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Abstract

Background: Case-control designs are an important yet commonly misunderstood tool in the epidemiologist’s
arsenal for causal inference. We reconsider classical concepts, assumptions and principles and explore when the
results of case-control studies can be endowed a causal interpretation.

Results: We establish how, and under which conditions, various causal estimands relating to intention-to-treat or per-
protocol effects can be identified based on the data that are collected under popular sampling schemes (case-base,
survivor, and risk-set sampling, with or without matching). We present a concise summary of our identification results
that link the estimands to the (distribution of the) available data and articulate under which conditions these links hold.

Conclusion: The modern epidemiologist’s arsenal for causal inference is well-suited to make transparent for
case-control designs what assumptions are necessary or sufficient to endow the respective study results with a causal
interpretation and, in turn, help resolve or prevent misunderstanding. Our approach may inform future research on
different estimands, other variations of the case-control design or settings with additional complexities.
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Introduction
In causal inference, it is important that the causal question
of interest is unambiguously articulated [1]. The causal
question should dictate, and therefore be at the start of,
investigation. When the target causal quantity, the esti-
mand, is made explicit, one can start to question how
it relates to the available data distribution and, as such,
form a basis for estimation with finite samples from this
distribution.
The counterfactual framework offers a language rich

enough to articulate a wide variety of causal claims that
can be expressed as what-if statements [1]. Another, albeit
closely related, approach to causal inference is target trial
emulation, an explicit effort to mitigate departures from a
study (the ‘target trial’) that, if carried out, would enable
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one to readily answer the causal what-if question of inter-
est [2]. While it may be too impractical or unethical to
implement, making explicit what a target trial looks like
has particular value in communicating the inferential goal
and offers a reference against which to compare studies
that have been or are to be conducted.
The counterfactual framework and emulation approach

have become increasingly popular in observational cohort
studies. Case-control studies, however, have not yet
enjoyed this trend. A notable exception is given by Dick-
erman et al. [3], who recently outlined an application of
trial emulation with case-control designs to statin use and
colorectal cancer.
In this paper, we give an overview of how observational

data obtained with case-control designs can be used to
identify a number of causal estimands and, in doing so,
recast historical case-control concepts, assumptions and
principles in a modern and formal framework.
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Preliminaries
Identification versus estimation
An estimand is said to be identifiable if the distribu-
tion of the available data is compatible with exactly one
value of the estimand, or therefore, if the estimand can be
expressed as a functional of the available data distribution.
Identifiability is a relative notion as it depends on which
data are available as well as on the assumptions one is will-
ing to make. Identification forms a basis for estimation
with finite samples from the available data distribution [4].
Once the estimand has beenmade explicit and an identify-
ing functional established, estimation is a purely statistical
problem. While the identifying functional will often natu-
rally translate into a plug-in estimator, there is, however,
generally more than one way to translate an identifiability
result into an estimator and different estimators may have
important differences in their statistical properties. More-
over, while the estimand may be identifiable, there need
not exist an estimator with the desired properties (see
e.g. [5]). Here, our focus is on identification, so that the
purely statistical issues of the next step in causal inference,
estimation, can be momentarily put aside.

Case-control study nested in cohort study
To facilitate understanding, it is useful to consider every
case-control study as being “nested” within a cohort study.
A case-control study could be considered as a cohort
study with missingness governed by the control sampling
scheme. Therefore, when the observed data distribution
of a case-control study is compatible with exactly one
value of a given estimand, then so is the available or
observed data distribution of the underlying cohort study.
In other words, identifiability of an estimand with a case-
control study implies identifiability of the estimand with

the cohort study within which it is nested (conceptually).
The converse is not evident and in fact may not be true.
In this paper, the focus is on sets of conditions or assump-
tions that are sufficient for identifiability in case-control
studies.

