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Abstract

Background: Among different investigators studying the same exposures and outcomes, there may be a lack of
consensus about potential confounders that should be considered as matching, adjustment, or stratification
variables in observational studies. Concerns have been raised that confounding factors may affect the results
obtained for the alcohol-ischemic heart disease relationship, as well as their consistency and reproducibility across
different studies. Therefore, we assessed how confounders are defined, operationalized, and discussed across
individual studies evaluating the impact of alcohol on ischemic heart disease risk.

Methods: For observational studies included in a recent alcohol-ischemic heart disease meta-analysis, we identified
all variables adjusted, matched, or stratified for in the largest reported multivariate model (i.e. potential
confounders). We recorded how the variables were measured and grouped them into higher-level confounder
domains. Abstracts and Discussion sections were then assessed to determine whether authors considered
confounding when interpreting their study findings.

Results: 85 of 87 (97.7%) studies reported multivariate analyses for an alcohol-ischemic heart disease relationship.
The most common higher-level confounder domains included were smoking (79, 92.9%), age (74, 87.1%), and BMI,
height, and/or weight (57, 67.1%). However, no two models adjusted, matched, or stratified for the same higher-
level confounder domains. Most (74/87, 85.1%) articles mentioned or alluded to “confounding” in their Abstract or
Discussion sections, but only one stated that their main findings were likely to be affected by residual confounding.
There were five (5/87, 5.7%) authors that explicitly asked for caution when interpreting results.

Conclusion: There is large variation in the confounders considered across observational studies evaluating the
impact of alcohol on ischemic heart disease risk and almost all studies spuriously ignore or eventually dismiss
confounding in their conclusions. Given that study results and interpretations may be affected by the mix of
potential confounders included within multivariate models, efforts are necessary to standardize approaches for
selecting and accounting for confounders in observational studies.
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Background
Over the past few years, there have been a growing
number of studies outlining both harmful and poten-
tially protective effects of alcohol consumption on the
risk of various health-related outcomes, including ische-
mic heart disease [1–7]. Many of these studies, which
have gained widespread attention in the media [8, 9],
have the potential to influence consumer behavior and
can create uncertainty and false notions regarding
healthy or unhealthy practices [10, 11]. The burden of
disease from alcohol is undoubtedly high [8], but there
is less clarity about estimates of risk (or even protection)
with low levels of consumption [6–8, 12, 13]. Typically,
the reported associations between alcohol and health-
related outcomes come from observational studies,
which have inherent methodological limitations that
generate bias and confounding [14, 15].
Confounding is the bias resulting from the presence of

common causes of exposures and outcomes [14, 16, 17];
thus confounders can distort observed exposure-
outcome associations [14, 18, 19]. Although there are
numerous techniques that can be used to account for
confounding in observational research, it is very challen-
ging to completely exclude the impact of unmeasured
residual confounding [17]. Furthermore, many potential
confounders may be unknown to researchers and can be
difficult to identify or measure. Among different investi-
gators studying the same exposures and outcomes, there
may be a lack of consensus about potential confounding
variables that should be considered as matching (i.e. the
selection of comparators or comparison groups with re-
spect to one or more potential confounders), adjustment
(i.e. the inclusion of potential confounders in multivari-
ate analyses), or stratification variables (i.e. the fixing of
levels of confounders by producing groups (strata)
within which confounders do not vary and evaluating
associations within stratum of the confounder(s)). As a
result, individual studies may evaluate different con-
founders and/or report on certain subsets of a larger
pool of potential variables in published articles.
Recently, the Global Burden or Disease (GBD) 2016

Alcohol Collaborators published a meticulous system-
atic analysis of alcohol burden across the world,
which included separate meta-analyses for 23 health
outcomes [8]. Ischemic heart disease was the only
outcome with significant evidence for a J-shaped
curve [8], supporting previous claims that lower-
volume alcohol intake may be associated with no
harm or even protective effects [9, 20, 21]. However,
all of these results come from observational studies,
where confounders may contribute to both favorable
or unfavorable associations [22]. For instance, it has
been proposed that some or all of the U-or-J-shaped
dose-response trends may be attributable to

unmeasurable characteristics that are associated with
alcohol consumption and cardiovascular outcomes
[13, 22]. While some meta-analyses have suggested
that adjusting for common confounders, such as
smoking, age, and sex, does not alter the observed ef-
fect estimates [9], others claim that individual studies
with adjusted effect estimates have lower (attenuated)
protective effects [20].
Concerns have been raised that confounding factors

may affect the results obtained for the alcohol-ischemic
heart disease relationship, as well as their consistency
and reproducibility across different studies [21]. There-
fore, we systematically assessed whether individual ob-
servational studies evaluating the impact of alcohol on
ischemic heart disease considered the same, similar, or
different confounders and how much heterogeneity
existed on how these confounders were defined and op-
erationalized in matching, stratifying, or adjusting for
them in the analyses. Additionally, we examined how au-
thors of the individual studies considered confounding
bias when interpreting their findings.

