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Abstract 

Background:  In case-cohort studies a random subcohort is selected from the inception cohort and acts as the sam‑
ple of controls for several outcome investigations. Analysis is conducted using only the cases and the subcohort, with 
inverse probability weighting (IPW) used to account for the unequal sampling probabilities resulting from the study 
design. Like all epidemiological studies, case-cohort studies are susceptible to missing data. Multiple imputation (MI) 
has become increasingly popular for addressing missing data in epidemiological studies. It is currently unclear how 
best to incorporate the weights from a case-cohort analysis in MI procedures used to address missing covariate data.

Method:  A simulation study was conducted with missingness in two covariates, motivated by a case study within 
the Barwon Infant Study. MI methods considered were: using the outcome, a proxy for weights in the simple case-
cohort design considered, as a predictor in the imputation model, with and without exposure and covariate interac‑
tions; imputing separately within each weight category; and using a weighted imputation model. These methods 
were compared to a complete case analysis (CCA) within the context of a standard IPW analysis model estimating 
either the risk or odds ratio. The strength of associations, missing data mechanism, proportion of observations with 
incomplete covariate data, and subcohort selection probability varied across the simulation scenarios. Methods were 
also applied to the case study.

Results:  There was similar performance in terms of relative bias and precision with all MI methods across the sce‑
narios considered, with expected improvements compared with the CCA. Slight underestimation of the standard 
error was seen throughout but the nominal level of coverage (95%) was generally achieved. All MI methods showed 
a similar increase in precision as the subcohort selection probability increased, irrespective of the scenario. A similar 
pattern of results was seen in the case study.

Conclusions:  How weights were incorporated into the imputation model had minimal effect on the performance 
of MI; this may be due to case-cohort studies only having two weight categories. In this context, inclusion of the out‑
come in the imputation model was sufficient to account for the unequal sampling probabilities in the analysis model.
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Background
Epidemiological studies often collect large amounts of 
data on many individuals. Some of this information may 
be costly to analyse, for example biological samples. Fur-
thermore, if there are a limited number of cases, data on 
all non-cases may provide little additional information to 
that provided by a subset [1]. In this context, investiga-
tors may opt to use a case-cohort study design, in which 
background covariate data and outcomes are collected on 
all participants and more costly exposures (e.g. metabo-
lite levels) are collected on a smaller subset. An example 
of a cohort study adopting the case-cohort design is the 
Barwon Infant Study (BIS). This is a population-derived 
cohort study with a focus on non-communicable diseases 
and the biological processes driving them. Given that a 
number of investigations within BIS involve exposures 
collected through costly biomarker and metabolite analy-
sis, for example serum vitamin D levels, the case-cohort 
design was implemented to minimise cost [2].

In the case-cohort design, a subset of the full cohort, 
hereafter termed the subcohort, is randomly selected 
from the inception cohort. This subcohort is used as the 
sample of controls for all subsequent investigations, with 
exposure data collected from the subcohort and all cases 
[3]. In such a study, the analysis is conducted on the sub-
cohort and cases only, resulting in an unequal probability 
of selection into the analysis, with cases having probabil-
ity of selection equal to1 and non-case subcohort mem-
bers having a probability of selection less than 1. This 
unequal sampling should be accounted for in the analy-
sis so as to avoid bias induced due to the oversampling of 
cases [4].

One way to view the case-cohort design, and to address 
the unequal sampling, is to treat it as a missing data 
problem, where the exposure data is ‘missing by design’. 
Standard practice in the analysis of case-cohort stud-
ies is to handle this missing exposure data using inverse 
probability weighting (IPW) based on the probability of 
selection into the analysis [1]. Additionally, case-cohort 
studies may be subject to unintended missing data in the 
covariates, and multiple imputation (MI) may be applied 
to address this missing data.

