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Abstract 

Background: Novartis and the University of Oxford’s Big Data Institute (BDI) have established a research alliance with 
the aim to improve health care and drug development by making it more efficient and targeted. Using a combina‑
tion of the latest statistical machine learning technology with an innovative IT platform developed to manage large 
volumes of anonymised data from numerous data sources and types we plan to identify novel patterns with clinical 
relevance which cannot be detected by humans alone to identify phenotypes and early predictors of patient disease 
activity and progression.

Method: The collaboration focuses on highly complex autoimmune diseases and develops a computational 
framework to assemble a research‑ready dataset across numerous modalities. For the Multiple Sclerosis (MS) project, 
the collaboration has anonymised and integrated phase II to phase IV clinical and imaging trial data from ≈35,000 
patients across all clinical phenotypes and collected in more than 2200 centres worldwide. For the “IL‑17” project, the 
collaboration has anonymised and integrated clinical and imaging data from over 30 phase II and III Cosentyx clinical 
trials including more than 15,000 patients, suffering from four autoimmune disorders (Psoriasis, Axial Spondyloarthri‑
tis, Psoriatic arthritis (PsA) and Rheumatoid arthritis (RA)).

Results: A fundamental component of successful data analysis and the collaborative development of novel machine 
learning methods on these rich data sets has been the construction of a research informatics framework that can 
capture the data at regular intervals where images could be anonymised and integrated with the de‑identified clini‑
cal data, quality controlled and compiled into a research‑ready relational database which would then be available 
to multi‑disciplinary analysts. The collaborative development from a group of software developers, data wranglers, 
statisticians, clinicians, and domain scientists across both organisations has been key. This framework is innovative, 
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Background
Novartis and the University of Oxford’s Big Data Insti-
tute (BDI) have established a research alliance with the 
aim to improve health care and drug development by 
making it more efficient and targeted. Working with 
multi-disciplinary teams and using artificial intelligence 
(AI) and advanced analytics, the collaboration expects 
to transform how multiple large multidimensional (clini-
cal, imaging, omics, biomarkers) datasets are combined, 
analysed and interpreted to identify phenotypes and early 
predictors of patient disease activity and progression, and 
to improve prognosis for patients. The collaboration cur-
rently focuses on two projects; one on Multiple Sclerosis 
(MS) and one on several autoimmune diseases treated 
with the -IL-17 antibody Cosentyx (secukinumab). The 
collaboration will also be making use of anonymised data 
from approximately 5 million patients from both the UK 
and international partner organisations, together with 
anonymised data captured from relevant Novartis clini-
cal trials - in a total of approximately 50,000 patients. 
Using the BDI’s latest statistical machine learning tech-
nology and experience in data analysis, combined with 
Novartis’ clinical expertise and high-quality clinical trial 
data, the collaboration expects to better understand the 
underlying disease and early predictors of disease activity 
to improve prognosis for patients.

Here we describe the data anonymisation and the 
development of an innovative IT environment and AI 
technology, through which the alliance is working collab-
oratively to identify patterns, often across multiple data 
sources and types, which cannot be detected by humans 
alone. Novartis and the BDI expect to gain insights into 
the characteristics of specific, complex diseases and their 
pathways to understand what drives disease progression, 
and to understand commonalities between diseases.

Methods
A large‑scale high‑dimensional dataset
The collaboration currently focuses on Multiple Sclero-
sis (MS) and other inflammatory diseases in dermatol-
ogy and rheumatology which are major areas of drug 
development. A computational framework and data 

management process have been established to facili-
tate the collaboration and enabling all data scientists 
to work together on the data. Throughout the next sec-
tion we will describe the breadth and scope of the data 
contributed in both the Multiple Sclerosis and IL-17 
projects, highlighting the variety of data types and 
modalities, the global nature of the data generation and 
the longitudinal aspects which increase the complexity 
of data management, curation and integration to enable 
us to produce research ready datasets of the highest 
utility to the statisticians and analysts.

