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Abstract

Background: Genome-wide association studies (GWAS) have identified genetic variants associated with multiple
complex diseases. We can leverage this phenomenon, known as pleiotropy, to integratemultiple data sources in a joint
analysis. Often integrating additional information such as gene pathway knowledge can improve statistical efficiency
and biological interpretation. In this article, we propose statistical methods which incorporate both gene pathway
and pleiotropy knowledge to increase statistical power and identify important risk variants affecting multiple traits.

Methods: We propose novel feature selection methods for the group variable selection in multi-task regression
problem. We develop penalised likelihood methods exploiting different penalties to induce structured sparsity at a
gene (or pathway) and SNP level across all studies. We implement an alternating direction method of multipliers
(ADMM) algorithm for our penalised regression methods. The performance of our approaches are compared to a
subset based meta analysis approach on simulated data sets. A bootstrap sampling strategy is provided to explore the
stability of the penalised methods.

Results: Our methods are applied to identify potential pleiotropy in an application considering the joint analysis of
thyroid and breast cancers. The methods were able to detect eleven potential pleiotropic SNPs and six pathways. A
simulation study found that our method was able to detect more true signals than a popular competing method
while retaining a similar false discovery rate.

Conclusion: We developed feature selection methods for jointly analysing multiple logistic regression tasks where
prior grouping knowledge is available. Our method performed well on both simulation studies and when applied to a
real data analysis of multiple cancers.
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Background
In recent years, genome-wide association studies (GWAS)
have identified genetic variants associated to multiple
traits. The phenomenon where one genetic loci affects
multiple different phenotypes is called pleiotropy [1].
A comprehensive overview of the genetic architecture
in complex traits from GWAS datasets reported that
31% of single nucleotide polymorphisms (SNPs) and 63%
of genes were pleiotropic [2]. Identification of these
pleiotropic effects may help to understand the shared eti-
ology among complex diseases by highlighting common
biological pathway. As a consequence of the active inter-
est in pleiotropy, there are now a number of statistical
tools which identify pleiotropic signal [3–7]. See [8] for a
survey.
Amongst these methods one of the most popular for

practitioners is a subset based meta-analysis ASSET [9].
This method exhaustively explores subsets of the pheno-
types for the detection of associated variants, regardless of
the direction of the effects. The method returns a p-value
that can be used to determine the significance of potential
pleiotropic effects. ASSET is a popular method that has
received frequent use in the analysis of multiple diseases
[10, 11].
Among existing methods, mixture model methods have

received attention for modelling pleiotropic associations
[12]. These methods partition the SNPs into those that
are associated to multiple traits (pleiotropic association),
associated with a single trait or not associated to a trait.
These methods have recently been extended to inte-
grate functional annotations to improve the power in
pleiotropic mapping [7]. Chung et al. [13] proposed a
method for genetic analysis incorporating pleiotropy and
annotation (GPA). These methods were later extended by
Liu et al. [14] who made use of extended mixture models
to allow for the incorporation of gene set analysis.
In this article, we propose novel methods which model

pleiotropy for genomics data in the case of independent
datasets. Our methods are developed to model pleiotropic
correlation amongst jointly analysed traits and account
for the gene structure information contained in the data.
Integrating additional information such as gene pathway
knowledge offers the potential to improve statistical effi-
ciency. Our statistical approach exploits both gene (or
pathway) and pleiotropy knowledge to increase the statis-
tical power of identifying risk variants shared by multiple
diseases. We conduct simulation studies to evaluate the
performance of our method.
Our method can be motivated in a multi-task frame-

work [15]. In our context, each genetic dataset would cor-
respond to a different learning task. A common approach
to this setting is to assume that only a few common impor-
tant genes are shared across the K studies. In particular,
we make note of Lounici et al. [16] who consider using the

Group Lasso as a candidate estimation method for multi-
task estimation in linear regression models. These ideas
have since been extended byWang et al. [17] who propose
a penalised likelihood approach for multi-task regression
which can incorporate group structure. Their method is
proposed for the case when the response is a set of con-
tinuous responses. We extend their penalisation methods
to account for a binary response variable.
We are motivated by an application of our methods

to the analysis of pleiotropy between thyroid and breast
cancers. Thyroid and breast cancers share some similari-
ties: both are more frequent in women, are influenced by
reproductive factors and are hormonally-mediated.More-
over, individuals diagnosed with breast cancer are more
likely to develop thyroid cancer as a secondary malig-
nancy than patient diagnosedwith other cancer types [18].
These associations do not seem to be explained totally
by surveillance bias or treatment effect, but rather sug-
gests common lifestyle risk factors (such as reproductive
factors, diet or obesity) or shared genetic susceptibility
that still need to be explored. By jointly analysing the
genetic relationships of breast and thyroid cancers, we
aim to understand the nature of the association between
the two cancers and identify potential common biological
mechanisms.
The remainder of this article is organised as follows.

In methods section, we describe the core model, algo-
rithm and inference method. A stability exploration based
on a bootstrap approach is provided. Our method is
tested in a simulation study where we compare the joint
penalised likelihood approach to state-of-the-art variable
selection strategies to investigate pleiotropy. The results
section present the results of the simulation study and
the pleiotropy investigation on thyroid and breast can-
cers. The final section concludes with a discussion of the
methods and potential extensions of the work.