MI is a two-stage procedure in which missing val-
ues are first imputed by drawing plausible sets of values 
from the posterior distribution of the missing data given 
the observed data, to form multiple, say m > 1, complete 
datasets. In the second stage, the analysis is conducted 
on each of these m datasets as though they were fully 

observed, producing m estimates of the target estimands. 
An overall estimate for the parameter of interest is pro-
duced, along with its variance, using Rubin’s rules [5]. If 
the imputation model is appropriate, and the assump-
tions on the missing data mechanism hold, then the 
resulting estimates are unbiased with standard errors 
(SE) that reflect not only the variation of the data but also 
the uncertainty in the missing values [6].

When conducting MI, there are two general approaches 
that can be used to generate the imputed datasets when 
there is multivariate missingness: joint modelling, most 
commonly multivariate normal imputation (MVNI), and 
fully conditional specification (FCS). Under MVNI the 
missing covariates are assumed to jointly follow a mul-
tivariate normal distribution [7]. In contrast, FCS uses 
a series of univariate imputation models, one for each 
incomplete covariate, and imputes missing values for 
each variable by iterating through these models sequen-
tially [8]. To obtain valid inferences, careful considera-
tion must be made when constructing the imputation 
model such that it incorporates all features of the analy-
sis model, in order to ensure compatibility between the 
imputation and analysis model [9, 10].

In simple terms, to achieve compatibility, the imputa-
tion model must at least include all the variables in the 
analysis model, and in the same form. It may also include 
additional variables, termed auxiliary variables, which 
can be used to improve the precision of the inference if 
the auxiliary variables are associated with the variables 
that have missing data. Auxiliary variables may addition-
ally decrease bias if they are strong predictors of miss-
ingness [11]. In the context of a case-cohort study where 
the target estimand is the coefficient for the risk ratio 
(RR) estimated from a log-binomial model with IPW to 
address unequal probability of selection, two key fea-
tures should be reflected in the imputation model; 1) the 
assumed distribution of the outcome, given the exposure 
and covariates (i.e. log-binomial), and 2) the weights. It 
is currently unclear how best to incorporate weights into 
MI in the context of a case-cohort analysis.

It has been previously shown that ignoring weights 
during MI can introduce bias into the point estimates 
and estimated variance produced through Rubin’s 
rules in the context of an IPW analysis model [12, 13]. 
Various approaches to incorporate weights into MI 
have been proposed in the literature. Previous work 
from Marti and Chavance [14] in a survival analysis 
of case-cohort data suggests that simply including the 
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outcome, as a proxy for the weights, in the imputation 
model may be sufficient for incorporating the weights. 
In the case-cohort setting we are considering, there 
are only two distinct weights, representing the unequal 
selection for cases and controls, so the weighting vari-
able is completely collinear with the outcome. An addi-
tional approach is to include weights and an interaction 
between the weights and all of the variables in the 
analysis model in the imputation model. Carpenter and 
Kenward [12] illustrated that this corrected for the bias 
seen when the weights are ignored in the imputation 
model. One difficulty with this approach is that it may 
be infeasible if there are several incomplete variables. 
Another drawback is the increased number of parame-
ters to be estimated during imputation. Another poten-
tial approach is to use stratum-specific imputation, in 
which missing values for cases and non-case subcohort 
members are imputed separately. While many studies 
have compared MI approaches in the case-cohort set-
ting [14–17], these are in the context of a time-to-event 
endpoint and predominantly considered MI only to 
address the missing exposure due to the design. Keogh 
[16] considered additional missingness in the covari-
ates, but this was in the context of a survival analysis 
where weights were dependent on time. While there 
are many approaches available, it is unclear how these 
preform in a simple case-cohort context with missing 
covariate data.

The aim of this study was to compare the perfor-
mance of a range of possible methods for implementing 
MI to handle missing covariate data in the context of 
a case-cohort study where the target analysis uses IPW 
to estimate the i) RR and ii) odds ratio (OR). Whilst the 
common estimand in case-cohort studies is the RR due 
to the ability to directly estimate this quantity with-
out the rare-disease assumption [18], we have chosen 
to additionally consider the target estimand being the 
coefficient for the OR as this is still a commonly used 
estimand. The performance of the MI approaches was 
explored under a range of scenarios through the use of 
a simulation study closely based on a case study within 
BIS, and application of these methods to the BIS data. 
The ultimate goal was to provide guidance on the use of 
MI for handling covariate missingness in the analysis of 
case-cohort studies.