Clinical trial data from patients
The core data used in the collaboration stem from 
Novartis clinical trials. All trials were conducted in 
accordance with the provisions of the International 
Conference on Harmonisation guidelines for Good 
Clinical Practice and the principles of the Declaration 
of Helsinki. The trial populations were defined by eligi-
bility criteria (i.e. inclusion and exclusion criteria), all 
trial procedures followed trial protocols, specifying the 
purpose of the experiment, the medical objectives, the 
endpoints, the assessments and assessment frequencies, 
as well as the statistical analysis methods to address 
the key-objectives of the trials. All trial protocols were 
approved by an institutional review board or ethics 
committee and all patients or their legal representatives 
gave written informed consent before any trial-related 
procedures were performed. In general, data from clini-
cal trials can only be used if the usage is covered by the 
informed consent. Usage beyond the informed consent 
defined scope requires the data to be anonymised in 
order that they are no longer personal data. To main-
tain data privacy, all data have been anonymised before 
use for analyses by the collaboration. The collaboration 
uses dose finding studies (phase II), confirmatory clini-
cal trials (phase III) which are designed to confirm the 
efficacy and safety of a new treatment option versus a 
control treatment to seek regulatory approval for the 
new treatment, and phase IIIb and IV studies which are 
typically open-label studies after the approval of a drug. 
For illustration purposes, the design of a typical con-
firmatory (phase III) clinical trial is presented in Fig. 1.

as it facilitates collaborative data management and makes a complicated clinical trial data set from a pharmaceutical 
company available to academic researchers who become associated with the project.

Conclusions: An informatics framework has been developed to capture clinical trial data into a pipeline of anonymi‑
sation, quality control, data exploration, and subsequent integration into a database. Establishing this framework has 
been integral to the development of analytical tools.

Keywords: Machine learning, Data management, Data anonymisation, Clinical trial
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Multiple sclerosis (MS) project
Multiple Sclerosis (MS) is a chronic, immune-mediated 
disease of the central nervous system (CNS) charac-
terized by inflammation, demyelination, and axonal/
neuronal destruction, ultimately leading to severe dis-
ability. MS is the most common autoimmune demy-
elinating disorder of the CNS, affecting approximately 
2.3 million individuals worldwide (https:// www. msif. 
org/ about- us/ who- we- are- and- what- we- do/ advoc acy/ 
atlas/).

MS typically affects young adults (mean age at onset 
30 years) and women are affected more often than men. 
Reflecting the current understanding of MS, the disease 
course of MS can be grouped into 2 corresponding main 
MS categories [1]:

• relapsing MS (RMS): clinically isolated syndrome 
(CIS), relapsing-remitting MS (RRMS), active sec-
ondary progressive MS (SPMS)

• progressive MS: secondary progressive Multi-
ple Sclerosis (SPMS) and primary progressive MS 
(PPMS)

For Multiple Sclerosis (MS), the collaboration has inte-
grated data from a total of approximately 35,000 MS 
patients collected in more than 2200 centres across 57 
countries in 34 clinical trials (4 phase II trials of which 
3 had extensions, 13 phase III trials of which 5 had 
extensions and 9 phase IV trials) which were conducted 
between years 2003 and now (2019 and ongoing). Over 
88,000 patient-years of data is on record with individual 
patients being followed up for up to 15 years. Studies 
include randomised controlled clinical trials from three 
major drug development programs including patients 
from placebo- and active control arms, but also open-
label and real-world studies which used other disease 
modifying therapies, in all phenotypes of MS patients:

• Relapsing Remitting MS (N ~ 32,000)
• Primary- and secondary progressive MS (N > 2800)

The database covers the entire spectrum of MS pheno-
types including paediatric (N = 235), treatment naive MS 
patients (N = 5445), but also patients who had the disease 
for > 25 and up to 50 years (N = 1624).

Fig. 1 A schematic of a typical randomised clinical trial. A typical confirmatory phase III clinical trial, followed by an open‑label extension 
study. During a screening period, and after signing informed consent, eligibility of the patient for the trial is assessed. Eligible patients may then 
be randomised to one or several test and control (placebo or active control) treatments. In a double‑blind study, patients, physicians and study 
personnel are blinded to the patient’s treatment assignment until the core experiment has been completed and all assessments have been 
collected. Then the database is locked, the treatment allocation unblinded and the data analysed (core analysis). Often patients who complete a 
core study are offered to continue in an open‑label study, for instance on the newly tested treatment until the new treatment option becomes 
available on the market. All assessments and study procedures are defined by a study protocol. EOS represents the end of the study