Methods
Modelling sparse and grouped associations in many
independent datasets
Suppose we have data from K independent datasets, D =
D1∪D2∪· · ·∪DK , whereDk = ({y1k , x1k}, . . . , {ynkk , xnkk})
and dataset contain n1, . . . , nK samples respectively. The
response variable yik ∈ {0, 1} is the binary phenotype of
the ith individual of the kth study and xik ∈ R

p is the
vector with corresponding p variables of the ith individual
of the kth study. These data are assumed to come from a
logistic regression model where

p (Yik = yik|Xik = xik) = exp
(
yikxTikβ·k

)

1 + exp
(
xTikβ·k

)

for k = 1, . . . ,K , where β·k ∈ R
p denotes the regres-

sion coefficients for the kth study. To simplify further
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notation, let βj· ∈ R
K , j = 1, . . . , p denote the vector

of the K regression coefficients corresponding to the jth
SNP over the K datasets. We let βjk denote the regression
coefficient for the jth SNP of the kth study. We assume
that the set of SNPs can be partitioned into G groups
where each SNP belongs to a single unique group. Let πg ,
g = 1, . . . ,G denote the set of SNPs contained in the gth
group and ng be the number of SNPs in group g. Finally,
we let the matrix of all regression coefficients be denoted
by B = (β·1, . . . ,β·K ). Since the K multiple studies were
observed independently, the negative log likelihood for
the combined datasets has the generic expression:

�(B;D) = −
K∑

k=1

nk∑

i=1

(
yixTikβ·k − log(1 + ex

T
ikβ·k )

)
(1)

where �(B;D) denotes the negative log likelihood for the
observed dataD.

Sparse groupmulti-Task method
Our Sparse Group Multi-Task (SGMT) approach is based
on penalised likelihood maximisation. Using the likeli-
hood form for independent datasets (1), we propose the
penalised likelihood estimate

B̂ = argmin
B∈Rp×K

{
�(B;D) + λ(1 − α)‖B‖G2,1 + λα‖B‖l2,1

}

where‖B‖G2,1 =
G∑

g=1

√ng

√√√√
√

∑

i∈πg

K∑

k=1
β2
ik

and ‖B‖l2,1 =
p∑

i=1
‖βi·‖2 =

p∑

i=1

√√√√
K∑

k=1
β2
ik

(2)

where λ ≥ 0 and α ∈[ 0, 1] are regularisation param-
eters weighting a G2,1-norm penalty ‖B‖G2,1 and l2,1-
norm penalty ‖B‖l2,1 . The parameter λ controls an overall
amount of penalisation, while α determines how much
penalisation is used for each penalty. The G2,1-norm [19]
fixes the group structure across studies and encourage
sparsity at group-level. As important groups may contain
irrelevant SNPs we desire a method which is able to select
variables within a group. This is handled by the l2,1-norm
which allows for more structured sparsity. The penalisa-
tion matches the penalisation proposed inWang et al. [19]
but differs due to the logistic likelihood.
Equation (2) enables us to define three models:

1 Grouped multi-task penalised model (GMT) by
fixing α = 0.

2 Sparse multi-task penalised model (SMT) by fixing
α = 1.

3 Sparse Grouped multi-task penalised model (SGMT)
with 1 > α > 0.

Optimization algorithm
We propose to fit this model (Eq. 2) using the alternating
direction method of multipliers (ADMM) algorithm [20].
To simplify the notation we define λ1 = (1 − α)λ and
λ2 = λα. The ADMM formulation of our optimisation
problem is given by

min
B,Z

{
�(B;D) + λ1‖Z‖G2,1 + λ2‖Z‖l2,1

}
subject to Z=B.

where Z ∈ R
p×K . The augmented Lagrangian introduces

auxiliary variable U with Lagrange multiplier ρ and is
given by the following:

Lρ(B,Z,U) = �(B;D) + λ1‖Z‖G2,1 + λ2‖Z‖l2,1
+ ρ

2
‖B − Z + U‖2F + ρ

2
‖U‖2F

The ADMMalgorithmmakes the following set of updates:

Bt+1 = argmin
B∈Rp×K

Lρ(B,Z(t),U(t))

Zt+1 = argmin
Z∈Rp×K

Lρ(B(t+1),Z,U(t))

U t+1 = U(t) + B(t+1) − Z(t+1).

