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Abstract

Background: Missing data is a pervasive problem in clinical research. Generative adversarial imputation nets (GAIN),
a novel machine learning data imputation approach, has the potential to substitute missing data accurately and
efficiently but has not yet been evaluated in empirical big clinical datasets.

Objectives: This study aimed to evaluate the accuracy of GAIN in imputing missing values in large real-world
clinical datasets with mixed-type variables. The computation efficiency of GAIN was also evaluated. The
performance of GAIN was compared with other commonly used methods, MICE and missForest.

Methods: Two real world clinical datasets were used. The first was that of a cohort study on the long-term
outcomes of patients with diabetes (50,000 complete cases), and the second was of a cohort study on the
effectiveness of a risk assessment and management programme for patients with hypertension (10,000
complete cases). Missing data (missing at random) to independent variables were simulated at different
missingness rates (20, 50%). The normalized root mean square error (NRMSE) between imputed values and
real values for continuous variables and the proportion of falsely classified (PFC) for categorical variables were
used to measure imputation accuracy. Computation time per imputation for each method was recorded. The
differences in accuracy of different imputation methods were compared using ANOVA or non-parametric test.

Results: Both missForest and GAIN were more accurate than MICE. GAIN showed similar accuracy as
missForest when the simulated missingness rate was 20%, but was more accurate when the simulated
missingness rate was 50%. GAIN was the most accurate for the imputation of skewed continuous and
imbalanced categorical variables at both missingness rates. GAIN had a much higher computation speed (32
min on PC) comparing to that of missForest (1300 min) when the sample size is 50,000.
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Conclusion: GAIN showed better accuracy as an imputation method for missing data in large real-world
clinical datasets compared to MICE and missForest, and was more resistant to high missingness rate (50%).
The high computation speed is an added advantage of GAIN in big clinical data research. It holds potential
as an accurate and efficient method for missing data imputation in future big data clinical research.

Trial registration: ClinicalTrials.gov ID: NCT03299010; Unique Protocol ID: HKUCTR-2232

Keywords: Generative adversarial network, Missing data imputation, Machine learning, Clinical research, Big data

Background
Missing data is a pervasive problem in big data re-
search, clinical trials and epidemiological studies [1].
There are a number of reasons that could account
for missing data, such as non-response to question-
naires, study participants lost to follow up, omission
of data entry, failure of equipment, or incomplete or
lost records [2, 3]. Mere exclusion of cases with
missing data from analysis may lead to biased infer-
ence, reduced statistical power and generalisability of
results [4, 5]. According to missingness assumptions, the
problem of missing data can be classified into three cat-
egories, including missing completely at random (MCAR),
missing at random (MAR), and missing not at random
(MNAR) [6–8]. In general, the majority of the missing
data in medical research are assumed to be MAR [9]. In
contrast to MCAR, where there are no systematic differ-
ences between the missing and observed values, with
MAR data, there will be differences between missing and
observed values but these differences can be explained by
other observed data [10–12].
Multiple imputation by chained equations (MICE) is

the most commonly used statistical procedure for
handling missing data [5], particularly for data that are
MAR [13]. MICE is widely available in many statistical
software including SPSS, STATA and R. Although it is
important to note that MICE may lead to biased results
because, by default it uses predictive mean matching
(pmm) and logistic regression (LR), which are limited
in the ability to handle non-linear relationships and in-
teractions between variables [14]. A mean to overcome
non-linearity is through random forest, an ensemble
machine learning algorithm of multi-classification or
decision tree regression [15]. Stekhoven et al. have de-
veloped a method ‘missForest’ (based on random forest)
to impute missing values in mixed-type datasets [16].
Subsequent studies have shown that missForest outper-
formed MICE in both simulated and real world datasets
[17]. However, a drawback of missForest is that its long
computation time, limiting its practicality in big data
research.
Generative adversarial network (GAN), an unsuper-

vised algorithm, is a popular machine learning method
that has been widely applied in both data generation