https://www.msif.org/about-us/who-we-are-and-what-we-do/advocacy/atlas/
https://www.msif.org/about-us/who-we-are-and-what-we-do/advocacy/atlas/
https://www.msif.org/about-us/who-we-are-and-what-we-do/advocacy/atlas/
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The dataset also includes a wealth of different data 
modalities, including detailed information on demog-
raphy and baseline characteristics, medical history, MS 
relapses (> 16,000 relapses recorded) with symptoms 
and recovery grades, physical disability assessments 
(> 238,000 neurological assessments of the Expanded 
Disability Status Scale [EDSS]) covering all levels of dis-
ability (from EDSS = 0 normal neurological exam with no 
disability to EDSS = 10 death due to MS), 25-ft walking 
test (walking ability), 9-hole peg test (hand coordination), 
cognitive assessments (PASAT, SDMT), laboratory val-
ues, ECGs, vital signs, concomitant medication, detailed 
treatment information, and adverse event data. More 
than 13,000 patients have clinical records that also 
include MRI summary features. For > 11,000 of these 
patients, we also have the raw MRI images available for 
analyses and feature extraction, totalling to > 230,000 
MRI scans, with T1-weighted (pre and post gadolinium 
contrast enhancement), T2-weighted, proton density, 
FLAIR, magnetization transfer, and diffusion-weighted 
sequences, longitudinal data being available for up 
to 12 years in individual patients. The collation and 
anonymization of these raw MRI images (see results) has 
been established in this collaboration to ensure they can 
be integrated into the overall research ready database.

Interleukin‑17 inhibitor project
Cosentyx (secukinumab) is a high-affinity recombinant, 
fully human monoclonal Interleukin-17A (IL-17A) anti-
body. By binding to human IL-17A, Cosentyx neutral-
izes the bioactivity of this cytokine. IL-17A is the central 
lymphokine of a defined subset of inflammatory T cells, 
which appear to be pivotal in several autoimmune and 
inflammatory processes. The collaboration has integrated 
data from a total of 16,576 randomised patients from 
over 21 phase II and 44 phase III Cosentyx clinical trials 
targeting four autoimmune disorders in dermatology and 
rheumatology. They are:

• Psoriasis (PsO)
• Axial spondyloarthritis (axSpA), including ankylos-

ing spondylitis and non-radiographic axial spondy-
loarthritis

• Psoriatic arthritis (PsA)
• Rheumatoid arthritis (RA)

Each study records a range of measurements on each 
subject at multiple time points throughout the trial, with 
the duration of collection of patient data ranging from 
12 weeks to 5 years. The dataset includes different data 
modalities ranging from demography and patient his-
tory to laboratory data and imaging. A number of assess-
ments are collected as a standard in all clinical studies 

and are therefore available across indications, such as 
demography and baseline characteristics, medical his-
tory, ECGs, vital signs, concomitant medication, detailed 
treatment information, and adverse event data, Quality of 
Life questionnaires, and laboratory measurements from 
serum and whole blood samples. Genomic, proteomic, 
and transcriptomic data, as well as imaging data from 
MRI and X-ray scans are also available for some patients 
depending on the trial design. Overall, the diseases under 
study all have a commonality of inflammation in dif-
ferent regions of the body, therefore measurements of 
inflammation are a common assessment as well. Other 
datasets are collected in some of the indications due 
to common disease pattern. One such example is skin 
assessment, commonly done in PsO and PsA or joint 
assessments done in PsA, axSpA and RA. Additionally, 
MRI and X-ray images of affected body locations were 
taken. In axSpA, which manifests predominantly in the 
axial region, MRI and X-rays of the spine and sacroiliac 
joints are taken in order to monitor treatment response. 
In PsA, X-rays of the hands, wrists and feet are collected. 
This dataset will be used to model patient disease trajec-
tories, as well as interpret and predict of multivariate lon-
gitudinal response to Cosentyx, in order to improve the 
clinical outcome of patients across the four autoimmune 
disorders.

Results
A fundamental component for the successful data analy-
sis and the collaborative development of novel machine 
learning methods on this rich data set has been the con-
struction of an innovative research informatics frame-
work that can capture the data at regular intervals from 
Novartis into a secure IT infrastructure at the BDI where 
data could be integrated, quality controlled and compiled 
in to a research ready relational database which would 
then be available to analysts. The development of this 
framework (Fig. 2) in the BDI and the successful capture 
of the data (described previously in the Methods) into a 
versioned research ready dataset is described below.