Each iterations of the algorithm consist of three sub-
problems. In this case, we obtain an l2 regularisation
logistic regression, a convex optimisation problem and a
dual variable update (respectively):

Bt+1 =argmin
B∈Rp×K

�(B;D) + ρ

2
‖B − Z(t) + U(t)‖2F

Zt+1 =argmin
Z∈Rp×K

1
2
‖B(t+1) + U(t) − Z‖2F + λ1

ρ
‖Z‖G2,1

+ λ2
ρ

‖Z‖l2,1
U t+1 =U(t) + B(t+1) − Z(t+1)

The optimisation for the l2 regularised logistic regres-
sion is solved using the efficient Limited-memory
Brouden-Fletcher-Golfarb-Shanno (L-BFGS) algorithm
implemented in the RcppNumerical package. Let [A](πg ,·)
denote the rows of a matrix A corresponding to the SNP
indices in πg . Following [21], the update Z(t+1) consists of
the following two loops:

1 for j = 1, . . . , p

[Z(t+1)](j,·) = Sλ1([B(t+1) + U(t)](j,·) )

2 for g = 1, . . . ,G

[Z(t+1)](πg ,·) = Sλ2([Z(t+1)](πg ,·) )

where

Sλ(A) =
{
0, if ‖A‖F ≤ λ
‖A‖F−λ
‖A‖F A, otherwise.
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Calibration of tuning parameters
Tuning parameters λ and α are calibrated using a K-
fold cross validation with deviance loss. We recommend
repeated K-fold cross-validation to get more insight of the
variability of the estimated deviance loss. An user friendly
function is provided from our R package and an example
can be found in the supplementary materials.

Stability analysis
The different models (SMT, GMT and SGMT) are fitted
using tuning parameters chosen by repeated K-fold cross-
validation. Genes (or pathways) are then detected and
selected as pleiotropic and others genes are not selected.
These methods provide simultatious model fitting and
selection. However, the challenge of inference for these
sparse estimators is notoriously difficult. Recent work has
developed theoretical results the sampling distribution
of the Lasso estimator, allowing for p-value calculations.
This allows for inference on the statistical strength of
included variables. However, these results require tech-
nical theoretical development and can be complicated
when using the adaptive lasso and more complex penal-
isation approaches. The stability of our proposed mod-
els are explored using a bootstrap strategy [22]. This
non-parametric approach is commonly applied to pro-
vide inference on the stability of the selected variables in
penalised methods [23, 24]. Bootstrapping for penalised
methods has been studied theoretically [23, 25] and for
practical use in GWAS analysis [26].
Resampling bootstrap is used in our approach where

the different models are implemented on each bootstrap
using tuning parameters selected from the original data.
The frequency of the selected genes (or pathways) and non
selected genes (pathways) over the M bootstrap samples
quantifies the stability of the selected variables. We report
both the variables selected and the selection rates for the
application.More details on the bootstrapping procedures
are given in the Results and Applications sections. Specif-
ically, we estimate the probability of selection for each
variable (or group of variables) with a given set of tun-
ing parameters (α, λ) based on the proportion of times
they are included on the bootstrapped fits. Commonly
in GWAS data we are concerned with controlling the
false discovery rate (FDR). One way to approach control-
ling this would be to specify a cut-off for the minimum
probability of inclusion for each variable. In our simu-
lation study we consider a strict control, only selecting
variables that are included on every bootstrap. This con-
servative strategy would often be too drastic and for or
application section we adopt another approach. This is
to report the variables that had selection probabilities at
least as high as the selection probabilities of the variables
included on the full data fit. We state both the variables
and their bootstrapped selection rates. More details on

the bootstrapping procedures are given in the Results
and Applications sections. An example demonstrating the
Bootstrapping approaches is given in the supplementary
material and can be reproduced from github.com/matt-
sutton/SGMT.

Adaptive weights
While penalised approaches allow for shrinkage of coeffi-
cients to zero, they come at the cost of possibly excessive
shrinkage to non-zero coefficients. This has motivated a
number of approaches that aim to reduce the effect of
shrinkage on non-zero coefficients. One simple approach
is the adaptive lasso [27]. The adaptive lasso approach
takes the standard �1 penalty of the lasso

∑p
j=1 |βj| and

assigns weights to each coefficient
∑p

j=1 wj|βj|. Using an
appropriate choice for the weights penalisation for non-
zero coefficients can be reduced and these coefficients will
suffer less shrinkage. A common choice for the weights is
wj = 1/|β̂j| where β̂j is the ordinary least squares esti-
mate of the jth coefficient. Similar to the adaptive lasso
we also allow a weighted version where theG2,1-norm and
�2,1-norm penalties are replaced by,

G∑

g=1
γg

√√
√
√√

∑

i∈πg

K∑

k=1
β2
ik , and

p∑

i=1
κi

√√
√
√

K∑

k=1
β2
ik

respectively. Analogous to similar adaptive group and
sparse-group lasso material in the literature [28, 29], the
G2,1-norm weights γg are taken to be the inverse of the
G2,1-norm of the OLS coefficients for g = 1, ...,G. Simi-
larly we take the weights for the �2,1-norm to be κi where
κi is chosen as the inverse of the �2,1-norm applied to the
OLS coefficients for i = 1, ..., p. That is, we set the weights
to be:

γg = 1
√∑

i∈πg

∑K
k=1 β̂2

ik

, and κi = 1
√∑K

k=1 β̂2
ik

.

Alternative choices for the weighting function could
also be considered and would be a topic of interesting fur-
ther work. In addition one could also consider reducing
the shrinkage effect by refitting the solution naively on
the selected variables. While this topic has received some
attention in penalised linear regression modelling [30] it
has received less in logistic regression and is in general an
open question.