Set-up of underlying cohort study
Consider a time-varying exposure Ak that can take one
of two levels, 0 or 1, at K successive time points tk (k =
0, 1, ...,K − 1), where t0 denotes baseline (cohort entry
or time zero). Study participants are followed over time
until they sustain the event of interest or the adminis-
trative study end tK , whichever comes first. We denote
by T the time elapsed from baseline until the event of
interest and let Yk = I(T < tk) indicate whether the
event has occurred by tk . The lengths between the time
points are typically fixed at a constant (e.g., of one day,
week, or month). Figure 1 depicts twelve equally spaced
time points over, say, twelve months with several possi-
ble courses of follow-up of an individual. As the figure
illustrates, individuals can switch between exposure lev-
els during follow-up, as in any truly observational study.
Apart from exposure and outcome data, we also consider
a (vector of ) covariate(s) Lk , which describes time-fixed
individual characteristics or time-varying characteristics
typically relating to a time window just before exposure or
non-exposure at tk , k = 0, 1, ...,K − 1.

Causal contrasts
Although there are many possible contrasts, particularly
with time-varying exposures, for simplicity we consider
only two pairs of mutually exclusive interventions: (1) set-
ting baseline exposure A0 to 1 versus 0; and (2) setting all
of A0,A1, ...,AK−1 to 1 (‘always exposed’) versus all to 0

Fig. 1 Illustration of possible courses of follow-up of an individual for a study with baseline t0 and administrative study end t12. Solid bullets indicate
‘exposed’; empty bullets indicate ‘not exposed’. The incident event of interest is represented by a cross
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(‘never exposed’). For a = 0, 1, we let counterfactual out-
come Yk(a) indicate whether the event has occurred by tk
under the baseline-only intervention that sets A0 to a. By
convention, we write 1 = (1, 1, ..., 1) and 0 = (0, 0, ..., 0),
and let Yk(1) and Yk(0) indicate whether the event has
occurred by tk under the intervention that sets all ele-
ments of (A0,A1, ...,AK−1) to 1 and all to 0, respectively.
Further details about the notation and set-up are given in
Supplementary Appendix A.

Case-control sampling
The fact that each time-specific exposure variable can take
only one value per time point means that at most one
counterfactual outcome can be observed per individual.
This type of missingness is common to all studies. Relative
to the cohort studies within which they are nested, case-

control studies have additional missingness, which is gov-
erned by the control sampling scheme. In this paper, we
focus on three well-known sampling schemes: case-base
sampling, survivor sampling, and risk-set sampling. The
next sections give an overview of conditions under which
intention-to-treat and always-versus-never-exposed per-
protocol effects can be identified with the data that are
observed under these sampling schemes.

Case-control studies without matching
Table 1 summarises a number of identification results
for case-control studies without matching. Each result
consists of one of the three aforementioned sampling
schemes, an estimand, a set of assumptions, and an
identification strategy. Under the conditions of the “Sam-
pling scheme” and “Assumptions” columns, an identifying

Table 1 Overview of (non-parametric) identification results for case-control studies without matching

Sampling scheme Estimand Assumptions Identification strategy

Case-base Risk ratio for intention-to-treat
effect Pr(YK (1)=1)

Pr(YK (0)=1)

• Control selection S independent
of baseline covariates L0 and
exposure A0
• Consistency
• Baseline exchangeability given L0
• Positivity
(Theorem 1, Supplementary
Appendix B)

1. Derive time-fixed IP weightsW
from control data
2. Compute the baseline exposure
odds among cases, weighted byW
3. Compute the baseline exposure
odds among controls, weighted by
W
4. Take the ratio of the results of
steps 2 and 3

Survivor Odds ratio for intention-to-treat
effect Odds(YK (1)=1|L0)

Odds(YK (0)=1|L0)
• Control selection S independent
of baseline exposure A0 given
baseline covariates L0 and survival
until tK (YK = 0)
• Consistency
• Baseline exchangeability given L0
• Positivity
(Theorem 3, Supplementary
Appendix B)

1. Derive the conditional baseline
exposure odds given L0 among
cases
2. Derive the conditional baseline
exposure odds given L0 among
controls
3. Take the ratio of the results of
steps 1 and 2

Risk-set Hazard ratio for intention-to-treat
effect Pr(Yk+1(1)=1|Yk(1)=0)

Pr(Yk+1(0)=1|Yk(0)=0)

• Control selection Sk independent
of baseline covariates L0 and
exposure A0 given eligibility at tk
(Yk = 0) with constant sampling
probability among those eligible†