A secure and collaborative research infrastructure
A critical part of the research collaboration was to 
develop an IT infrastructure and corresponding informa-
tion security architecture that was technologically feasi-
ble, business viable and foremost user desirable for the 
project. The design of the information security architec-
ture and controls was governed by the need for the pro-
cessing of a large amount of clinical data shared between 
two organisations. In order to design and implement 
proper information security, it was vital to understand 
the various stages in the process, the states of the data, 
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the information security goals and the overall risks. After 
collecting and assessing all of this data, a custom infor-
mation security architecture was defined and security 
controls and guidelines applied.

The overall results of the above methodology were that 
confidentiality was identified as the overall and most rel-
evant information security goal within the project. This 
decision defined the fundamental principle that gov-
erned the design and implementation of the security 
controls.

1. Isolation from the existing Oxford BDI infrastructure 
whenever possible, at least for every activity involv-
ing non-anonymised data.

2. Encrypted data transfer via dedicated channels 
between both organisations to ensure confidentiality 
and integrity.

3. User access to the environment is proxied via a 
demilitarized zone (DMZ), which contains a certain 
set of jump hosts that serve as portals to the full envi-
ronment.

4. Identity and access management is realized within 
the environment, providing authentication and 
authorisation services.

5. The log management is done at a central place, 
together with security information and event manage-
ment.

Two separate environments were created for 
anonymisation and analytics work, and both of these 
were instantiated within a dedicated OpenStack private 
cloud, as two separate tenants. This ensures network, 
compute and storage isolation enforced at the hypervi-
sor level. For data processing virtual clusters were cre-
ated within each tenant, including an instance (virtual 
machine) with direct access to GPUs for accelerated 
work. The virtual resources within each tenant were 

defined and provisioned by means of Ansible roles and 
playbooks, for consistency and repeatability. Encrypted 
backups are made to an S3 object store. In short, we 
have produced a unique research computing infrastruc-
ture that provides high levels of security while provid-
ing a shared environment where both academic and 
industrial researchers can jointly work.

Clinical data anonymisation
This section describes the anonymisation of the clini-
cal trial data and the specific methods developed to 
anonymise MRI data to ensure data privacy.

Clinical trial data – basic principles
The process for anonymising the clinical trial data was 
intended to ensure that the risk of re-identifying par-
ticipants in the dataset was below a pre-defined critical 
threshold. There are three key concepts in this risk-based 
anonymisation approach:

• The risk of re-identification can be measured quan-
titatively. Various models of adversaries and re-
identification attacks have been developed and have 
demonstrated robustness in practice [2]. Metrics 
quantifying the probability of a successful re-identi-
fication have been developed based on these models. 
The specific metrics that we used are based on strict 
average risk models. These capture the average risk 
while ensuring that there are no population unique 
individuals in the anonymised dataset (i.e., in the 
context of the General Data Protection Regulation 
(GDPR), the likelihood of individuals being “singled 
out” is very small [3].

• The overall risk measurement takes into account the 
context of data processing as is illustrated in Fig.  3. 
For example, if the anonymised dataset will be ana-

Fig. 2 Innovative and robust informatics framework for high‑dimensional clinical trial data. Raw clinical data is anonymised by Privacy 
Analytics, Inc. (PAI), followed by data wrangling that involves harmonisation and pooling of data. Data is then integrated into a relational database 
(DB) whereby users of the DB are able to obtain analysis‑ready datasets through querying. Data within the DB can be used for data analysis and 
visualisation purposes
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lysed in a secure compared to a less secure environ-
ment then less modification of the data is required to 
bring the risk of re-identifying a patient to below the 
targeted threshold. Checklists have been developed 
and validated to capture this context risk [2].

• A specific threshold needs to be defined to determine 
what an acceptably low risk is. There are many prece-
dents for what is deemed to be an acceptable thresh-
old, including from regulators (see the review in [2]). 
The choice of a specific threshold from the precedent 
range takes into account the sensitivity of the data 
and the potential harm if there is a re-identification.

Once a threshold is defined and the re-identification 
risk is computed, taking into account the context, trans-
formation may be required until the risk is below the 
defined threshold. The transformations can be performed 
to the data itself (e.g. by modifying variables that may 
lead to re-identification such as a patient’s age) or to the 
context (e.g. by modifying the security of the IT system). 
After each transformation the overall risk can be re-com-
puted until it is below the threshold.