Methods
Design
Data identification and eligibility
We evaluated the individual studies included in the is-
chemic heart disease meta-analysis conducted by the
GBD 2016 Alcohol Collaborators [8]. We did not per-
form a separate systematic search because the GBD
meta-analysis is recent and comprehensive. Briefly, the
GBD authors performed a systematic review of the lit-
erature published between 1 January 1950 and 31 De-
cember 2016 using PubMed, the Global Health Data
Exchange, and the references of previous meta-analyses.
Studies were excluded if they: did not report on the as-
sociation between alcohol use and ischemic heart dis-
ease; were not cohort, case-control, or case-crossover
studies; did not report a relative measure of risk or cases
and non-cases among the exposed and un-exposed; did
not report dose-response amounts of alcohol use; and
did not have study endpoints that met the case defin-
ition used in the GBD 2016 report [8].

Study characteristics
One author (JDW) manually screened all studies included
in the ischemic heart disease meta-analyses performed by
the GBD 2016 collaborators, and excluded articles that
did not report any information about bivariate or multi-
variate analyses for an alcohol-ischemic heart disease rela-
tionship. For all eligible articles, we then recorded: the
first author’s name; year of publication; study design (i.e.
case-control or cohort); study location (i.e. North Amer-
ica, Europe, Asia, or Other), overall sample size, and name
of the journal publishing the study. InCites™ Journal
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Citation Reports (JCR) was used to determine the 2017
JCR impact factor for each journal. As in previous evalua-
tions, we recorded the most recent impact factor for each
journal for consistency, despite the different publication
dates of the eligible articles [23–25].

Confounding variables
For all eligible articles, we screened the Methods and
Results sections to identify the adjustment variables (i.e.
potential confounders) included in the multivariable
models analyzing the impact of alcohol exposure on is-
chemic heart disease. We recorded how the adjustment
variables were measured (e.g. “age continuous” vs. “age
categorical”) as well as their levels (e.g. age categorical:
< 50, > 50 years). In studies with two or more multivari-
ate models (e.g. a small model adjusted for age vs. a lar-
ger model adjusting for all statistically significant
factors), we extracted the data from the largest model.
We then recorded which variables were used as match-
ing and stratification variables, but were not included as
covariates in the multivariable models. However, with
the exception of gender, we did not capture whether the
analyses were restricted to certain values of specific vari-
ables, e.g. based on eligibility criteria. Lastly, all potential
variables were then grouped into higher-level con-
founder domains (e.g. “age continuous” and “age cat-
egorical” into “age”).

Confounding statements and bias consideration
Following the same protocol as a previous evaluation
[26], we screened the Abstract and Discussion sections
of the included studies using six standardized pre-
specified questions concerning confounding statements
and bias consideration (Table 1).

Analysis
Descriptive statistics were used to characterize eligible
articles and their consideration of confounding variables

within our higher-level domain categories. Separate
“data microarrays” were created to illustrate the con-
founders that were adjusted for by each article [27]. Fig-
ures were created for higher-level confounder domains
and articles were ordered in descending order based on
the number of confounders considered within studies
(x-axis) and times each confounder was considered
across studies (y-axis). The figures were color coded to
indicate whether each study adjusted, stratified, or
matched for each confounder and whether each con-
founder was considered as a continuous or categorical
variable. As suggested during peer review, we also exam-
ined the proportion of articles with confounding state-
ments and bias consideration stratified by publication
date (before 1990, 1990–1999, 2000–2009, 2010+). All
analyses were conducted in R.