• Consistency
• Baseline exchangeability given L0
• Positivity
• Constant counterfactual hazards
(Theorem 4, Supplementary
Appendix B)

1. Derive time-fixed IP weightsW
from control data
2. Compute baseline exposure
odds among cases, weighted byW
3. Compute baseline exposure
odds among controls, weighted by
W times

∑K−1
k=0 Sk , the number of

times selected as a control
4. Take the ratio of the results of
steps 2 and 3

Hazard ratio for per-protocol effect
Pr(Yk+1(1)=1|Yk(1)=0)
Pr(Yk+1(0)=1|Yk(0)=0)

• Control selection Sk independent
of covariate and exposure history
up to tk given eligibility at tk
(Yk = 0) with constant sampling
probability among those eligible†

• Consistency
• Sequential conditional
exchangeability
• Positivity
• Constant counterfactual hazards
(Theorem 6, Supplementary
Appendix B)

1. Derive time-varying IP weights
Wk from control data
2. Censor from time of protocol
deviation
3. Compute (baseline) exposure
odds among cases, weighted by
those weightsWk such that Yk = 0
and Yk+1 = 1
4. Compute (baseline) exposure
odds among all controls, weighted
by

∑K−1
k=0 WkSk , the weighted

number of times selected as a
control
5. Take the ratio of the results of
steps 3 and 4

See text or Supplementary material for elaboration on assumptions. †Weaker/alternative control selection assumptions are given in the Supplementary material
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functional of the estimand of the “Estimand” column is
obtained by following the steps of the “Identification strat-
egy” column. More formal statements and proofs are
given in Supplementary Appendix B.
In all case-control studies that we consider in this

section, cases are compared with controls with regard to
their exposure status via an odds ratio, evenwhen an effect
measure other than the odds ratio is targeted. An individ-
ual qualifies as a case if and only if they sustain the event of
interest by the administrative study end (i.e., YK = 1) and
adhered to one of the protocols of interest until the time
of the incident event. In Fig. 1, the individual represented
by row 1 is therefore regarded as a case (an exposed case
in particular) in our investigation of intention-to-treat
effects but not in that of per-protocol effects. Whether an
individual (also) serves as a control depends on the control
sampling scheme.

Case-base sampling
The first result in Table 1 describes how to identify the
intention-to-treat effect as quantified by the marginal risk
ratio

Pr(YK (1) = 1)
Pr(YK (0) = 1)

under case-base sampling. (For identification of a con-
ditional risk ratio, see Theorem 2 of Supplementary
Appendix B.) Case-base sampling, also known as case-
cohort sampling, means that no individual who is at risk
at baseline of sustaining the event of interest is precluded
from selection as a control. Selection as a control, S, is
further assumed independent of baseline covariate L0 and
exposure A0. Selecting controls from survivors only (e.g.,
rows 4, 5, 7 and 9 in Fig. 1) violates this assumption when
survival depends on L0 or A0.
To account for baseline confounding, inverse probability

weights could be derived from control data according to

W = A0
Pr(A0 = 1|L0, S = 1)

+ 1 − A0
1 − Pr(A0 = 1|L0, S = 1)

.

(1)

We then compute the odds of baseline exposure among
cases and among controls in the pseudopopulation that
is obtained by weighting everyone by subject-specific val-
ues ofW. The ratio of these odds coincides with the target
risk ratio under the three key identifiability conditions
of consistency , baseline conditional exchangeability and
positivity [1]. Consistency here means that for a = 0, 1,
YK (a) = YK if A0 = a, baseline conditional exchange-
ability that for a = 0, 1, A0 is independent of YK (a), and
positivity that 0 < Pr(A0 = 1|L0, S = 1) < 1.
The identification result for case-base sampling sug-

gests a plug-in estimator: replace all functionals of the
theoretical data distribution with sample analogues. For

example, to obtain the weight for an individual with base-
line covariate level l0, replace the theoretical propensity
score Pr(A0 = 1|L0 = l0, S = 1) with an estimate P̂r(A0 =
1|L0 = l0, S = 1) derived from a fitted model (e.g., a logis-
tic regression model) that imposes parametric constraints
on the distribution of A0 given L0 among the controls.