Justification for threshold
The European Medicines Agency (EMA) has estab-
lished a policy on the publication of clinical data for 
medicinal products [4] which requires applicants/spon-
sors to openly share clinical trial data. The guidelines 
accompanying the policy recommend a maximum risk 
threshold of 0.09. Health Canada implemented the 
same threshold for the sharing of clinical trial data [5]. 
This is the threshold that is used for the anonymization 
of the clinical data.

Calculation of risk
The risk of re-identification is calculated only on the 
quasi-identifiers. The quasi-identifiers are variables that 
are knowable by an adversary. There are two general types 
of quasi-identifiers. The first are those which are in the 
public domain and can be collected from registries such 
as voter registration lists [6] and lien registries [7]. Exam-
ples of these include date of birth and ZIP/postal codes. 
The second are acquaintance quasi-identifiers, which are 
known by adversaries who are also acquaintances, such 
as neighbours, relatives, and co-workers. Acquaintance 
quasi-identifiers include the public ones as well as things 
like medical history and key events and dates. Once the 
quasi-identifiers are determined in a dataset, the prob-
ability of re-identification can be calculated.

The calculation of re-identification risk considers three 
potential attacks on the data, which we shall call T1, T2, 
and T3.

The first attack, T1, assumes that an adversary delib-
erately attempts to re-identify individuals in the dataset 
[8]. This means that the probability of re-identification is 
conditional on an attempted attack:

The first term captures the risk in the data and the 
second term captures the risk from the context. There 
are multiple estimators that can be used to evaluate data 
risk which vary in accuracy and scalability [2, 9–14].

Context risk has three components: security controls, 
privacy controls, and contractual controls. The strength 
of these controls as they were implemented at the BDI 
were assessed using a checklist. The checklist is repro-
duced elsewhere [2]. The responses to the checklist are 

(1)
p
(
re − identification

)
= p

(
re − identification||attempt

)
× p(attempt)

Fig. 3 Clinical Trial Data Anonymisation. The overall risk of re‑identification is a function of both the data risk and the context risk. The context 
risk is assessed by examining three re‑identification attacks on a dataset: (a) a deliberate attack by an adversary, (b) an inadvertent re‑identification 
by a data analyst where they recognize someone they know, and (c) a data breach occurring. The success of the three attacks is affected by the 
controls that are in place. The context consists of first the contractual controls which reduce the context risk. The residual risk is managed by 
security and privacy controls, which are also part of the context. The extent of these controls reduces the overall risk further. Then any residual risk is 
managed by perturbing or transforming the data
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converted into a conservative subjective probability. This 
means that the exact probability value is not known, but 
the modeled value is convincingly conservative (over esti-
mates the context risk) but still allows us to model the 
controls that are in place and account for the benefits of 
stronger controls.

The premise of the controls for attack T1 is that the 
existence of stronger security controls (e.g., audit logs 
that are checked, analyst screening, and limited access), 
privacy controls (e.g., regular privacy training and a pri-
vacy officer), and contractual controls (e.g., all analysts 
have to sign a confidentiality agreement when working 
with the data) act as deterrents for an attempted attack 
and make it more difficult.

A T2 attack pertains to an inadvertent re-identification. 
This is when an analyst inadvertently or spontaneously 
recognizes someone that they know in the dataset as they 
are working on it. This type of risk is given by:

An inadvertent re-identification is contingent on an 
analyst knowing someone in the data. In our case this 
means that an analyst would know someone who has 
participated in a trial in this therapeutic area. This is esti-
mated as: p(acquaintance) = 1 − (1 − v)150: where v is the 
proportion of patients in the current studies compared to 
all studies in this therapeutic area over the same period 
and geography, which can be computed by gathering tar-
get recruitment data from https:// clini caltr ials. gov/ . The 
150 value is the Dunbar number, which provides us with 
an estimate of the average number of individuals that an 
analyst would know. Dunbar’s has proven to be robust 
across multiple studies (for a literature review see [2]).

The third attack is when there is a data breach and the 
dataset is accessed by an adversary. This is modeled as 
follows:

The probability of a breach is computed from published 
reports on health data breaches and their likelihood that 
are produced on a regular basis by security companies.

After computing the risk values for the three types of 
attack, the maximum across them is then taken to reflect 
the overall risk in the data. If this maximum risk is below 
the 0.09 threshold, then the dataset is deemed to have 
an acceptably low risk of re-identification. The same 
approach is applied to analyse the risk in clinical trial 
data and in the header information in DICOM files.