Results
Study description
Among the 93 articles referenced by the GBD ischemic
heart disease meta-analysis, six were excluded because
they did not meet the selection criteria (duplicate (n =
2), non-English language (n = 1), could not be located by
a librarian (n = 1), and did not explicitly report results
from analyses evaluating the impact of alcohol on ische-
mic heart disease (n = 2)). Of the 87 remaining eligible
articles (Additional file 1: Table S1), 78 were published
in a journal with a 2017 JCR impact factor (median 6.1
(interquartile range [IQR], 4.2–18.9)) (Table 2).
There were 70 (70 of 87, 80.5%) cohort and 17 (17 of

87, 19.5%) case-control studies (Table 2), which included
a median of 11,957 (IQR, 4843–49,566) and 1602 (IQR,
899–2710) participants, respectively. The majority of the
studies were conducted in either North America (37,
42.5%) or Europe (33, 37.9%). Nearly half of the studies
included both males and females (41, 47.1%). Two arti-
cles did not report results from multivariate regression
analyses.

Confounders considered
The largest models in the 85 articles conducting multi-
variate regression analyses included a median of 9 (IQR,
5–12) adjustment, stratification, and/or matching vari-
ables. The vast majority of the 760 total variables were
adjustment variables (716, 94.2%); 27 (3.6%) were strati-
fication variables and 17 (2.2%) were matching variables
in case-control studies. The 760 variables could be di-
vided into 88 higher-level confounder domains (e.g.,
“history of angina” and “myocardial infarction” as “heart
disease/myocardial infarction/angina”) (Additional file 2:
Figure S1). The five most commonly considered higher-
level domains in the 85 articles were smoking (79,
92.9%), age (74, 87.1%), BMI, height, and/or weight (57,
67.1%), physical activity (40, 47.1%), and education (39,

Table 1 Assessment of consideration of confounding bias in
Abstracts and Discussion [26]

1. “Do the authors mention confounding using explicitly the terms
“confounder(s),” “confounding,” “confound,” or do they allude to it
without using those terms, or is confounding not considered at all?” [26]

2. “Do the authors mention bias using explicitly the term “bias”?” [26]

3. “Do the authors mention specific confounders that have not been
adjusted for? (If yes, what were the reasons? If not, were there
unspecified unmeasured confounders without specifically stating
which ones?” [26]

4. “Do the authors state that their main findings are likely, possibly, or
unlikely affected by residual confounding?” [26]

5. “Do the authors state that their findings need to be interpreted with
caution due to confounding?” [26]

6. “Do the authors call for caution or indicate limitations or uncertainty
due to possible confounding or other bias in their conclusions?” [26]
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45.9%) (Fig. 1). A total of 33 higher-level domains were
only included in one article (Additional file 2: Figure S1).
No two articles evaluating the impact of alcohol on is-
chemic heart disease adjusted, matched, or stratified for
the exact same higher-level confounder domains (Fig. 2,
Additional file 3: Figure S2).
The 41 articles evaluating both males and females

included a total of 391 variables, which could be di-
vided into 65 higher-level confounder domains. The
five most commonly considered higher-level do-
mains in the 41 articles were smoking (39, 95.1%),
age (35, 85.4%), sex (31, 75.6%), BMI, height, and/or
weight (27, 65.9%), and education (23, 56.1%) (Fig. 3,
Additional file 4: Figure S3). When limited to the
10 articles evaluating only female participants, there
were 126 total variables, which could be divided
into 37 higher-level confounder domains. The five
most common domains were smoking (10, 100.0%),
age (10, 100.0%), BMI, height, and/or weight (10,
100.0%), diabetes and diabetes treatment (9, 90.0%),
and hypertensions and hypertension drugs (8,
80.0%). The 34 articles with only male participants
contained 243 variables, which could be divided into
58 higher-level confounder domains. The five most
common domains in the 34 articles were smoking
(30, 88.2%), age (29, 85.3%), BMI, height, and/or
weight (20, 58.8%), cholesterol/cholesterol treatment
(16, 47.1), and systolic blood pressure (12, 35.3%).
Among the 74 articles with models that included age,

one third (24, 32.0%) were categorical variables (Fig. 3),
none of which had the exact same age levels. While most

(68, 86.1%) of the 79 articles adjusting for smoking in-
cluded smoking as a categorical variable, only 20 (20 of
68, 29.4%) were measured the exact same way (i.e., never
smoking, former smoking, and current smoking). Of the
24 (24 of 65, 36.9%) models that included a measure of
BMI as a categorical variable, eight (8 of 24, 33.3%) had
cut-off levels that were used in at least one other study
(n = 2 articles with < 20.0, 20.0–24.9, 25.0–29.9, 30.0–
34.9, 35.0+ kg/m2 and n = 6 articles with < 25, 25–29.9,
30+ kg/m2).