Simulation design
To assess the correctness and efficiency of our meth-
ods, we run simulations and compare the results with
the well known frequentist approaches ASSET and GPA
for detecting pleiotropic signal [9, 13]. In order to show
the contribution of leveraging pleiotropy, we also run
and compare the results of our novel approaches with
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the single-task group lasso (SGST), in which each trait
is treated individually. The simulations and implementa-
tions of all methods have been carried out in R.
At each simulation, K = 2 datasets are generated.

We look at monitoring the efficiency of our methods for
detecting effects across the multiple studies. In particu-
lar, we considered the effect of grouping information on
the efficiency of the methods. The simulations were set
to range from a simulation setting in which the group-
ing information was not as useful, the groups were almost
entirely set to zero, to one where grouping information
entirely determined the selected variables, i.e every vari-
able in the group was active. The true effect size for any
active variable was set to 0.8, and active variables in study
1 were all set positive, while those in study 2 alternated
(allowing for same and different direction pleiotropic
effects).
We considered four simulation settings where we

increased the number of active variables pa within groups
consisting of 20 variables. This was set to pa = 2, 4, 8
and 16 active variables out of the 20 variables within each

group. Each variable occurs in both of theK = 2 studies so
the total number of effects to be estimated within a group
is 40. To offset the effect of having more active variables
when pa is larger, we increase the total number of vari-
ables in these simulations, considering p = 80, 160, 320
and 640 variables (corresponding to 160, 320, 640 and
1280 estimated effects across the studies). Under this
design, simulations should naturally favour sparse meth-
ods such as ASSET or SMT initially andGMT as the group
structure becomes more relevant (higher pa values). The
simulation settings are given in more detail in Fig. 1. The
total numbers of observations for the simulations were
n = 100, 200, 400 and 800, keeping the ratio p/n constant,
with half of the observations in each study. The ratio of
number of active groups to total number of groups was
kept constant across the simulations so that the difficulty
of group selection was consistent.
Once data are generated, our novel methods are applied

and compared to the R implementation of ASSET using
default parameter settings [9].Wewant to compared these
methods on their ability to recover the coefficients. We

Fig. 1 Each row in the figure corresponds to a simulated scenario. Colours correspond to groups, and the number active in a group refers to the
number of non-zero variables pa in a group consisting of 20 variables per study (so 40 variables over K = 2 studies). The number of non-zero vs zero
groups is (1/4,2/8,4/16 and 8/32)
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are not interested in the prediction accuracy. For each
method, the true positive rate (TPR), the true negative
rate (TNR), the �1 error

∑p
i=1

∑K
k=1 |βik − β̂ik| , the �2

error
√∑p

i=1
∑K

k=1(βik − β̂ik)2 and theMatthews correla-
tion coefficient (MCC) [31] are computed. The computing
time is also collected. The simulations are replicated 100
times. An additional simulation exploring performance
when K = 3 is considered in the supplementary material.
This additional simulation was taken as the simulation
here for K = 2 with an additional third study generated
identically to study 1. We found that the performance of
our methods only improved for this additional data, see
the supplement for further details and results.

Application study

Study population
We used individual-level data from CECILE study [32],
a French population-based case-control study on breast
cancer (1,125 cases and 1,172 controls) and from the
french case-control studies included in the EPITHYR con-
sortium on thyroid cancer (CATHY, Young-thyr, and E3N
studies totalling 1,129 women cases and 1,174 women
controls) [33]. Only women of European ancestry were
kept for the analyses.
Participants fromCECILE study were genotyped using a

customized microarray including variants from 28 candi-
date pathways (648 genes) selected from KEGG database
and from a literature review. A total of 8,716 SNPs were
selected to capture SNPs within 5 kb of each gene (pair-
wise approach with r2> 0.8) with a minimumminor allele
frequency (MAF) of 0.05 in the Caucasian population
(CEU) genotyped by the HapMap Project (Data Release
21/Phase II, NCBI Build 36.1, assembly dbSNPb126)
[32]. In EPITHYR, all subjects were genotyped using
the Infinium OncoArray-500K BeadChip (Illumina). This
array includes a genome-wide backbone of about 250,000
tag SNPs designed such that the large majority of com-
mon variants could be accurately imputed. Additional
SNPs included dense coverage across known loci associ-
ated with common cancers, including breast cancer but
not thyroid cancer. We added 13,759 custom markers of
possible interest for thyroid cancer to the design of the
chip [33]. Imputation of data from EPITHYR were then
performed using the 1000 Genomes Project dataset as
the reference panel (release of October 2014, version 3).
Rare SNPs (MAF < 0.01) and palindromic SNPs were
excluded. After quality controls (QC), we retained 6,677
SNPs available for both cancers.
As our approaches do not deal with overlapping groups,

10 non-overlapping candidate pathway were selected and
only the SNPs related to those pathways were kept in the
final datasets. Within each genes, SNPs were pruned for
high pairwise correlation (r2 > 0.98). Then, only SNPs

belonging to non overlapping groups (genes and path-
ways) were selected. At the end of the QC, the two
datasets included the same panel of 3,766 SNPs within 331
genes and 10 pathways (see Table 1).