Strict average risk
The risk calculation described above gives us the 
average risk (averaged across all patients). The strict 

(2)
p
(
re − identification

)
= p

(
re − identification||acquaintance

)
× p(acquaintance)

(3)p
(
re − identification

)
= p

(
re − identification||breach

)
× p(breach)

average conditions this on no records in the data-
set being unique in the population. The population is 
defined as all patients who have participated in clinical 
trials in the same therapeutic area over the same period 
and geography. There are a number of estimators that 
can be used for estimating population uniqueness, with 
a specific one recommended based on a comparative 
assessment [15].

Application of the basic principles
The basic principles have been operationalized for the 
anonymisation of clinical trial data as a series of default 
anonymisation practices, which can then be adjusted 
to account for study-specific data issues. Patient iden-
tifiers (typically consisting of a clinical centre number 
and the patient’s randomization number with which a 
patient is identified in a clinical trial) is replaced by an 
anonymised identifier, a new number specifically and 
uniquely generated for the use of the data in the con-
text of the collaboration. The link file that connects the 
original patient identifier from the trial with the new 
anonymised identifier is securely protected and only 
accessible to a very small independent team who are 
working exclusively on the anonymisation of the data 
but who are not otherwise involved in the collabora-
tion or the subsequent research. The link file is used 
for the sole purpose of assigning the same anonymised 
patient ID to both the patient’s clinical data and MRI 
images, so that the corresponding imaging and clinical 
data remain together after the anonymization is com-
pleted, for downstream analyses. By default, event dates 
in the dataset are offset into relative dates as defined in 
the PhUSE standard [16]. Also, variables like age are 
typically generalized to, for example, five year ranges, 
or modified by adding uniform noise. The SiteID is sup-
pressed so that the geographic location of a site cannot 
be determined by looking up recruitment information 
in public registries. Other variables that may contain 
information that could lead to the re-identification, 
such as a patient’s medical history, can be general-
ised or suppressed. The decision as to which variables 
are transformed takes the intended research purpose 
into account to preserve the data as much as possible 
where critical for the research while still bringing the 
risk of re-identification below the defined threshold. A 
detailed report is produced documenting the anonymi-
sation methodology, how it was operationalised for each 
dataset, and a summary of the anonymisation outcomes 
(e.g., which variables were transformed and how). This 
detailed report is crucial for the data wrangling and 
downstream analysis. All data in the final relational 
database could be linked to the report which described 
the steps taken.

https://clinicaltrials.gov/
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Magnetic resonance imaging (MRI) data
In clinical trials MRI images are commonly obtained 
at hospitals in Digital Imaging and Communications 
(DICOM) format and provided to Clinical Research 
Organisations (CROs) who specialise in imaging analysis. 
In the MS project the DICOM images were transferred 
from the CROs to the isolated anonymisation computa-
tional environment. Within this environment the image 
data went into a three-stage process of image conversion, 
defacing and data curation. Each DICOM file represents 
one slice of the entire scan; one MRI session will gener-
ate multiple scans. The DICOMs were re-assembled into 
a single 3D volume (as per the research needs), using 
the DICOM conversion software HeuDiConv [17]. The 
resulting output of this process is a set of files in a dif-
ferent format (JSON – JavaScript Object Notation, and 
NIfTI – Neuroimaging Informatics Technology Initia-
tive) that exactly preserve original DICOM data values 
as well as their associated non-identifying DICOM meta-
data (i.e. meta-data that could contribute to the identifi-
cation of patients was stripped out during conversion), 
but organised in a research ready format, developed 
and used extensively within the Neuroimaging research 
community, called Brain Imaging Data Structure (BIDS 
- https:// bids. neuro imagi ng. io/). In addition to a con-
trolled, standardised file-structure, BIDS provides a file 
naming convention with the same characteristics, includ-
ing adding scan-type details for ease of processing. Dur-
ing the initial conversion process, scans that failed to 
convert, or converted with errors, were put aside and 
evaluated to see if they could be successfully converted. 
Overall, we were able to convert scans for over 99% of 
subjects.