Confounding statements and bias considerations
Across all 87 articles, 56 (64.4%) included a specific
mention of confounding bias in their Abstract and/or
Discussion sections (Table 3). While another 18 (20.7%)
articles alluded to the concept of confounding, without
using any specific terminology, 13 (14.9%) did not men-
tion or allude to confounding in their Abstract and/or
Discussion sections. Over half (50, 57.5%) of the articles
used the term “bias”. Among the eight mentions of bias
that were related to the principle of confounding, three
specifically included the words “confounding” or
“confound”.
Nearly one-third (26, 29.9%) of the articles included a

discussion regarding potential confounders for which
there was no adjustment, and authors frequently (16 of
26, 61.5%) stated that these confounders had not been
measured (Table 3).
Only one article specifically stated that their main

findings were likely to be affected by residual confound-
ing. Another 28 (32.2%) reported it was possible and 15

Table 2 Characteristics of 87 observational studies evaluating the impact of alcohol consumption on ischemic heart disease

Study
characteristics

No. (%)Median (Interquartile Range)

Cohort Case-control Total

Number of studies 70 17 87

Publication year

< 1990 8 (11.4) 2 (11.8) 10 (11.5)

1990–1999 26 (37.1) 5 (29.4) 31 (35.6)

2000–2009 25 (35.7) 8 (47.1) 33 (37.9)

2010+ 11 (15.7) 2 (11.8) 13 (14.9)

Location

North America 33 (47.1) 4 (23.5) 37 (42.5)

Europe 24 (34.3) 9 (52.9) 33 (37.9)

Asia 9 (12.9) 1 (5.9) 10 (11.5)

Other 4 (5.7) 3 (17.7) 7 (8.1)

Population

All 30 (42.9) 11 (64.7) 41 (47.1)

Males only 33 (47.1) 3 (17.7) 36 (41.4)

Females only 7 (10.0) 3 (17.7) 10 (11.5)

Sample size 11,957 (4843–49,566) 1602 (899–2710) 7735 (2634–36,191)

Wallach et al. BMC Medical Research Methodology           (2020) 20:64 Page 4 of 10



Fig. 2 A “data microarray” illustrating the higher-level confounder domains considered in 85 observational studies on alcohol and ischemic heart
disease risk. Domains are ordered based on how many times they were included in multivariate models. Colors represent whether domains were
adjustment, stratification, or matching variables and how they were measured. Refer to Additional file 3: Figure S2 for a larger data microarray

Fig. 1 The most common higher-level confounder domains considered in 85 observational studies on alcohol and ischemic heart disease risk.
Refer to Additional file 2: Figure S1 for a larger data microarray
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(17.2%) reported it was unlikely that their main findings
were to be affected by residual confounding. There were
five (5.7%) that explicitly asked for caution when inter-
preting results (Table 3).
Articles published after 2010 were more likely to in-

clude a specific mention of confounding (12 of 13,
92.3%), use the term “bias” (11 of 13, 84.6%), and ask for
caution when interpreting results (2 of 13, 15.4%) (Add-
itional file 5: Table S2).

Discussion
Our analysis suggests that there is substantial variation
in how adjustment, stratification, and matching con-
founders are defined, operationalized, and discussed
across observational studies evaluating the impact of al-
cohol consumption on the risk of ischemic heart disease.
While the majority of articles accounted for smoking,
age, and BMI, these variables were rarely measured the
exactly same way, and no two models considered the
same higher-level confounder domains. Two-thirds of
the articles specifically mentioned confounding bias in
their Abstract and/or Discussion sections, but less than
2% claimed that their main findings were likely to be af-
fected by residual confounding. Very few articles called
for cautious interpretation due to confounding. Given
the lack of standardized approaches for selecting and
adjusting for confounders, and the inadequate discus-
sions regarding the importance of confounding, individ-
ual findings from observational studies assessing the

impact of alcohol consumption on ischemic heart dis-
ease may need to be interpreted with caution.
Most of the largest multivariate models in observa-