[18] and image processing [19]. Generative adversarial
imputation nets (GAIN), which is based on GAN, was
recently developed and found to outperform other
methods in terms of imputation accuracy in substitut-
ing MCAR data in five open-source datasets [20]. How-
ever, the accuracy of GAIN for imputing MAR data and
of mixed-type variables, both of which are common in
medical research remains unclear.
The main aim of this study was to evaluate the

accuracy of GAIN in imputing missing values in real-
world clinical datasets with mixed-type variables.
Further, this study also aimed to examine the
computation efficiency of GAIN as well as compare
its performance with those of MICE and missForest.
It is anticipated that the results will inform other
researchers on the choice of missing data imputation
methods in big clinical data research.

Methods
Study setting and datasets
Two large real world clinical datasets from two longi-
tudinal cohort studies on primary care patients with
chronic diseases were used. The first dataset was that
of a study on the prediction of complications and
mortality among a cohort of 141,516 patients with
diabetes [21]. A total of 14 (out of 21) independent
baseline variables had missing data, of which 12 vari-
ables had a missingness rate of less than 20%. Overall,
the proportion of missing data ranged from 0.50%
(systolic blood pressure) to 48.99% (urine albumin to
creatinine ratio [Urine ACR]). Urine ACR showed the
highest proportion of missing data as it was not
routinely collected in Hong Kong primary care prior
to 2010. We selected 50,000 subjects without any
missing values for these 21 variables (15 continuous
predictors and six categorical predictors) at baseline
and seven dependent outcome variables measuring
various complications of diabetes and mortality.
The second dataset was that of a cohort study evalu-

ating the effectiveness of a risk assessment and man-
agement programme for patients with hypertension
[22]. We identified 10 independent variables, including
five continuous variables and five categorical variables,
for inclusion in the analyses. In the original dataset,
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the data missingness rate for these 10 variables ranged
from 1.5 to 26%. A total of 10,000 subjects without
any missing values for these 10 variables were randomly
selected. The data were extracted together with the data
for the two outcome variables (cardiovascular diseases
[CVD] and mortality) in order to replicate the imputation
analyses and strengthen the generalizability of the results
from the first dataset.
For easy reference, the first dataset is referred as the

‘DM-data’ and the second is referred as the ‘HT-data’.
The description of the characteristics for these two
datasets can be found in Supplementary Tables 1 & 2.
Institutional Review Board of the University of Hong

Kong—the Hospital Authority Hong Kong West Cluster
(reference number: UW 15–258) approved this study
and usage of data. Individualized informed consent
is not required. All methods on the datasets were
carried out in accordance with relevant guidelines
and regulations.

Missing data simulation
For both DM-data and HT-data, data ‘missing at ran-
dom’ (MAR) was simulated at different missingness
rates (20 and 50%) to create the datasets for the imput-
ation testing [17, 23]. The missingness was introduced
to independent variables following Bernoulli distributions
based on linear combination of dependent variables (fully-
observed). At each missingness rate, ten different incom-
plete datasets were generated using different randomised
linear combination parameters. We did not simulate
missing values in the dependent variables, although
they were incorporated in the imputation process as
auxiliary variables [24].

Imputation procedures with GAIN
A number of improvements were applied to the basic
GAIN construction built by Yoon et al. [20] to optimize
the model. First, the random noise was substituted by
the mean value of each variable so as to reach the opti-
mal solution faster. Batch normalization with gradient
descent optimizer was also used to allow a larger learn-
ing rate. Combination of the loss of continuous and
categorical variables with separate weights (α and β)
was used to deal with a dataset with mixed types of
variables. A greedy search strategy was adopted to seek
the best combination of hyper-parameters. This strat-
egy was adopted due to the large number of hyper-
parameters to be tuned in the GAIN training process,
including k, phint, α, β, number of iterations, number of
hidden layers, number of neurons in each layer, activa-
tion functions, learning rate and optimizer. The code is
a v a i l a b l e a t G i t h u b ( h t t p s : / / g i t h u b . c om /
dongdongdongdwn/GAIN-Dovey) and the optimal
hyper-parameters are presented in the Supplementary

Table 3. The brief imputation procedures with GAIN
are presented in Algorithm 1.