Survivor sampling
With survivor (cumulative incidence or exclusive) sam-
pling, a subject is eligible for selection as a control only
if they reach the administrative study end event-free. To
identify the conditional odds ratio of baseline exposure
versus baseline non-exposure given L0,

Odds(YK (1) = 1|L0)
Odds(YK (0) = 1|L0) ,

selection as a control, S, is assumed independent of base-
line exposure A0 given L0 and survival until the end of
study (i.e., YK = 0).
As is shown in Supplementary Appendix B, Theorem 3,

the above odds ratio is identified by the ratio of the
baseline exposure odds given L0 among the cases ver-
sus controls, provided the key identifiability conditions
of consistency, baseline conditional exchangeability, and
positivity are met.
All estimands in Table 1 describe a marginal effect,

except for the odds ratio, which is conditional on baseline
covariates L0. The corresponding marginal odds ratio

Odds(YK (1) = 1)
Odds(YK (0) = 1)

is not identifiable from the available data distribution
under the stated assumptions (see remark to Theorem 3,
Supplementary Appendix B). However, approximate iden-
tifiability can be achieved by invoking the rare event
assumption (or rare disease assumption), in which case
the marginal odds ratio approximates the marginal risk
ratio.

Risk-set sampling for intention-to-treat effect
With risk-set (or incidence density) sampling, for all time
windows [ tk , tk+1), k = 0, ...,K − 1, every subject who is
event-free at tk is eligible for selection as a control for the
period [ tk , tk+1). This means that study participants may
be selected as a control more than once.
Consider the intention-to-treat effect quantified by the

marginal (discrete-time) hazard ratio (or rate ratio)
Pr(Yk+1(1) = 1|Yk(1) = 0)
Pr(Yk+1(0) = 1|Yk(0) = 0)

.

(For identification of a conditional hazard ratio, see
Theorem 5, Supplementary Appendix B.) For identifica-
tion of the above marginal hazard ratio under risk-set
sampling, it is assumed that selection as a control between
tk and tk+1, Sk , is independent of the baseline covariates
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and exposure given eligibility at tk (i.e., Yk = 0). It is
also assumed that the sampling probability among those
eligible, Pr(Sk = 1|Yk = 0), is constant across time win-
dows k = 0, ...,K − 1. To this end, it suffices that the
marginal hazard Pr(Yk+1 = 1|Yk = 0) remains constant
across time windows and that every kth sampling frac-
tion Pr(Sk = 1) is equal, up to a proportionality constant,
to the probability Pr(Yk+1 = 1,Yk = 0) of an inci-
dent case in the kth window (see remark to Theorem 4,
Supplementary Appendix B). For practical purposes, this
suggests sampling a fixed number of controls for every
case from among the set of eligible individuals. To illus-
trate, consider Fig. 1 and note first of all that the individual
represented by row 1 trivially qualifies as a case, because
the individual survived until the event occurred. Because
the event was sustained between t5 and t6, the proposed
sampling suggests selecting a fixed number of controls
from among those who are eligible at t5. Thus, rows (and
only rows) 4 through 9 as well as row 1 itself in Fig. 1 qual-
ify for selection as a control for this case. Even though the
individual of row 1 is a case, the individual may also be
selected as a control when the individuals of row 2, 3 and
6 (but not 8) sustain the event.
Once cases and controls are selected, we can start to

derive inverse probability weights W according to Eq. 1
with S replaced with S0. We then compute the odds of
baseline exposure among cases in the pseudopopulation
that is obtained by weighting everyone by W and the
odds of baseline exposure among controls weighted by
W multiplied by the number of times the individual was
selected as a control. The ratio of these odds coincides
with the target hazard ratio under the three key iden-
tifiability conditions of consistency, baseline conditional
exchangeability and positivity together with the assump-
tion that the hazards in the numerator and denominator
of the causal hazard ratio are constant across the time
windows.
The consistency and exchangeability conditions are here

slightly stronger than those of the previous subsections.
Specifically, Theorem 4 (Supplementary Appendix B)
requires consistency of the form: for all k = 1, ...,K and
a = 0, 1, Yk(a) = Yk if A0 = a. The exchangeability con-
dition requires, for a = 0, 1, that conditional on L0, the
counterfactual outcomes Y1(a), ...,YK (a) are jointly inde-
pendent of A0. The positivity condition takes the same
form as in the previous subsections (i.e., 0 < Pr(A0 =
a|L0, S0 = 1) < 1).

