that had a partial log-
likelihood within 3% of the optimum partial-log likeli-
hood (“model3%”), yielding more parsimony [24].

Model performance
Models’ accuracy was measured with discrimination and
calibration. Discrimination indicates how well a model
separates individuals who experienced an event from
those who did not; we assessed discrimination using
concordance index (c-index) [29]. Calibration, assessed
with the calibration slope β (which is one if the pre-
dicted risks are not too extreme or too moderate), de-
scribes how well the predicted survival corresponds to
the survival from the observed data [11, 12] and can be
described as a measure of bias in a model [29]. We fur-
ther measured the prediction accuracy of our models at
10 years with sensitivity and specificity. Unlike the trad-
itional 50%, which follows often incorrect assumption
that the false-positive and false-negative are equally im-
portant [13], to classify an individual as high or low risk
based on a prediction model, a cutoff for the predicted
probability (i.e., “decision threshold”) [13] was selected
by maximizing the sum of the model’s sensitivity and
specificity to minimize the false positives, which are un-
avoidable [30]. This entailed selecting the decision

threshold that maximized the overall correct classifica-
tion rates, while choosing the point on the receiver oper-
ating characteristic (ROC) curve farthest from chance
[31]. The results for the models’ performances for the
traditional 50% and the best threshold are provided in
Additional files 6, 9 and 10.

Model internal validity
The models’ performances before internal validation are
presented in Additional file 7. To correct measures of pre-
dictive performance for optimism (difference in test per-
formance and apparent performance) [32], which occurs
when a model’s predictions are more extreme than they
should be for individuals in a new dataset from the same
target population, we carried out internal validation of our
model using Harrell’s optimism-correction procedure [29]
in the derivation cohort. Accordingly, the whole model
building process from imputing the missing values with
missForest, selecting tuning parameter λ through repeated
CV to fitting Cox-Lasso is repeated 1000 times on differ-
ent resamples. However, due to high computational de-
mands of missForest algorithm when applied to our large
sample, we performed imputation first, as suggested [33],
followed by full validation of Cox-Lasso through Harrell’s
optimism correction procedure as outlined above. We
then estimated the overall optimism across all models
(Additional file 6), which was minimal negating a need for
a recalibration. To account for over-fitting during the de-
velopment process, for each measure of performance (p),
we obtained the optimism-corrected performance (pcor-
rected), by using the formula: pcorrected=papparent-poptimism

[13] (Additional files 8 and 10).

Model external validity
We applied our risk prediction model to each participant
in the external validation cohort (Additional files 11 and
12). Distributions of the variables included in the final
all-cause mortality model in derivation cohort (ELSA)
and validation cohort (HRS) are presented in Additional
file 13. The proportion of missingness in these variables
varied from 0 to 3.7%. Therefore, before externally vali-
dated our model using the data from the HRS study, we
imputed the missing values in the validation cohort with
missForest following the procedure as outlined for the
derivation cohort. We examined the performance of our
final model in the validation cohort by calculating the c-
statistic, calibration slope, sensitivity and specificity as
described above. A calibration plot was computed to as-
sess graphically the agreement between the 10-year sur-
vival probability as predicted by the internally and
externally validated models [13]; it is presented in Fig. 1.
We estimated the risk equation for predicting the abso-
lute hazard of all-cause mortality at 10 years, which is
the exponential of the sum of an individual’s prognostic
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factors weighted by β-estimates from Cox-Lasso [34],
multiplied by the baseline hazard estimate at 10 years.
We could therefore derive and present an equation for
the predicted absolute risk of all-cause mortality during
a 10-year period using the baseline survival, which is
presented in Additional file 14. Further, as the main
product of a Cox model is a prognostic index (PI), which
represents a summary of the combined effects of an in-
dividual’s risk factors [34], we estimated PIs from the ex-
ternally validated model and translated these into
probabilities of all-cause mortality during the 10-year
follow-up period (Table 4). The PIs were calculated
using the linear predictor from the Cox-Lasso model
weighted by the regression coefficients from our final
model; higher PI values indicate a worse prognosis. To
assist a comparison with our model, we externally vali-
dated 10-item index [7], using the HRS sample and eval-
uated it with discrimination, calibration, sensitivity and
specificity. Here, as the original model was developed
using complete cases only, we externally validated 10-
item index without employing imputation of missing
values. An all-cause survival model had not been pub-
lished using data from the external validation; thus, this
set of analyses is unique to the present study.