tional studies evaluating the impact of alcohol on the
risk of ischemic heart disease accounted for smoking,
age, BMI, and physical activity. Age and smoking are
two of the most important risk factors for ischemic
heart disease, and studies have regularly found that
these variables confound the alcohol-ischemic heart
disease relationship [21]. Although evidence on the
influence of physical activity and BMI are sparse [21],
a previous evaluation suggested that low BMI and
leisure-time physical activity are more common
among never-drinkers than among light drinkers [28].
However, the authors noted that the differences were
unlikely to be large enough to explain the lower risk
observed among light drinkers compared to abstainers
[28]. Numerous studies have also indicated that
drinking pattern and type of beverage are important
confounders [29]. However, we only identified three
studies evaluating drinking history in their largest
multivariate models. Furthermore, other proposed po-
tential confounders, including cognitive function, diet-
ary habits, and socioeconomic status [12, 13, 30],
were rarely evaluated. Overall, it is unclear whether
the lack of consistency across articles reflects the fact
that there is little consensus about which variables
are potential confounders or the beliefs that the pro-
tective effect of alcohol consumption on the risk for

Fig. 3 A “data microarray” illustrating the higher-level confounder domains considered in 85 observational studies on alcohol exposure and
ischemic heart disease, stratified by the type of population considered. Domains are ordered based on how many times they were included in
multivariate models. Colors represent whether domains were adjustment, stratification, or matching variables and how they were measured. Refer
to Additional file 4: Figure S3 for a larger data microarray
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cardiovascular disease is independent of how well
studies control for confounding [13, 29, 31, 32].
We also found that articles rarely measured similar ad-

justment, matching, or stratification variables the same
way. For instance, although standard categories for BMI
have been proposed in the literature, only one-third of
the categorical BMI variables in our sample had the
same cut-off levels as at least one other study. These
findings build upon previous concerns that it is often
difficult to determine how categorical or continuous ad-
justment variables are treated in analyses [33, 34]. More-
over, different treatment of variables, including incorrect
adjustment for continuous confounders, can have an im-
pact on the observed estimates or result in residual con-
founding [35].
There are a number of reasons that could explain the

variability in the adjustment, stratification, and matching
variables. Although it is possible that authors may not
be able to measure all potential confounders, and

therefore are prevented from considering them in multi-
variate models, it is more likely that there is a lack of
consensus about what should be considered as matching,
adjustment, or stratification variables. Furthermore, re-
searchers may not be reviewing previously published
models to determine potentially important confounders.
Different studies may have different rigor in measuring
some variables, and this can affect whether investigators
want to use these variables in their analyses. It is also
possible that certain models are preferentially reported
or excluded due to biases and potential conflicts of
interest, especially if the unreported multivariate models
resulted in less desirable results [27]. However, the opti-
mal choice of covariates may be difficult to identify and
consensus may be elusive even with the best intentions.
While adjusting for a large number of potential con-
founders is often appropriate and necessary, it can be
particularly challenging to differentiate between poten-
tial confounders and variables that may be in the path
that explains the effect of a risk factor, which should not
be adjusted for. Field-wide systematic exposure assess-
ments may help standardize variable adjustments and
identify the full range of potential effect estimates due to
different modeling considerations (i.e., vibration of ef-
fects) [36]. Small changes in modelling choices, includ-
ing exposure and outcome definitions, covariates
considered, and statistical methods, can have a major
impact on effect estimates observed in observational
studies, and can even flip the direction of effects [36].
Furthermore, greater transparency when it comes to the
choice, measurement, and impact of potential confound-
ing variables is necessary. Without these efforts, the as-
sociations reported in observational studies of alcohol
consumption on ischemic heart disease may need to be
interpreted with great caution.
Our findings, which suggest that meta-analyses of

observational studies evaluating the impact of alcohol
consumption on the risk of ischemic heart disease are
unlikely to identify effect estimates that have been ad-
justed for the same variables, are generalizable to other
fields. When it comes to performing meta-analyses of
observational studies, there are no clear rules regarding
the prioritization of adjusted or unadjusted effect esti-
mates. According to the Cochrane Handbook for Sys-
tematic Reviews of Interventions, review authors should
record both adjusted and unadjusted effect estimates,
but “no general recommendation can be made for the
selection of which adjustment estimate is preferable”
[37]. Instead, review authors are advised to consider the
estimates from the models adjusted for the maximum
number of covariates, the estimates from the primary
models, or the estimates from the models with the
largest number of confounders that are identified as
important. Previous evaluations suggests that meta-