The paper is structured as follows. We first intro-
duce the motivating example, a case-cohort investiga-
tion within BIS, and the target analysis models used for 
this study. This is followed by a description of the MI 
approaches to be assessed and details of a simulation 
study designed to evaluate these approaches based on the 

BIS case study. We then apply these approaches to the 
BIS case study. Finally, we conclude with a discussion.

Methods
Motivating example
The motivating example for this study comes from a case-
cohort investigation within BIS [19]. A full description of 
BIS can be found elsewhere [2]. Briefly, it is a population-
derived longitudinal birth cohort study of infants recruited 
during pregnancy (n = 1074). The research question 
focused on the effect of vitamin D insufficiency (VDI) at 
birth on the risk of food allergy at one-year. Cord blood 
was collected and stored after birth, and the children were 
followed up at one-year. During this review, the infant’s 
allergy status to five common food allergens (cow’s milk, 
peanuts, egg, sesame and cashew) was determined through 
a combination of a skin prick test and a food challenge. Of 
those who completed the one-year review (n = 894, 83%), a 
random subcohort was selected (n = 274), with a probabil-
ity of approximately 0.31. The exposure, VDI, was defined 
as 25(OH)D3 serum metabolite levels below 50 nM and was 
measured from those with a confirmed food allergy at one-
year and those who were selected into the subcohort.

The planned primary analysis of the case study was to 
estimate the RR for the target association using IPW in a 
binomial regression model adjusted for the confound-
ing variables: family history of allergy (any of asthma, hay 
fever, eczema, or food allergy in an infant’s parent or sib-
ling), Caucasian ethnicity of the infant, number of siblings, 
domestic pet ownership, and formula feeding at 6 and 
12 months. The target analysis of this study adjusted for a 
slightly different set of confounders to the BIS example. A 
description of these variables and the amount of missing 
data in each is shown in Table 1.

Target analysis
In this study, we focus on two estimands from two differ-
ent analysis models. Each model targets the association 
between VDI and food allergy at one-year, adjusting for 
confounders. The first model estimates the adjusted RR 
using a Poisson regression model with a log-link and a 
robust error variance [20] to avoid the known convergence 
issues of the log-binomial model:

The RR of interest is exp(θ1). The second target estimand 
is the adjusted OR for the exposure-outcome association, 
estimated via a logistic regression model:

(1)

log
{

Pr
(

foodallergy = 1
)}

= �0 + �1vdi + �2cauc + �3petown

+�4

[

nsib = 1
]

+ �5

[

nsib = 2
]

+ �6antevd

+�7hfxamall



Page 4 of 12Middleton et al. BMC Medical Research Methodology           (2022) 22:87 

The OR of interest is exp(β1). Estimation for each 
model uses IPW, where the weights are estimated using 
the method outlined by Borgan [21] for stratified sam-
pling of the cohort, noting that the oversampling of the 
cases is a special case of stratified sampling where strati-
fication depends on the outcome. The weight for ith indi-
vidual can be defined as wi = 1 for cases, and n0/m0 for 
non-cases, where n0 is the number of non-cases in the 
full cohort and m0 is the number of non-cases within the 
subcohort.

(2)

logit
{

Pr
(

foodallergy = 1
)}

= �0 + �1vdi + �2cauc + �3petown

+�4

[

nsib = 1
]

+ �5

[

nsib = 2
]

+ �6antevd

+�7hfxamall

MI methods
Below we outline the four approaches we considered 
in the BIS case study and simulation study for incor-
porating the weights into the imputation model. 
All MI approaches include the outcome, exposure, 
covariates, and auxiliary variables in the imputation 
model except where specified. Where imputation has 
been applied under FCS, binary variables have been 
imputed from a logistic model. For MVNI, all varia-
bles are imputed from a multivariate normal distribu-
tion, conditional on all other variables, with imputed 
covariates included into the analysis as is (i.e. without 
rounding).