Model presentation
The final model was presented as a nomogram [35]
(Fig. 2), which allows an approximate graphical compu-
tation of a mathematical function to estimate individua-
lised probability for all-cause mortality based on an
individual’s characteristics. Nomogram has been shown
to be better than clinician judgment in estimating an in-
dividual risk for an outcome [36].

Results
Study participants
For the model development, the sample comprised 9154 in-
dividuals; of these, 1240 (13.5%) died during the 10-year
follow-up with an average length of survival of 70.2months
(SDderivation=35.4, rangederivation=1–130). The baseline
meanderivation age for the entire sample was 61.5 years
(SDderivation=7.2, rangederivation=50–75); 46.6% were men
and 96.7% were of white ethnicity. The sample for external
validation comprised 2575 individuals; of these, 491 (19.1%)
died during the 10-year follow-up with an average length of
survival of 77.7months (SDvalidation=36.5, rangevalidation=1–
135.9). The baseline meanvalidation age for the entire sample
was 62.7 years (SDvalidation=7.2, rangevalidation=50–75); 43.1%
were men and 81.0% were of white ethnicity.

Model development and performance measures
Modelbest selected 55 (65.5% of n=84), model1-SE selected
54 (64.3% of n=84) and model3% selected 13 (15.5% of n=
84) prognostic factors (Table 1 and Additional file 5). To

classify individuals at the high risk for all-cause mortality
based on the selected variables, for modelbest and mod-
el1-SE the best decision threshold was estimated at 13.2%.
The apparent performance statistics of all prediction
models is presented in Additional file 6. Modelbest and
model1-SE showed good internally validated discrimination
(c-indexcorrected=0.75 for both models) and nearly perfect
internally validated calibration (calibration slopes βcor-
rected=1.06 and 1.07, respectively). For model3% the best
decision threshold was at 14.9%. After adjustment for op-
timism, model3% was able to discriminate adults who died
and did not die during the 10-year follow-up with a c-
statistic of 0.74, and good specificitycorrected (72.5%) and
sensitivitycorrected (73.0%); though, calibration slope βcor-
rected for model3% was 1.64 (Table 2). Because the predic-
tion model needs to be parsimonious to be practically
manageable and calibration of 1.64 was within a range of
previously reported models [37], we chose model3% as our
final model.

Predictor variables and estimating an individual 10-year
risk of mortality
Each additional year of age was associated with an in-
creased individual 10-year mortality risk of 7% in relative
terms (Table 1). Poor self-rated health, history of
chronic lung disease and difficulty doing work around
house and garden were the largest contributors to the
risk for all-cause mortality, followed by an item concern-
ing reluctance to do new things (an aspect of self-
realisation), previous diagnoses of cancer, decreasing
memory score, difficulty walking 100 yards and smoking.
Risk for all-cause mortality further increased with low
accumulated wealth, male gender, history of stroke and
presence of a limiting longstanding illness. A worked

Fig. 1 Calibration plot presenting agreement between the predicted
and observed survival rates at 10-years as estimated by our newly
developed model
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example of calculating an absolute individualised risk for
mortality in the following 10 years is provided in
Table 3.