MICE and missForest
Imputation by MICE and missForest were carried out by
standard procedures [16, 24] with R package mice v3.6.0
and missForest. The imputation model of MICE was
specified as predictive mean matching (pmm) and logistic
regression (LR) as default, respectively, for continuous
variables and categorical variables. The iteration number
was set to 10. For missForest, the number of trees was set
to 20, and the number of variables randomly sampled at

each split was set to d
1
2 (sqrt dimensionality). The max-

iterations number of missForest was set to 10. The iter-
ation numbers of MICE and missForest were determined
based on preliminary experiments to ensure they could
achieve the best performance (as shown in Supplementary
Fig. 1).

Outcome measures and data analysis
Accuracy was measured by imputation error, defined as
the difference between the imputed values and real
values. It was assessed by normalized root mean square
error (NRMSE) for continuous variables and proportion
of falsely classified (PFC) subjects for categorical vari-
ables. NRMSE and PFC were defined as follows:

NRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

PN

i¼1
ðbxi−xiÞ2

q

PN

i¼1
xi

N :

PFC ¼ 1− Ncorrect
N

where bxi is the imputed value and xi is the original
value in continuous variables, Ncorrect is the total number
of correctly classified values in categorical variables.
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For each simulated incomplete dataset, the imputation
was repeated 100 times using each method. The mean
NRMSE for each continuous variable was calculated by
averaging the NRMSE obtained from the 100 imputa-
tions. The mean PFC was calculated by averaging
the PFC obtained in each imputation for categorical
variables. NRMSE and PFC were treated as continu-
ous variables in the comparative analysis, and their
distributions were tested by Shapiro-Wilk normality
test. Correspondingly, the differences in mean
NRMSE or PFC among methods were tested by one-
way ANOVA or non-parametric test.
Density plots and bar plots were used to illustrate the

imputation differences among methods, for representa-
tive continuous variables and categorical variables
respectively. For the DM-data, systolic blood pressure
(SBP), fasting glucose, hypertension history and smok-
ing status were selected to represent normal distributed
continuous variables, skewed continuous variables, bal-
anced categorical variables and imbalanced categorical
variables, respectively. Likewise, age, total cholesterol to
high-density lipoprotein (TC/HDL) ratio, sex and lipid
lowering drugs usage were selected as the representa-
tive variables for the HT-data.
For DM-data with 5000 to 50,000 subjects, the compu-

tation time of each method to complete an imputation
process on a personal computer (PC) and high perform-
ance computing (HPC) device was recorded and plotted
for comparison. The relevant machine configuration
of the PC and HPC can be found in Supplementary
Table 3.
Missing data simulation, MICE, missForest and com-

parison were operated in R 3.5.1. GAIN was developed
with Python 3.5. The level of significance for all statis-
tical tests was set as 0.05.

Results
Experiments on DM-data
Table 1 presents the imputation errors (NRMSE and
PFC for continuous and categorical variables, respect-
ively) of different imputation methods at missingness
rates of 20 and 50%. Overall, GAIN and missForest
were superior to MICE for both continuous and cat-
egorical variables, irrespective of the missingness rates
(p < 0.001). When the missingness rate was 20%, GAIN
was superior to missForest with lower imputation
errors (p < 0.05) for highly skewed (skewness> 4) con-
tinuous variables (e.g., creatinine, fasting glucose, urine
ACR) and highly imbalanced categorical variables
(proportion of minority class was close to or lower
than 10%, e.g., lipid lowering drug usage, DM treat-
ment). MissForest showed better accuracy for some
normally distributed continuous variables (e.g., age, SBP,
DBP) and some relatively balanced categorical variables

(e.g., sex, hypertension history) (p < 0.05). GAIN and
missForest showed similar accuracy for the remaining
variables (p > 0.05). However, GAIN was superior to
missForest for the majority of variables when the
missingness rate increased to 50% (p < 0.05). No sta-
tistically significant differences were observed between
GAIN and missForest for the less skewed continuous
variables (e.g., age, SBP, LDL-C) and relatively balanced
categorical variables (e.g., sex, hypertension history).