Statistical analysis
We applied the three proposed methods to the investi-
gation of pleiotropy between breast and thyroid cancers.
The GMT and SGMT methods were both applied twice
in order to consider both gene and pathway as different
group structures. First, the tuning parameters has been
calibrated using 5-fold cross-validation procedures. For
SMT and GMT, we then performed the analysis using the
values of λ parameter minimising the mean of the bino-
mial deviance over 5 repetitions. For SGMT, the best cou-
ple of tuning parameter (α, λ) has been calibrated using
5 repetitions of 5-fold cross-validation. Once the meth-
ods were fit to the data, we explored the stability of the
penalised methods using a bootstrap sampling strategy.
We evaluated the methods on 10,000 bootstrap samples of
the data using the tuning parameters from the original fit
to the full dataset. We evaluated the frequency of selected
SNPs (or groups for GMT) on the 10,000 bootstrap sam-
ples. Finally, we selected only the variables with a higher
bootstrap selection rate than the non-selected variables
from the original fit to the full dataset. For details see the
supplementary material.
We also analysed these datasets using ASSET for an

empirical comparison of the methods. We first performed
GWAS analyses for breast and thyroid cancers separately
in order to get summary statistics. As ASSET is based
on p-values, we applied a FDR to correct for multi-
ple testing. As we only have interest in identification of
pleiotropic effects, we only considered SNPs detected in
both datasets.

Table 1 Non-overlapping pathway chosen for the study

Pathway Description #Gene #SNP

F_obesity Obesity and
obesity-related
phenotypes

48 857

F_DNA DNA repair 88 610

F_circadian Circadian Rhythm 23 559

F_xeno Xenobiotics metabolism 68 531

F_pub_he2010_4 Precocious or delayed
puberty

16 329

F_cell_cycle Cell cycle 19 249

F_tobacco_hsa00760 Nicotinate and
nicotinamide metabolism

23 229

F_inflammatory Inflammatory response 26 182

F_oglyc_hsa00511 Other glycan degradation 15 111

F_folate Folate metabolism 5 50
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Furthermore, we compared the results of our proposed
methods with previously published results on the same
data using Bayesian meta-analysis models called GCP-
Bayes at gene-level [34] which are based on summary
statistics.

Results
Simulation results
Table 2 shows the estimated variable selection perfor-
mance of the regression coefficients from the different
penalised multi-task methods and the competitor ASSET.
Selection performance was measured by the number of
correctly selected variables, the true positive rate (TPR),
the number of correctly non-selected zero variables, true
negative rate (TNR) and the Mathew’s correlation coef-
ficient (MCC). For ASSET, variables were said to be
selected if they had a false discovery adjusted p-value
lower than 0.05 at a variable-level. Groups were selected
if the minimum adjusted p-value at a variable-level within

the group was significant. We applied a strict bootstrap-
ping approach for detecting effects using the penalised
approaches. Specifically, for each simulated dataset we
re-sampled the data 200 times and re-ran each of the
penalised methods (SMT, GMT, SGMT and SGST) with
their one-standard-error cross-validated λ and α values.
We defined a variable to be selected (active) only if it was
selected in every bootstrapped run.
This differs from the bootstrapping approach in the

application which promotes a higher sensitivity as it is
more suitable in genomic context in order to detect more
potential signals. We report results using the bootstrap-
ping from the applicaiton in the supplementary material.
Our results here gives a more comparable control of the
false discovery rate with the ASSET and GPA approaches,
and thus a fairer comparison of the methods. Results
comparing the methods using the bootstrapping selection
approach from the application are given in the supple-
mentary material. Table 2 shows the performance of our

Table 2 Average variable selection performance averaged across 100 simulated datasets with standard deviations in brackets

Individual Group

Method MCC TPR TNR MCC TPR TNR

Sim 1 SMT 0.29 (0.36) 0.22 (0.27) 1.00 (0.00) 0.41 (0.49) 0.41 (0.49) 1.00 (0.00)

GMT 0.10 (0.14) 0.36 (0.48) 0.91 (0.11) 0.35 (0.49) 0.36 (0.48) 0.99 (0.05)

SGMT 0.47 (0.39) 0.41 (0.37) 1.00 (0.00) 0.60 (0.49) 0.63 (0.49) 0.97 (0.09)

ASSET 0.21 (0.34) 0.16 (0.26) 1.00 (0.00) 0.28 (0.45) 0.28 (0.45) 1.00 (0.00)

GPA 0.03 (0.12) 0.09 (0.18) 0.93 (0.17) 0.04 (0.18) 0.21 (0.41) 0.83 (0.37)

SGST 0.09 (0.21) 0.05 (0.12) 1 (0.00) 0.17 (0.38) 0.17 (0.38) 1 (0.03)

Sim 2 SMT 0.55 (0.15) 0.34 (0.16) 1.00 (0.00) 0.88 (0.20) 0.84 (0.25) 0.99 (0.03)

GMT 0.34 (0.08) 0.80 (0.27) 0.83 (0.06) 0.85 (0.21) 0.80 (0.27) 1.00 (0.02)

SGMT 0.72 (0.14) 0.56 (0.20) 1.00 (0.00) 0.95 (0.11) 0.95 (0.15) 0.99 (0.04)