External validation
When applied to the validation sample, our model dem-
onstrated good discrimination (c-index=0.69) (Table 1).
The distributions of prognostic index estimated based
on 13 variables included in the model in the develop-
ment cohort and external cohort closely aligned (Add-
itional file 11). Normalized PI highlighted that
probability of death increased linearly with the higher
quantiles with those scoring at the top 10% quantile hav-
ing 62.5% probability of dying in the following 10 years
(Table 4). The frequency of predicted survival probabil-
ities closely aligned in the derivation and the validation
cohorts (Additional file 11). Calibration plot showed an
overall good agreement between the predicted and ob-
served survival rates at 10-years as estimated by our
newly developed model (Fig. 2). The calibration of our
final model improved once it was externally validated; al-
though it was slightly under 1 (calibration slopes β=
0.80), it was higher compared to the calibration slope of

the externally validated 10-item index calibration slope
β=0.75). When further compared to our model, the ex-
ternally validated 10-item index had higher discrimin-
ation (c-index=0.75); its estimated sensitivity (73.7%) was
comparable to our model (71.5%), but specificity was
considerably lower (64.4%) when compared with specifi-
city of our externally validated model (70.6%). The mean
predicted risk of all-cause mortality based on our model
was 4.39% (SDinternal=0.63) in the derivation sample and
8.51% (SDexternal=0.89) in the validation sample.

Discussion
Utilising methods advocated for clinical and personalised
risk prediction [13], we developed, evaluated and vali-
dated a prediction model for estimating an individual
risk of all-cause mortality in the following 10 years. The
model is calibrated for individuals aged 50–75 years liv-
ing in England but generalises reasonably well to other
populations with similar underlying characteristics. It
also has good sensitivity and specificity reducing un-
necessary testing without potentially compromising need
for care [38]. From an extensive pool of 84 factors, the
model identified 13 prognostic variables and quantified
their predictive importance for 10-year mortality risk for
older adults in the general population. Based on an indi-
vidual profile of risk factors, our model allows a rapid
assessment of an individual risk for all-cause mortality,
which is at the core of more in-depth risk assessment,
follow-up monitoring and individually tailored preven-
tion strategies [39]. Therefore, it can be used as a first-
stage screening aid that might prolong life-expectancy by
alerting to an individual’s heightened risk profile and a
need for more targeted evaluation and prevention. It could
also be used by non-professionals to improve self-

Table 1 Beta coefficients in prediction model developed using modern statistical learning methods to predict all-cause mortality in
older people

Selected variables Coefficients (log hazard ratios)

x1 Age b1 0.069544

x2 Never choose to do things I have never done before (1= “yes”) b2 0.178672

x3 Cognition: Memory b3 −0.011597

x4 Limited life conditions any (1= “yes”) b4 0.053174

x5 Low wealth (1= “yes”) b5 0.043483

x6 Male gender (1= “yes”) b6 0.031585

x7 Currently a smoker (1= “yes”) b7 0.068574

x8 History of stroke (1= “yes”) b8 0.050877

x9 Difficulty doing work around house and garden (1= “yes”) b9 0.086048

x10 History of cancer (1= “yes”) b10 0.119762

x11 Difficulty walking 100 yards b11 0.249760

x12 Poor self-rated health b12 0.336850

x13 Chronic lung disease b13 0.315754

Table 2 Prediction accuracy of the prediction model of 10-year
risk for all-cause mortality developed using modern statistical
learning methods

Models’ performances Internally validated Externally validated

c-index 0.74 0.69

Calibration slope 1.64 0.80

Sensitivity 72.5% 71.5%

Specificity 73.0% 70.6%

SD standard deviation
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awareness of their health status, and by governmental and
health organisations to decrease the burden of certain risk
factors in the general population of older people.
Identification of the most robust predictors of all-

cause mortality is pivotal for efficient early interventions
and prevention services. Around 50% of the prognostic
factors identified by our model overlapped with those in-
cluded in the 10-item index [7]. These included age,
current smoking, diagnosis of cancer, history of chronic
lung disease, difficulty walking 100 yards and male gen-
der. Because RRMs simultaneously handle a large num-
ber of variables in a statistically correct way [8] while
avoiding overfitting, unlike the 10-item index [7] and
prognostic indexes that predated it [4–6], we were able

to identity novel potential prognostic factors for all-
cause mortality in older adults. These included lower ac-
cumulated wealth, lack of self-realisation, poor self-rated
health and lower working memory. This may suggest
that less wealthy may be more subject to poor physical
and social environments, which can encourage health-
damaging behaviours [40], leading to premature death.
The lack of self-realisation, which reflects a reduced
sense of purpose in life, has also been linked to de-
creased longevity [41]. Consequently, the consideration
of these factors will help identify high-risk groups who
might otherwise be under-detected.
Several prognostic factors included in the 10-item

index [7], such as history of heart failure, no vigorous

Table 3 Example calculation of an individual 10-year risk of all-cause mortality

Patient description:

An individual is a male aged 75-years old, smoker who comes from a middle-class social-economic status. He has at least 1 limiting illness and previ-
ously had a cancer or a malignant tumour (excluding minor skin cancers) but has an intact memory. He stated that he never had a chance to do
things that he never experienced before. The patient reports difficulties doing work around house and garden and struggles to walk 100 yards. Over-
all, he describes his health as poor; though he never experienced stroke and chronic lung disease.

Estimated Beta coefficient × variable for this person:

Using the nomogram (Fig. 1) and information from Table 2, we can estimate this patient’s probability to die in the following 10 years by adding
points assigned in the nomogram to each factor in the model. Thus, in this example, the patient would have a total point score of 2 point (male
gender) + 100 points (aged 75 years old) + 4 points (being a smoker) + 0 points (middle-class social-economic status) + 3 points (having at least
one limiting illness) + 7 points (having previously had a cancer or a malignant tumour) + 0 points (maximum score for memory) + 10 points (never
had a chance to do things that he never experienced before) + 5 points (difficulties doing work around house and garden) + 14 points (struggling
to walk 100 yards) + 19 points (describing health as poor) + 0 points (having never experienced stroke) + 0 points (no history of chronic lung dis-
ease) = 164. This corresponds to a normalized prognostic index of 1.69 (linear predictor line) for all-cause mortality, meaning that the participant has
a probability to die in the following 10 years in the range 35.68–62.48%.

A more precise way to compute the probabilities of death during the next 10 years for this patient is to use the following formula, as presented in
Additional file 14, for absolute risk predictions at time t:

1 − S0ðtÞ expðb1x1þb2x2þb3x3þ…Þ ,

where S0(t) is the baseline survival probability at time t, xi are the variables and bi are the log hazard ratios, i.e. the Cox-Lasso estimated coefficients
(Table 2).

Therefore, given S0(t) = 0.9985, for the same individual as above, the probability of death during the next 10 years will be precisely 57.19%:

1 − 0.9985exp(0.0695 × 75 + 0.1787 × 1 − 0.0116 × 0 + 0.0532 × 1 + 0.0435 × 0 + 0.0316 × 1 + 0.0686 × 1 + 0.0509 × 0 + 0.0861 × 1 + 0.1198 × 1 + 0.2498 × 1 + 0.3369 × 1 + 0.3158 × 0) = 0.5719 =
57.19%

Table 4 Normalized prognostic indexes (PI) for mortality translated into probabilities of all-cause mortality during a 10-year follow-
up period

Quantile Normalized PI for mortality Probability (%) of death at 10 years

0% −1.12 3.88

10% −0.79 5.37

20% −0.62 6.31

30% −0.43 7.54

40% −0.25 9.01

50% −0.04 10.94

60% 0.14 13.04

70% 0.35 15.79

80% 0.58 19.48

90% 0.84 24.56

100% 2.09 62.48
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physical activity and mobility difficulties related to pull-
ing/pushing large objects and preparing meals, were not
selected by our model. In agreement with our results,
the mortality index developed in US [5] on which the
10-item index [7] was modelled, did not include seden-
tary lifestyle and difficulty preparing meals as risk factors
for mortality in older people. Thus, these two factors
might have been mere proxies for other unmeasured
variables related to all-cause mortality in elderly. Not
selecting prior history of heart failure by our model,
even though this variable was included in previous mor-
tality indexes [4–7], may be explained by the methodo-
logical properties inherent to RRMs. As a means of
identifying true prognostic factors from a pool of

possibly related variables, RRMs omit unnecessary vari-
ables through the introduction of a penalty, which
shrinks the correlated variables towards zero [24, 25]. It
is feasible, therefore, that this variable was omitted due
to the presence of other related variables, such as self-
rated health, which has been linked to mortality through
its association with cardiovascular diseases [42]. Elastic
net approach may be preferred if a set of all correlated
variables should be either included in a model at the
cost of retaining a larger number of variables or ex-
cluded altogether [43].
External validation is essential to ensure the quality of

the prediction model and its potential usefulness in clin-
ical practice. Although our model showed good