Experiments on HT-data
The imputation errors in the HT-data of different
methods are presented in Table 2. The findings were
similar to those found in the DM-data. Overall, GAIN
and missForest outperformed MICE for both missing-
ness rates (20 and 50%) irrespective of the type of
variables. When the missingness rate was 20%, GAIN
was superior to missForest for more skewed continuous
variables (e.g., SBP, TC/HDL-C ratio, hospital admission
times) and more imbalanced categorical variables (e.g.,
smoking, hypertensive drugs, lipid lowering drugs). If
the missingness rate increased to 50%, GAIN was more
accurate than missForest for the majority of the variables
(p < 0.05).
To illustrate the differences of the imputation errors

among methods, density plots and bar plots were used
to visualize the representative variables at 50% missing-
ness rate. Density plots, showing the distribution of the
absolute difference between imputed values and real
values of continuous variables, are presented in Fig. 1.
The absolute differences between real values and values
generated by GAIN were more close to 0 and concen-
trated, indicating good accuracy. MICE tended to have a
broader distribution of errors and a higher density of
greater errors. The differences in the patterns among
different methods were more noticeable on data that
were skewed (e.g. fasting glucose, TC/HDL ratio).
The bar plots illustrate the distribution of imputed

values and the correct proportion in each category
(Fig. 2). The imputed values of MICE and GAIN showed
the same distribution as the original data, while missFor-
est generated a higher proportion of the majority group
but a lower proportion of the minority group. Mean-
while, for both balanced (i.e. sex, hypertension history)
and imbalanced categorical variables (i.e. smoking, lipid
lowering drugs usage), GAIN imputation resulted in a
more accurate allocation to the minority group when
compared to the other two methods.

Computation time
The computation time of one imputation process on
the DM-data by each method using PC and HPC for
different sample sizes are presented in Fig. 3. MICE
was the fastest for small sample sizes (up to 30,000
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subjects) and GAIN was the fastest for the larger
sample (50,000 subjects). MissForest showed much
longer computation times for all sample sizes com-
pared to the other two methods. The computation
time of missForest increased exponentially with in-
creasing sample size.

Discussion
Missing data are inevitable in medical research and it is
important that appropriate methods are used to solve
this problem in order to make full use of the data and
get unbiased inference. This study has introduced a
novel imputation method, GAIN, and demonstrated its
imputation accuracy and efficiency outperformed two
commonly used methods (MICE and missForest). The

major strength of this study was the use of two large
real-world clinical datasets with mixed-type variables.
To the best of our knowledge, this was the first study
to evaluate the application of GAIN for the imputation
of missing clinical data with mixed type variables.
Overall, GAIN showed similar imputation accuracy as

missForest when the missingness rate was relatively low
(20%) but performed better than missForest when the
missingness rate was higher (50%). GAIN also had bet-
ter accuracy for imputing skewed continuous variables
and imbalanced categorical variables. Furthermore, the
imputation time of GAIN increased only slightly with
increasing sample size, making it the most efficient
method for performing big data analytics on a sample
size of more than 30,000.