Table 3 Statements of confounding in studies assessing the
impact of alcohol on ischemic heart disease

Question

No. (%, 95 Confidence Interval)

Total 87 (100)

Term “Confounding” mentioned in Abstract or Discussion

Specific 56 (64.4, 54.0–74.7)

Alluded 18 (20.7, 12.6–29.9)

No 13 (14.9, 8.0–23.0)

Term “Bias” used in Abstract or Discussion

Yes 50 (57.5, 47.1–67.8)

No 37 (42.5, 32.2–52.9)

Specific mention of non-adjusted confounders

Yes 26 (29.9, 20.7–40.2)

Not measured 16 (61.5 42.3–80.8)

Other reasons 5 (19.2, 3.8–34.6)

No reasons 5 (19.2, 3.8–34.6)

No 61 (70.1, 59.8–79.3)

Any mention that findings may be affected by confounding?

Likely 1 (1.2, 0.0–3.4)

Possibly 28 (32.2, 23.0–42.5)

Unlikely 15 (17.2, 9.2–25.3)

No statement 43 (49.4 39.1–59.8)

Cautious interpretation needed

Yes 5 (5.7, 1.1–11.5)

No statement 82 (94.3, 88.5–98.9)

Conclusions include any limitations regarding confounding

Yes 9 (10.3, 4.6–17.2)

No 78 (89.7, 82.8–95.4)
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analyses of observational studies evaluating the relation-
ships between type 2 diabetes and cancer and environ-
mental risk factors and dementia often only identify
effect estimates from models that consider age and sex,
despite a large number of other measurable confounders
[38, 39]. Other assessments indicate a lack of consistency
among the adjustment variables considered across indi-
viduals studies included in meta-analyses [40–42]. To fa-
cilitate the inclusion of effect estimates in meta-analyses,
the raw data of individual studies should be made avail-
able to review authors in order to generate effect esti-
mates across studies using the same or similar
confounders. However, raw data are currently rarely
available for observational studies [23, 25]. Even if they
were available, it is likely that different datasets may vary
substantially in what variables they have recorded.
We found that most authors mentioned the concept of

confounding, which is consistent with prior evaluations
of considerations of confounding in epidemiological
studies [26]. However, we found that authors rarely
explicitly state that their main findings should be inter-
preted with caution due to confounding. This is signifi-
cantly lower than what has been previously observed
among surveyed samples of high-impact observational
studies and research focusing on medical interventions
[34, 43]. Moving forward, more transparent reporting
and discussions regarding the selection of confounders,
including the potential impact of residual confounding,
are necessary to ensure that observational associations
on the relationship between alcohol consumption and is-
chemic heart disease can be properly interpreted.
This study has a number of potential limitations. First,

our sample included 87 observational studies identified
by a previous meta-analysis. Therefore, some articles
may have been missed and the results may not be
generalizable to all observational studies focusing on
alcohol-health related outcomes. Although there may
have been multiple reports of the same study, different
authors evaluating the same data sources could have
considered the same or different variables. Second, our
study includes articles published between 1981 and
2015, and reporting practices may or may not have
changed over time [43]. Our post-hoc analysis suggests
that articles published after 2010 were more likely to
mention confounding and biases. While these findings
may suggest improvements over time, our sample was
not designed to assess trends. Third, for each article, we
focused only on the covariates included in the largest
model. However, it is possible that authors may have
considered additional potential confounders that were
not eventually included in the largest model. Moreover,
some variables included in the largest models may have
been considered as predictors worth capturing, instead
of potential confounders. However, it is difficult to

assess which variables were explicitly deemed to be po-
tential confounders. Fourth, given the different patient
populations, it also may not have made sense to adjust
for the same characteristics in all studies (e.g., adjusting
for sex in a study of only women). This is why we re-
ported separate results for studies that included both
genders, only men, and only women. It is possible that
some additional confounders beyond gender were dealt
with by restriction, i.e. by using eligibility criteria that re-
stricted upfront the study population to have the same
value for a potential confounder.

Conclusion
Our evaluation shows that although most authors men-
tion confounding bias when interpreting their study
findings, they rarely call for results to be interpreted
with caution. However, the high variation in how con-
founders were defined and handled suggests that the
results and their interpretation in these studies may have
been affected by definition and handling choices.
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