Fig. 2 Nomogram for Cox-Lasso regression which enables calculating individual normalized prognostic indexes (PI, given by the linear predictor
line) for all-cause mortality in the following 10 years. Coefficients are based on the Lasso-Cox model as estimated by the final model for the all-
cause mortality. The nomogram allows computing the normalized prognostic index (PI) for a new individual. The PI is a single-number summary
of the combined effects of a patient’s risk factors and is a common method of describing the risk for an individual. In other words, the PI is a
linear combination of the risk factors, with the estimated regression coefficients as weights. The exponentiated PI gives the relative risk of each
participant in comparison with a baseline participant (in this context the baseline participant would have value 0 for all the continuous covariates
and being at the reference category for the categorical ones). The PI is normalized by subtracting the mean PI
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externally validated discrimination, the finding which
was unlikely to be due to chance [19, 44], the externally
validated discrimination of the 10-item index [7] was
higher compared with our model. This is consistent with
some recent studies, which showed that statistical learn-
ing methods, including machine learning algorithms,
lead to only limited, if any [45], incremental improve-
ments in models’ performances [46, 47] when compared
with simpler statistical methods if such model building
was theory-driven [48]. Nonetheless, compared with our
model, the 10-item index [7], based on prognostic fac-
tors chosen through multiple sequential hypothesis test-
ing, was more likely to overfit the data. Specificity of the
externally validated 10-item index was also considerably
lower (64.4%) compared to our externally validated
model (70.5%), implying it is likely to falsely classify a
higher proportion of older adults as high risk for all-
cause mortality in the following 10 years.

Strengths and weaknesses
Our prediction algorithm has several advantages. The
model is based on absolute risks determined and vali-
dated in two very large and independent populations.
We employed rigorous methods for model building and
validation when accuracy, interpretability and parsimony
are the priority, following the recommended guidelines
of model building and reporting. To avoid using unrep-
resentative sample of complete cases that may result in
incorrect risk predictions [49, 50], we catered for missing
values. The cohorts employed for model development
and validation were representative of older people
resigning in England and US. The items included in our
model are often collected in epidemiological studies and
are ascertainable during a brief patient-physician discus-
sion. This is also the first study to provide measures of
prediction accuracy of an existing all-cause mortality
model as measured in an external sample. Nonetheless,
as with the 10-item index [7], our model may not be ap-
plicable to nursing home and other institutional popula-
tions. Our model was developed and validated in the
cohorts with predominately white ethnicity. Although
this is consistent with a wide range of prediction models
for health-related outcomes [1–3, 51], further validation
in more ethnically diverse populations is required. As
with many risk models, we only accounted for baseline
variables, although for many time-varying factors, expos-
ure status may change during the follow-up period [52].
However, using baseline variables reflects the real-life
clinical information available to a physician and a par-
ticipant when they need to make decisions on the likely
risk of all-cause mortality for an individual during the
next 10 years. Finally, it would be of interest to include
potential interaction with a smaller set of candidate pre-
dictors in the future studies.

Conclusion
Having employed modern statistical learning algorithms
and addressed the weaknesses of previous models, a new
mortality model achieved good discrimination and cali-
bration as shown by its performance in a separate valid-
ation cohort. Our model relies on 13 variables, which
are available by patient report in a variety of care and re-
search settings. It allows rapid estimations of an individ-
ual’s risk of all-cause mortality based on an individual
risk profile. These characteristics suggest that our model
may be useful for clinical, policy, and epidemiological
applications.
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