Risk-set sampling for per-protocol effect
For the per-protocol effect quantified by the (discrete-
time) hazard ratio (or rate ratio)

Pr(Yk+1(1) = 1|Yk(1) = 0)
Pr(Yj+1(0) = 1|Yk(0) = 0)

,

eligibility for selection as a control for the period [ tk , tk+1)
again requires that the respective subject is event-free
at tk (i.e., Yk = 0). Selection as a control between tk
and tk+1, Sk , is further assumed independent of covari-
ate and exposure history up to tk given eligibility at tk
(but see Supplementary Appendix B for a slightly weaker
assumption). As for the intention-to-treat effect, it is also
assumed that the probability to be selected as a control
Sk given eligibility is constant across time windows. This
assumption is guaranteed to hold if the marginal hazard
Pr(Yk+1 = 1|Yk = 0) remains constant across time win-
dows and that every kth sampling fraction Pr(Sk = 1)
is equal, up to a proportionality constant, to the prob-
ability of an incident case in the kth window. Figure 1
shows five incident events yet only three qualify as a case
(rows 2, 3 and 8) when it concerns per-protocol effects.
When the first case emerges (row 2), all rows meet the
eligibility criterion for selection as a control. When the
second emerges, the individual of row 2, who fails to sur-
vive event-free until t4, is precluded as a control. When
the case of row 8 emerges, only the individuals of rows 4,
5, 7 and 9 are eligible as controls.
Once cases and controls are selected, we can start to

derive time-varying inverse probability weights accord-
ing to

Wk =
k∏

j=0

[ Aj

Pr(Aj = 1|L0, ..., Lj,A0, ...,Aj−1,Yj = 0, Sj = 1)

+ 1 − Aj

1−Pr(Aj=1|L0, ..., Lj,A0, ...,Aj−1,Yj=0, Sj=1)

]

.

It is important to note that the weights are derived from
control information but are nonetheless used to weight
both cases and controls [6]. The denominators of the
weights describe the propensity to switch exposure level.
However, once the weights are derived, every subject is
censored from the time that they fail to adhere to one
of the protocols of interest for all downstream analysis.
The uncensored exposure levels are therefore constant
over time. We then compute the baseline exposure odds
among cases, weighted by the weights Wk correspond-
ing to the interval [ tk , tk+1) of the incident event (i.e.,
Yk = 0,Yk+1 = 1), as well as the baseline exposure odds
among controls, weighted by

∑K−1
k=0 WkSk , the weighted

number of times selected as control. The ratio of these
odds equals the target hazard ratio under the three key
identifiability conditions of consistency, sequential con-
ditional exchangeability, and positivity together with the
assumption that hazards in the numerator and denomina-
tor of the causal hazard ratio for the per-protocol effect
are constant across the time windows. The consistency,
exchangeability and positivity conditions take a somewhat
different (stronger) form than in the previous subsections;
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we refer the reader to Supplementary Appendix A for
further details.

Case-control studies withmatching
Table 2 gives an overview of identification results for case-
control studies with exact pair matching. Formal state-
ments and proofs are given in Supplementary Appendix C,
which also includes a generalisation of the results of
Table 2 to exact 1-to-M matching. While the focus in this
section is on exact covariate matching, for partial match-
ing we refer the reader to Supplementary Appendix D,
where we consider parametric identification by way of
conditional logistic regression.
Pair matching involves assigning a single control expo-

sure level, which we denote by A′, to every case. As for
case-control studies without matching, in a case-control
studies with matching an individual qualifies as a case if
and only if they sustain the event of interest by the admin-
istrative study end (i.e., YK = 1) and adhered to one of the
protocols of interest until the time of the incident event.
How a matched control exposure is assigned is encoded
in the sampling scheme and the assumptions of Table 2.
For example, for identification of the causal marginal risk
ratio under case-base sampling, A′ is sampled from all
study participants whose baseline covariate value matches
that of the case, independently of the participants’ base-
line exposure value and whether they survive until the end
of study. The matching is exact in the sense that the con-
trol exposure information is derived from an individual
who has the same value for the baseline covariate as the
case.
The identification strategy is the same for all results

listed in Table 2. Only the case-control pairs (A0,A′)
with discordant exposure values (i.e., (1, 0) or (0, 1)) are
used. Under the stated sampling schemes and assump-
tions, the respective estimands are identified by the ratio
of discordant pairs.