Table 2 Imputation errors of different methods in HT-data

Skewness or proportion
of minority class

MICE missForest GAIN

Missingness rate = 20%

Continuous variables

Age, years −0.018 0.063 ± 0.002 0.049 ± 0.001 a,b 0.057 ± 0.004 a

SBP 0.492 0.075 ± 0.001 0.058 ± 0.000 a 0.048 ± 0.000 a,c

Charlson index 0.146 0.154 ± 0.002 0.121 ± 0.001 a,b 0.144 ± 0.003 a

TC/HDL-C ratio 3.139 0.175 ± 0.003 0.137 ± 0.001 a 0.115 ± 0.001 a,c

Hospital admission times 7.037 2.379 ± 0.069 1.885 ± 0.042 a 1.752 ± 0.141 a,c

Categorical variables

Smoking 7.45% 0.133 ± 0.007 0.123 ± 0.003 a 0.098 ± 0.010 a,c

Hypertensive drugs 8.10% 0.149 ± 0.006 0.126 ± 0.003 a 0.098 ± 0.002 a,c

Lipid Lowering drugs 9.99% 0.173 ± 0.007 0.159 ± 0.003 a 0.129 ± 0.006 a,c

Overweight 37.89% 0.433 ± 0.01 0.400 ± 0.005 a 0.359 ± 0.003 a,c

Sex 41.21% 0.448 ± 0.019 0.412 ± 0.004 a 0.405 ± 0.022 a

Missingness rate = 50%

Continuous variables

Age, years −0.018 0.129 ± 0.002 0.102 ± 0.001 a 0.094 ± 0.007 a,c

SBP 0.492 0.115 ± 0.001 0.095 ± 0.001 a 0.080 ± 0.002 a

Charlson index 0.146 0.295 ± 0.001 0.239 ± 0.002 a 0.241 ± 0.009 a

TC/HDL-C ratio 3.139 0.279 ± 0.004 0.235 ± 0.003 a 0.183 ± 0.002 a,c

Hospital admission times 7.037 3.766 ± 0.12 3.199 ± 0.057 a 3.004 ± 0.246 a,c

Categorical variables

Smoking 7.45% 0.335 ± 0.006 0.277 ± 0.015 a 0.267 ± 0.012 a,c

Hypertensive drugs 8.10% 0.368 ± 0.014 0.305 ± 0.004 a 0.276 ± 0.005 a,c

Lipid Lowering drugs 9.99% 0.441 ± 0.015 0.319 ± 0.006 a 0.304 ± 0.009 a,c

Overweight 37.89% 1.135 ± 0.018 1.029 ± 0.019 a 0.850 ± 0.020 a,c

Sex 41.21% 1.149 ± 0.02 1.050 ± 0.013 a 1.007 ± 0.055 a

Notes
SBP Systolic Blood Pressure, TC Total Cholesterol, HDL-C High-Density Lipoprotein Cholesterol
Since NRMSE and PFC both followed normal distribution (Shapiro-Wilk normality test p value > 0.05), imputation errors of different methods were compared using
one-way ANOVA. If p < 0.05, paired methods were compared using independent sample t-test;
aThe mean imputation error is significantly lower than that of MICE (p < 0.05)
bThe mean imputation error is significantly lower than that of GAIN (p < 0.05)
cThe mean imputation error is significantly lower than that of missForest (p < 0.05)
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Imputation performance and data characteristic
These findings matched those observed in an earlier
study where GAIN outperformed other imputation
methods on a cancer dataset in which all variables were
continuous [20]. It is important to recognise that the impu-
tations of mixed-type variables are challenging but essential
for clinical research [10]. Our results provide preliminary
evidence that GAIN is a suitable method for the imputation
of missing clinical data with mixed type of variables, par-
ticularly those with highly skewed and imbalanced data.
The results of this study also showed that, despite

MICE being commonly used, there is still room for its
improvement [14, 15]. As can be seen from the density
plots, the default setting of MICE (pmm) replicated
some observed extreme values to seek for the same dis-
tribution as the observed data, however, these extreme
values might be far from the real values and lead to
inaccuracy. On the other hand, missForest and GAIN,
through machine learning, are more “moderate” and
produced credible values, which are closer to the mean
level of the observed data, yielding more accurate imput-
ation results.