ASSET 0.46 (0.19) 0.26 (0.15) 1.00 (0.00) 0.74 (0.30) 0.70 (0.33) 0.99 (0.04)

GPA 0.22 (0.2) 0.11 (0.12) 0.99 (0.07) 0.43 (0.39) 0.39 (0.37) 0.98 (0.14)

SGST 0.01 (0.05) 0.00 (0.02) 1 (0.00) 0.03 (0.13) 0.02 (0.1) 1.00 (0.00)

Sim 3 SMT 0.46 (0.08) 0.24 (0.08) 1.00 (0.00) 0.91 (0.12) 0.89 (0.16) 0.99 (0.03)

GMT 0.57 (0.03) 0.98 (0.06) 0.84 (0.01) 0.99 (0.05) 0.98 (0.06) 1.00 (0.01)

SGMT 0.73 (0.09) 0.59 (0.13) 1.00 (0.00) 0.97 (0.07) 0.99 (0.04) 0.99 (0.03)

ASSET 0.33 (0.11) 0.14 (0.08) 1.00 (0.00) 0.77 (0.20) 0.71 (0.26) 0.99 (0.04)

GPA 0.23 (0.09) 0.07 (0.04) 1.00 (0.00) 0.61 (0.23) 0.49 (0.26) 1.00 (0.01)

SGST 0.00 (0.00) 0.00 (0.00) 1 (0.00) 0.00 (0.00) 0.00 (0.00) 1.00 (0.00)

Sim 4 SMT 0.21 (0.05) 0.06 (0.02) 1.00 (0.00) 0.70 (0.15) 0.61 (0.17) 0.99 (0.02)

GMT 0.86 (0.02) 1.00 (0.03) 0.94 (0.00) 1.00 (0.02) 1.00 (0.03) 1.00 (0.00)

SGMT 0.56 (0.04) 0.38 (0.04) 1.00 (0.00) 0.99 (0.02) 1.00 (0.02) 1.00 (0.01)

ASSET 0.13 (0.08) 0.03 (0.03) 1.00 (0.00) 0.46 (0.25) 0.34 (0.24) 0.99 (0.02)

GPA 0.11 (0.05) 0.02 (0.01) 1.00 (0.00) 0.43 (0.21) 0.28 (0.18) 1.00 (0.01)

SGST 0.00 (0.00) 0.00 (0.00) 1.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1.00 (0.00)

Measures of performance are based on variable (pleiotropic) effect recovery and group effect recovery
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methods. We have given the performance at both variable
pleiotropic signal detection level (variable-level) and at
their effect detection level for groups of variables (group-
level).
A consequence of using this strict FDR and bootstrap-

ping procedure is that the true negative rate is almost con-
sistently at 100% with low standard error. The MCC and
TPR in comparison have higher variability and differ more
amongst the methods. We note also that the variability
of the methods appears to decrease for the larger simula-
tions. This is because the smaller simulation settings have
a small number of true variables and consequently there
is more variance in the estimate of the true positive ratio.
For example Sim 1 has only 2 active variables so there are
3 possible TPR values for any dataset.
The simulations results in Table 2 show clearly that

single-task method is not efficient at detecting pleiotropic
effects. For every scenario the method struggles to find
signal in the data. Regarding methods designed for
pleiotropy, GPA was outperformed by every other meth-
ods at both variable and group level. Both ASSET and
SMT have comparable performance in detecting effects
at a variable-level with SMT having slightly better per-
formance in TPR and MCC. In simulation 4 where group
information is most relevant SMT and ASSET suffer in
terms of TPR, indicating that the method struggles to
detect true effects. Meanwhile GMT has the best perfor-
mance for simulation 4. However, for simulation 1 and 2,
GMT has lower performances in term of MCC compared
to SMT and SGMT, although GMT is still good in term of
TPR. In simulation 1, 2 and 3, SGMT also shows the best
performances in MCC overall. In simulation 4, SGMT is
outperformed by GMT inMCC, but still shows better per-
formances than SMT and ASSET. SGMT offers the best
compromise overall at variable-level.
At a group-level, the Multi-Task methods all had signif-

icantly better performance than the ASSET approach for
TRP, TNR andMCC.Methods which incorporated group-
ing information were even better yet in their accuracy for
recovering the active groups of variables. Moreover, we
found that the SGMT method was able to outperform the

GMT method for selection at a group-level when there
was sparsity within the active groups.
Finally, in Table 3 we comment on the reconstruction

error for the different methods designed for pleiotropy
detection. The estimated regression coefficients for
ASSET and GPA were then taken to be the summary
statistic OLS estimate for the selected variables and zero
elsewhere. For the Multi-Task approaches the reconstruc-
tion error was taken using the estimate corresponding
to the one-standard error rule from a run of 10-fold
cross-validation. The GPA method performs poorly in
reconstruction compared to other approaches. In general
ASSET performs poorly in reconstruction compared to
the penalised approaches. This difference becomes more
apparent for problems with high dimension where the
reconstruction challenge is harder. Again we see similar-
ity between ASSET and SMT, with SMT having slightly
better performance. Over all simulation settings SGMT
appears to be competitive or attain the best L1 or L2
reconstruction error.