Discussion
This paper gives a formal account of how and when causal
effects can be identified in case-control studies and, as
such, underpins the case-control application of Dicker-
man et al. [3]. Like Dickerman et al., we believe that
case-control studies should generally be regarded as being
nested within cohort studies. This view emphasises that
the threats to the validity of cohort studies should also be
considered in case-control studies. For example, in case-
control applications with risk-set sampling, researchers
often consider the covariate and exposure status only
at, or just before, the time of the event (for cases) or
the time of sampling (for controls). However, where a
cohort study would require information on baseline lev-
els or the complete treatment and covariate history of
participants, one should suspect that this holds for the

nested case-control study too. To gain clarity, we encour-
age researchers to move away from using person-years,
-weeks, or -days (rather than individuals) as the default
units of inference [7], and to realise that inadequately
addressed deviations from a target trial may lead to bias
(or departure from identifiability), regardless of whether
the study that attempts to emulate it is a case-control or a
cohort study [3].
What is meant by a cohort study differs between authors

and contexts [8]. The term ‘cohort’ may refer to either a
‘dynamic population’, or a ‘fixed cohort’, whose “member-
ship is defined in a permanent fashion” and “determined
by a single defining event and so becomes permanent” [9].
While it may sometimes be of interest to ask what would
have happened with a dynamic cohort (e.g., the residents
of a country) had it been subjected to one treatment pro-
tocol versus another, the results in this paper relate to
fixed cohorts.
Like the cohort studies within which they are (at

least conceptually) nested, case-control studies require an
explicit definition of time zero, the time at which a choice
is to be made between treatment strategies or protocols
of interest [3]. Given a fixed cohort, time zero is generally
determined by the defining event of the cohort (e.g., first
diagnosis of a particular disease or having survived one
year since diagnosis). This event may occur at different
calendar times for different individuals. However, while
a fixed cohort may be ‘open’ to new members relative to
calendar time, it is always ‘closed’ along the time axis on
which all subject-specific time zeros are aligned.
In this paper, time was regarded as discrete. Since we

considered arbitrary intervals between time points and
because, in real-world studies, time is never measured
in a truly continuous fashion, this does not represent an
important limitation for practical purposes. It is however
important to note that the intervals between interventions
and outcome assessments (in a target trial) are an intrinsic
part of the estimand that lies at the start of investiga-
tion. Careful consideration of time intervals in the design
of the conceptual target trial and of the actual cohort or
case-control study is therefore warranted.
We emphasize that identification and estimation are dis-

tinct steps in causal inference. Although our focus was on
the former, identifying functionals often naturally trans-
late into estimators. The task of finding the estimator with
the most appealing statistical properties is not necessarily
straightforward, however, and is beyond the scope of this
paper.
We specifically studied two causal contrasts (i.e., pairs

of interventions), one corresponding to intention-to-treat
effects and the other to always-versus-never per-protocol
effects of a time-varying exposure. There are of course
many more causal contrasts, treatment regimes and esti-
mands conceivable that could be of interest. We argue
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Table 2 Overview of (non-parametric) identification results for case-control studies with exact pair matching

Sampling scheme Estimand Assumptions Identification strategy

Case-base Risk ratio for intention-to-treat
effect Pr(YK (1)=1)

Pr(YK (0)=1)

• Matched control exposure A′ sampled
from the baseline exposure levels of all
subjects with same baseline covariate level
L0 as case, independently of the subjects’
baseline exposure or survival status
• Consistency
• Baseline conditional exchangeability
• Positivity
• Pr(YK = 1|L0 = l, A0 = 1)/ Pr(YK =
1|L0 = l, A0 = 0) constant across levels l
(Theorem 7, Supplementary Appendix C)