Once the data have been converted to NIfTI and is in 
BIDS format, they were run through a processing pipe-
line, simply called ‘defacing’. This pipeline has several 
steps that aim to achieve two key objectives:

1. Remove identifiable facial features (nose, mouth, 
front of the eyes, ears)

2. Remove identifiable metadata from the scan’s associ-
ated JSON

For privacy/security reasons the identifiable facial fea-
tures were removed (defaced). The facial identifiable 
elements were selected according to the anonymisation 
principles used in the UK BioBank project [18], and 
removed using defacing software from the FSL software 
library [19]. To ensure the successful anonymisation, all 
defacing results are visually checked via multiple 3D sur-
face renderings, confirming the removal of facial features 
and the retention of brain and meninges. Scans were 
QC checked and classified as either ‘passed’, or as one 

of four subclasses of defacing issues. Due to this being a 
multi-site, longitudinal dataset, MRI scans were of vari-
able quality, and initial defacing failure rates were up to 
40% in some studies. Scans that failed QC checks were 
put through additional rounds of re-defacing and sub-
sequent QC checks, where custom defacing parameters 
– derived from the type of previous QC classifications 
and scan modality – were applied to the scans, allow-
ing us to achieve high rates of successful defacing (96%). 
In total over 230,000 MRIs were defaced and manually 
checked before entering the research ready dataset. The 
anonymised data is stripped of all metadata except non-
identifiable acquisition parameters. Additional checks 
were also undertaken to ensure that identifiable details 
had not been erroneously inserted (during acquisition) 
into the retained metadata fields. Once all QC checks 
have been completed, this data is copied via a dedicated 
and automated mechanism from the anonymisation envi-
ronment to the analytics environment. Additional safe-
guards have been implemented to ensure confidentiality 
and integrity of the data.

Data exploration, quality control and integration – 
research‑ready dataset
Non-imaging clinical datasets are anonymised by a third 
party (Privacy Analytics, Inc) and transferred to the ana-
lytics environment at the BDI to begin the data wrangling 
process. This process has the ultimate goal of providing 
all data in a relational database, from where streamlined, 
research ready datasets for the analytics team can be 
retrieved. A detailed tracking system was developed that 
is shared across the collaboration to transparently convey 
the status of each data set within the pipeline. Due to the 
large number of steps, transformations, and transactions 
that each dataset goes through, it is essential to track 
each data point received.

The initial stage in the extract, transform and load 
(ETL) of data from Novartis to the BDI, was the capture 
of the clinical trial data as Statistical Analysis Software 
(SAS) files. For both the MS and IL-17 projects, the BDI 
team worked closely with the clinical teams at Novartis 
to ensure full understanding of the data to be down-
loaded and all related documentation. Each study was 
downloaded separately in an average of 30 to 50 different 
tables. These tables contained the primary raw data and 
study-specific information as described in methods. Each 
table contained hundreds of thousands of measurements, 
across hundreds of variables.

Once the data was received, the next critical col-
laborative step in the process was the data exploration 
by a dedicated data wrangler to validate that the data 
received matched the expected data and the protocol 
documents. This step was extensive and performed 

https://bids.neuroimaging.io/
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in collaboration with the team at Novartis who could 
review identified queries by exploring the primary 
data which has not been anonymised. At this stage the 
tracking of data and related queries between the data 
generators (Novartis) and the BDI was paramount to 
ensure all downstream analysis would be reproducible 
and linkable to a well-defined set of data.

Once the data was agreed to be correct and valid, the 
data wrangling team developed codebooks (data speci-
fications) which described the structure of the data in a 
computationally readable format. These codebooks are 
then utilised by a bespoke software pipeline to homog-
enise the data into a generic relational database struc-
ture. This task had many challenges due to varying trial 
designs, inconsistencies in data capture between trials, 
changes in technology throughout history, subjective 
evaluations, changes in data standards, and anonymi-
sation. Upon successful completion of this part of the 
pipeline individual data files were imported into the 
relational database. In conjunction with the import of 
clinical trial data, the pipeline imports metadata about 
the relevant additional datasets provided e.g. imag-
ing or omics. The key remit for this level of integration 
is to ensure that relevant data slices can be provided 
downstream to the analysts and also to ensure the data 
outputs from the analytics can be integrated back into 
the overall architecture. This work was deemed to be 
important, as it was setup in a way that it can be repro-
duced as new datasets come onboard and was devel-
oped in a manner to manage any clinical trial data not 
just the current data from this project.