Application results
We first run the analyses at SNP-level i.e. that do not take
into account for group structure. As a results, no signif-
icant SNP was detected by ASSET after correction for
multiple testing. Our proposed SMT method selected 11
SNPs from which 8 have been confirmed by the boot-
strap sampling strategy. The results of the analyses with
the proposed methods are shown in Table 4.
We then performed gene-level analysis using GMT

and SGMT. GMT selected the gene RORA (retinoic acid
receptor-related orphan receptor alpha) as pleiotropic.
This gene located on the chromosome 15 is involved in the
regulation of circadian rhythms. RORA was still selected
after the bootstrap procedure. However, GMT does not
perform variable selection for variables within a group.
SGMT selected RORA and a further seven genes. After
the bootstrap procedure, only 4 SNPs remained selected,
each located in intron of a different tag gene: rs1482057
in RORA, rs1342862 in NEGR1 (neuronal growth regu-
lator 1), rs17332991 in ERCC8 (excision repair 8, CSA

Table 3 Average reconstruction error for the different methods over 100 simulated datasets with standard deviations in brackets

L1 L2

Method Sim 1 Sim 2 Sim 3 Sim 4 Sim 1 Sim 2 Sim 3 Sim 4

SMT 2.76 (0.94) 9.62 (1.16) 41.95 (2.33) 193.14 (2.64) 1.20 (0.27) 2.22 (0.29) 4.95 (0.29) 11.80 (0.18)

GMT 3.67 (0.64) 13.60 (0.58) 45.68 (1.35) 174.58 (3.04) 1.52 (0.11) 2.67 (0.18) 5.01 (0.21) 10.69 (0.21)

SGMT 3.66 (2.05) 10.05 (1.57) 39.63 (2.30) 176.60 (3.64) 1.21 (0.31) 2.09 (0.25) 4.52 (0.27) 10.85 (0.24)

ASSET 2.88 (0.55) 10.25 (1.48) 47.36 (1.99) 202.60 (1.87) 1.47 (0.23) 2.79 (0.26) 6.04 (0.19) 12.69 (0.1)

GPA 6.34 (7.45) 12.33 (3.67) 49.04 (1.27) 203.32 (1.13) 1.87 (0.64) 3.06 (0.19) 6.21 (0.11) 12.73 (0.06)

The estimated coefficients for the penalised methods correspond to the estimate with tuning parameters chosen from cross validation. The estimated coefficients for ASSET
and GPA are set using the summary statistics of the active variables. An active variable for ASSET and GPA was one with a FDR corrected p-value less than 0.05
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Table 4 Pleiotropic SNPs selected by our different approaches. For each method, we reported if the SNP effect was find in the same
direction between the two studies (+), the opposite direction (-) or not selected (ns)

SNP Chr Pos (kbp) EA BA DE SGMT

BC TC Gene Pathway

rs1342862 * 1 72,657 G A − − NEGR1 F_obesity

rs17483835 * 1 183,297 A G − − F_tobacco_hsa00760

rs17332991 * 5 60,179 A C − − ERCC8 F_DNA

rs6151640 * 5 79,967 G C − − F_DNA

rs249634 * 5 80,164 G A + − F_DNA

rs4978820 * 9 110,057 A G − − F_DNA

rs4255624 12 24,960 G A − − F_pub_he2010_4

rs878156 * 14 20,824 G A − + PARP2 F_DNA

rs1482057 * 15 61,064 A C − + RORA ** F_circadian

rs12150110 17 11,962 A G + + F_cell_cycle

rs3087592 22 41,079 A G + − F_obesity

Chr: chromosome; EA: effect allele; BA: baseline allele; DE: direction of effects; BC: breast cancer; TC: thyroid cancer; * SNP selected by SMT; ** Gene selected by GMT

ubiquitin ligase complex subunit), and rs878156 in PARP2
(poly(ADP-ribose) polymerase 2). These SNPs were also
selected by SMT. NEGR1 located in chromosome 1 is an
obesity-related gene. PARP2 located in chromosome 14
encodes for a class of nuclear enzymes involved in the
pathogenesis of diverse gynecologic tumors [35]. The fre-
quency of the most selected SNPs and the corresponding
tag genes are shown in Fig. 2.
Analysis with pathway as group structure using GMT

did not allow any pathway detection. However, SGMT

with pathway as the grouping structure detected 13 con-
sistently selected signals (see Fig. 3). The bootstrap sam-
pling analysis revealed consistent results, as 11 out of 13
SNPs were the most frequently selected SNPs with anal-
yses on bootstrapped samples. The final 11 pleiotropic
hits selected by SGMT belonged to 6 different pathways.
To note, SGMT allowed to detect the 8 SNPs that were
already selected by SMT, but also allow to detect 3 new
signals by considering the pathway structure (see Table 4),
with one additional pleiotropic signal in the F_obesity