1. Compute the frequency of discordant
case-control pairs with A0 = 1 and
A′ = 0
2. Compute the frequency of discordant
case-control pairs with A0 = 0 and
A′ = 1
3. Take the ratio of the results of steps 1
and 2

Survivor Odds ratio for intention-to-treat
effect Odds(YK (1)=1|L0)

Odds(YK (0)=1|L0)
• Matched control exposure A′ sampled
from all the baseline exposure levels of all
survivors (YK = 0) with same value for L0 as
case, independently of the subjects’
baseline exposure
• Consistency
• Baseline conditional exchangeability
• Positivity
• Odds(YK = 1|L0, A0 = 1)/Odds(YK =
1|L0, A0 = 0) constant across levels l
(Theorem 8, Supplementary Appendix C)

(Same as identification strategy for
case-base sampling)

Risk-set Hazard ratio for intention-to-treat
effect Pr(Yk+1(1)=1|L0,Yk(1)=0)

Pr(Yk+1(0)=1|L0,Yk(0)=0)

• For a case with incident event in [ tk , tk+1)

(i.e., Yk = 0, Yk+1 = 1), matched control
exposure A′ sampled from the baseline
exposure levels of all subjects that are
event-free at tk (Yk = 0) and have the same
value for L0 as case. Sampling among these
individuals is independent of baseline
exposure or survival status
• Consistency
• Baseline conditional exchangeability
• Positivity
• Pr(Yk+1 = 1|L0 = l, A0 = 1, Yk = 0)/
Pr(Yk+1 = 1|L0 = l, A0 = 0, Yk = 0)
constant across levels k, l
(Theorem 9, Supplementary Appendix C)

(Same as identification strategy for
case-base sampling)

Hazard ratio for per-protocol effect
Pr(Yk+1(1)=1|L0,...,Lk ,A0=...=Ak=1,Yk(1)=0)
Pr(Yk+1(0)=1|L0,...,Lk ,A0=...=Ak=0,Yk(0)=0)

• For a case with incident event in
[ t + k, tk+1) (i.e., Yk = 0, Yk+1 = 1), matched
control exposure A′ sampled from the
baseline exposure levels A0 of all individuals
who adhered to one of the protocols until tk
(i.e., A0 = ... = Ak) and have covariate history
up to tk . Sampling among these individuals
is independent of baseline exposure or
survival status
• Consistency
• Positivity
• Pr(Yk+1 = 1|L0, ..., Lk , A0 = ... = Ak = 1, Yk = 0)/
Pr(Yk+1 = 1|L0, ..., Lk , A0 = ... = Ak = 0, Yk = 0)
constant across levels k and independent of
L0, ..., Lk
(Theorem 10, Supplementary Appendix C)

(Same as identification strategy for
case-base sampling)

See text or Supplementary material for elaboration on assumptions

that also for these estimands, researchers should seek to
establish identifiability before they select an estimator.
The conditions under which identifiability is to be

sought for practical purposes may well include more con-
straints or obstacles to causal inference, such as additional
missingness (e.g., outcome censoring) and measurement
error, than we have considered here. While some of
our results assume that hazards or hazard ratios remain

constant over time, in many cases these are likely time-
varying [10, 11]. There are also more case-control designs
(e.g., the case-crossover design) to consider. These addi-
tional complexities and designs are beyond the scope of
this paper and represent an interesting direction for future
research.
The case-control family of study designs is an impor-

tant yet often misunderstood tool for identifying causal
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relations [12–15]. Although there is much to be learned,
we believe that the modern arsenal for causal inference,
which includes counterfactual thinking, is well-suited to
make transparent for these classical epidemiological study
designs what assumptions are sufficient or necessary to
endow the study results with a causal interpretation and,
in turn, help resolve or prevent misunderstanding.

Supplementary Information
The online version contains supplementary material available at
https://doi.org/10.1186/s12874-021-01484-7.

Additional file 1: Supplementary material to ‘Identification of causal
effects in case-control studies’.
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