Imputation performance and missingness rate
It is recognized that data with a higher missing propor-
tion are likely to increase further inference bias. There is

no consensus on the maximum missing data rate that
would allow for substitution by imputation since it is de-
termined by various factors, including the missingness
assumption, participation of auxiliary variables, data
quality and also imputation methods [25]. In medical
research and clinical trials, the rule of thumb for an
acceptable missingness rate is 20% or less [26, 27], but
much higher rates are commonly observed in real prac-
tice. For example, as shown in the two large real-world
clinical datasets in this study, the data missingness rates
of some variables were nearly 50%. In order to explore
how the imputation accuracy would be affected by the
data missingness rate, we evaluated the three methods
on simulated data with missingness rates of 20 and 50%.
It was found that GAIN was more resistant to the effects
of a higher missingness rate. This is because the imput-
ation power of GAIN depend not only on observed
values but also on the feedback from the discriminator.
GAIN therefore has the potential to accept a higher
threshold of data missingness rate and maximize the use
of research data.

Computation time
In addition to the measures on accuracy, this study also
recorded the computation time as a performance indicator.
Computation time cannot be neglected, especially with the

Fig. 1 Density plots displaying the distribution of the absolute difference between imputed values and true values on continuous variables by
different methods (missingness rate = 50%). (Note: a and b are representative continuous variables in DM-data, c and d are representative
continuous variables in HT-data)
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large datasets in many cohort studies. GAIN stands out in
its efficiency by virtue of its unique mechanism in which
the number of parameters is relatively independent of the
sample size.
Multiple imputation (MI) is recommended to avoid

the uncertainty of single imputation. However, it will
increase the computation time. In general, if MI is
adopted, the imputation times (m) is at least 5 with

some researchers using 10 or more [8]. MissForest
will take approximately 8 days (200 h) of PC compu-
tation time to impute the missing data with a sample
size of 50,000 with multiple imputation of 10 times.
The computation time will also lengthen exponen-
tially as the sample size increases. The utilization of
HPC and parallel processing may save some time but
may not be feasible in many settings.

Fig. 3 Computation time of one imputation process by each method on DM-data. a Computation time on PC; b Computation time on HPC

Fig. 2 Bar plots displaying the distribution of imputed allocation of categorical variables by different methods (missingness rate = 50%). (Note: a
and b are representative continuous variables in DM-data, c and d are representative continuous variables in HT-data; Shaded areas indicate the
proportion that correctly imputed in each category by each method)
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Further implication for practice
There is no one best procedure to solve the problem of
missing data in medical research. Indeed, the selected
method will depend on the missingness assumption as
well as auxiliary variables that could explain why the
data is missing [28]. For example, complete case analysis
might be preferable over MI in some situations [20].
Based on our findings, we would suggest taking into
consideration missingness rate, variable distribution, and
the expected computation time when choosing the
appropriate imputation method. In addition, the use of
more than one imputation method and sensitivity ana-
lysis could improve the reliability of the results.

Limitation
This study had a number of limitations. First and fore-
most, this study had only focused on the imputation
accuracy but not post-imputation statistical inference
effectiveness of different imputation methods. The goal
of missing data imputation is to obtain statistically valid
inferences from incomplete data rather than to re-create
the true data. Van Buuren has pointed out that imput-
ation is not prediction, and the method that best
recovers the true data might be nonsensical or contain
severe flaws [8]. Further studies should be conducted to
evaluate these imputation methods with respect to post-
imputation statistical inferences. Second, a missingness
rate of more than 50% was not simulated in this study as
some researchers have suggested that a missingness rate
of more than 50% is not acceptable for clinical studies
[25]. Third, the variables included in this study were
cross-sectional data, hence the results may not be
generalizable to missing data problem in longitudinal
studies with repeated observations.

Conclusion
Overall, when compared to MICE and missForest, GAIN
showed better accuracy in the imputation of missing
data in large real world clinical datasets, particularly for
imbalanced and skewed data, and when the missingness
rate was high (50%). GAIN also has outstanding compu-
tation speed in handling large samples (greater than 30,
000 subjects) and holds potential as an accurate and
efficient method for missing data imputation in future
big data clinical research.
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