Once the data dictionaries were completed across 
the projects, the data wrangling team began the overall 
data quality control process in parallel with the aim of 
identifying any data quality issues through the data life 
cycle. The data validation and QC process are innova-
tive as they have been created in a sustainable manner 
to ensure data is tracked and checked throughout the 
lifetime of the project and that data provenance is man-
aged at the level of individual data points. The quality 
of the data from Novartis to the analytical teams was 
deemed critically important, to ensure data analysts 
did not have to perform this level of exploratory work 
and that the results they identified were reproducible. 
A robust QC pipeline was therefore developed through 
intensive collaboration that assessed the data at many 
levels. The quality control pipeline was developed to 
perform both validation and verification at different 
stages. For example, source validation ensured the data 
received matched what was expected and global valida-
tion checked the merged data. Validation and verifica-
tion encompass a large list of checks, from structural 
checks, assessing levels of missingness, the effects of 

the anonymisation, and visual checks for potential 
data anomalies. The anonymisation reports were key 
to check whether data was missing because it was not 
captured in the first place, or if it was suppressed due to 
anonymisation.

The final output of the ETL process was to generate 
snapshots of data as tracked and versioned data releases 
for the analysts. A data release is a snapshot of merged 
datasets available as a relational database or in a data 
format that can be inputted to analytical tools (e.g. API, 
table structure etc.). The analytical teams can therefor 
develop methods which are attributed to the correct ver-
sion ensuring transparency and reproducibility. As the 
data analytical methods are being developed, the ETL 
pipeline is being expanded to ensure that data output-
ted from new methods can be integrated back into data 
releases. This is key in a data project.

Discussion
Novartis and the University of Oxford’s Big Data Insti-
tute (BDI) have established a research alliance which has 
developed an innovative IT platform to manage large 
volumes of anonymised data. The IT infrastructure that 
has been developed for this project has enabled the alli-
ance to successfully capture, anonymise, quality control, 
integrate, and explore data from a large collection of 
Novartis clinical trials in one research ready environ-
ment. This research ready database is now available to 
a highly multi-disciplinary team of researchers who 
are analysing and interpreting the data to gain insights 
about the diseases. The data integrated in this project 
has not been compiled before, and therefore the technol-
ogy developed here is allowing data analysts an unprec-
edented opportunity to develop methods to gain insights 
across different data modalities (imaging, omics, clinical 
and biological) and to identify novel patterns with clinical 
relevance which cannot be detected by humans alone to 
identify phenotypes, and early predictors of patient dis-
ease activity and progression and to improve prognosis 
for patients. The collaboration currently focuses on Mul-
tiple Sclerosis (MS) and other inflammatory diseases in 
dermatology and rheumatology which are major areas 
of drug development, but may extend the scope to other 
disease areas at a later time point.

A milestone achievement of the collaboration is the 
development of a data anonymisation pipeline for multi-
modality data (including clinical and imaging data) which 
ensures data privacy while preserving the essential clini-
cally relevant pattern in the data. Data anonymization at 
this scale has the potential to create datasets which are 
unusable for analysis, so a key step in this project was 
that specific adjustments were incorporated into the 
overall anonymisation process that ensured the analytical 
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questions could be addressed. A fundamental compo-
nent of successful data analysis and the collaborative 
development of novel machine learning methods on this 
rich data sets has been the construction of a research 
informatics framework that can capture the data at reg-
ular intervals from Novartis into an IT infrastructure 
at the Big Data Institute (BDI) where images could be 
anonymised and integrated with the de-identified clini-
cal data, quality controlled and compiled into a research-
ready relational database which would then be available 
to multi-disciplinary analysts. The collaborative develop-
ment from a group of software developers, data wran-
glers, statisticians, clinicians and domain scientists across 
both organisations has been key. The project has proac-
tively engaged a number of external academic research-
ers in a number of fields to work with the consortium, get 
access to the data and contribute to the overall strategic 
vision. This framework is innovative, as it facilitates col-
laborative data management and makes a complicated 
clinical trial data set from a pharmaceutical company 
available to academic researchers in a secure, granular 
and robust way. The level of data tracking and data prov-
enance incorporated will ensuring reproducibility and 
transparency.

Conclusion
The research alliance has developed an informat-
ics framework to capture multi-dimensional clinical 
trial data into a pipeline of anonymisation, quality con-
trol, data exploration and subsequent integration into a 
research-ready database. With an emphasis on ensuring 
data privacy while allowing the development of analyti-
cal tools to be conducted, the framework can extend to 
research on other disease areas, and its principles can be 
transversally applied into other data settings, especially 
ones with data privacy concerns.
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