Fig. 2 First 15 selected SNPs in the bootstrapped analysis with gene as group structure, ordered by frequency of appearance. The name of
corresponding genes are mentioned. The 8 signals selected in the analysis on real datasets are represented in green
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Fig. 3 First 15 selected SNPs in the bootstrapped analysis with pathway as group structure, ordered by frequency of appearance. The name of
corresponding pathways are mentioned. The 13 signals selected in the analysis on real datasets are represented in green

pathway and two single signals in the F_pub_he2010_4
and F_cell_cycle pathways.
It can be highlighted that 2 out of 4 selected genes

by SGMT were selected by a previous analyse on the
same data using GCPBayes Bayesian meta-analysis meth-
ods at gene-level [34]: RORA and NEGR1. Again, the
gene PARP2 appeared to a suggestive threshold as a
gene with potential pleiotropic effect which could have
been selected with a larger sample size. The fourth gene,
ERCC8, was not selected by GCBPayes. Also, GCPBayes
selected 3 different SNPs as specific effects in NEGR1
but not rs1342862, that is not in linkage disequilibrium
with these 3 SNPs. However, rs1342862 has a D’=1 with
rs12133119 and rs17588812, indicating these SNPs share
co-inherited alleles. No specific SNP corresponding to
RORA was selected by GCPBayes.

Discussion
The proposed methods can bring power to detect new
shared genetic effects between multiple diseases by allow-
ing to simultaneously analysemultiple variables and traits.
This allow us to take into account for the correlations
between variables and between traits in the analysis, in
contrary to methods based on summary statistics from
GWAS. Also, our methods allow for incorporating prior
knowledge such as group structure corresponding to
genes or pathways which can increase the statistical power
to identify important risk variants. However, it should

be noted that taking into account the group structure
requires labeling the data without overlap between the
groups, which may require re-partitioning the variables
within groups if variables are linked to several groups.
A simulation study showed excellent performances

of our proposed methods. Even without incorporating
grouping knowledge, our SMT method outperformed
ASSET in almost all situations. GMT, which only con-
sidered variable selection at a group level, showed great
performance. This was especially clear when the ratio of
nonzero to zero variables within a group was high. We
note that the correlation structure of genetic data that is
the LD, should help GMT to perform reasonably well even
when the ratio of true pleiotropic variables in a group is
lower, what is likely in real data. More generally, higher
correlation in the data would be in favour of multivari-
ates methods such as our proposed methods. The SGMT
method that allow selection at variable and group-level
takes the best parts of both SMT and GMT. This method
showed the highest performances in almost all simula-
tions and was comparable to the best performance at both
variable-level and group-levels.
The proposed approaches were applied to the investi-

gation of the shared genetic effects between thyroid and
breast cancers in candidate pathways. The application
study have shown our proposed methods are capable of
detecting new signals would not be detected by ASSET.
All themulti-taskmethods were applied to both genes and
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pathways as group structure. The SGMT method allowed
to detect more signals than SMT and GMT methods.
SGMT detected 11 pleiotropics SNPs in 6 different path-
ways, from which 8 SNPs were also detected by SMT. The
analysis with genes as group structure highlighted 4 out
of these 11 selected variables located in 4 different genes,
fromwhich RORAwas detected by GMT leading to strong
evidence about implication of this gene in the mechanism
of both cancers. Interestingly, RORA is part of the core cir-
cardian genes and variants in these gene were previously
reported to be associated to several cancers, including
breast, prostate and pancreatic cancers [36]. This gene is
suspected to play a role in tumor suppression and was
found to be inactivated in multiple cancers [37].

Conclusion
Wepresent three novel feature selectionmethods at group
and variable level adapted for pleiotropy detection in
GWAS data using the multi-task regression framework.
These methods use penalised likelihoodmethods, exploit-
ing different penalties, to induce structured sparsity at
a group and SNP level. Our methods are developed to
model pleiotropic correlation amongst jointly analysed
traits and account for the effect of linkage disequilibrium
by incorporating known group structures such as gene
or pathway. They take into account heterogeneity in the
size and direction of the genetic effects across traits. An
ADMM algorithm is used to solve the penalised regres-
sion problems. We have conducted simulation studies to
evaluate the performance of our method compared to one
of the most popular method adapted for pleiotropy for
practitioners.We have applied ourmethods to the analysis
of two datasets on breast and thyroid cancers.
Future work could consider extending these methods

to allow for groups with overlap with extensions to the
ADMMoptimisation or alternative efficientmethods [38].
Other extensions could include generalising the approach
for the joint analysis of multiple generalised likelihoods
(e.g. logistic, linear, Poisson, etc). Further investigation
of the choice of weights in the adaptive component of
the penalisation could also be of theoretical and practi-
cal interest. Another future avenue of research would be
development of p-value calculations and more technical
FDR control measures in line with the theoretical devel-
opment of Lockhart et al. [39] or Candés et al. [40]. In
conclusion, the proposed multi-task regression methods
were seen to be more powerful than methods based on
summary statistics to detect new pleiotropic effects in
complex diseases, and are computationally feasible. These
methods allow us to take into prior knowledge in the
analysis of the genetic data as the biological structures of
genes or pathways, and hence it allow to select impor-
tant risk variants or group structures with more biological
meaning. These methods are likely to be of interest for

other application to detect non-zero effects of possible
different directions in structured data. The methods have
been implemented in a user-friendly R statistical pack-
age called “SGMT”, available at https://github.com/matt-
sutton/SGMT.
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