Table 1  Detailed description of case study variables used during simulation and their distribution within the Barwon Infant Study

*Mean and standard deviation given for maternal age; percentage given is exclusive of missing data

#Formula feeding variables were not included in the simulation study

SEIFA Socioeconomic index for area

Variable Variable Type Label n (%)* (N = 1074) n (%) missing

Outcome
  Food Allergy at 1 year (present) Binary; Present/Absent foodallergy 61 (7.8) 288 (26.8)

Exposure
  Vitamin D Insufficiency at Birth (present) Binary; Present/Absent vdi 149 (44.5) 739 (68.8)

Covariates
  Ethnicity (Caucasian) Binary; Caucasian/Not Caucasian cauc 772 (72.1) 3 (0.3)

  Maternal Vitamin D Supplements Usage (present) Binary; Present/Absent antevd 564 (78.8) 358 (33.3)

  Family History of Allergy (present) Binary; Present/Absent hxfamall 911 (86.1) 16 (1.5)

Number of Siblings 3-Level Categorical nsib 0 (0.00)

  None 453 (42.2)

  One 383 (35.7)

  Two or more 238 (22.2)

Family Pet Ownership (present) Binary; Present/Absent petown 815 (80.5) 62 (5.8)

Formula Feeding at 6 months# 3-Level Categorical formfeed6 189 (17.6)

  Exclusively Breast Fed 429 (46.6)

  Exclusively Formula Fed 320 (34.8)

  Mixed Feeding 171 (18.6)

Formula Feeding at 12 months# 3-Level Categorical formfeed12 154 (14.3)

  Exclusively Breast Fed 271 (30.6)

  Exclusively Formula Fed 354 (40.0)

  Mixed Feeding 260 (29.4)

Auxiliary
Maternal Age at Birth mage 32.1 (4.78) 3 (0.3)

Family SEIFA Classification 3-Level Categorical seifa 20 (1.9)

Low 268 (25.4)

Middle 204 (19.4)

High 582 (55.2)
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Weight proxy as a main effect
Under this approach, only the analysis and auxiliary vari-
ables listed above were included in the imputation model, 
with the outcome acting as a proxy for the weights due to 
the collinearity between the outcome and weights. This 
approach is implemented under both the FCS and MVNI 
frameworks.

Weight proxy interactions
The second approach includes two-way interactions 
between the outcome (as a proxy for the weights) and 
all other analysis variables in the imputation model. 
Within FCS, the interactions were included as pre-
dictors, with these derived within each iteration of 
the imputation [22]. Within MVNI interactions were 
considered as ‘just another variable’ in the imputation 
model [22].

Stratum‑specific imputation
In the case-cohort setting, where there are only two 
weight strata, another option is to impute separately 
within each weight/outcome stratum. Here, the outcome 
is not included in the imputation model, but rather the 
incomplete covariates are imputed using a model includ-
ing the exposure, other covariates and auxiliary variables, 
for cases and non-cases separately.

Weighted imputation model
A final option is to impute the missing values using a 
weighted imputation model, where the weights are set to 
those used during analysis. This can only be conducted 
within the FCS framework.

The approaches for handling the missing covariate data 
are summarised in Table 2.

Simulation study
A simulation study was conducted to assess the per-
formance of each MI approach for accommodating the 
case-cohort weights into the imputation model, across 
a range of scenarios. Simulations were conducted using 
Stata 15.1 [23]. Cohorts of size 1000 were generated 
using models outlined above with parameter values 
based on the observed relationships in BIS (except where 
noted).

Complete data generation
Complete data, comprising the exposure, five con-
founders and two auxiliary variables, were gener-
ated sequentially using the models listed below. 
Models for data generation were constructed based 
on the plausible causal structure specified in Fig. 1. 
A table showing the parameter values can be found 
in Additional file 1.

i.	 Caucasian ethnicity

	

ii.	Maternal age at birth, in years, (auxiliary variable)

where ε~N(0, σ2)

	iii.	 Socioeconomic Index for Areas (SEIFA) tertile, 
(auxiliary variable)

(3)cauc ∼ Bernoulli(p)

(4)mage = δ0 + δ1cauc+ ǫ

(5)log
{

Pr (seifa=1)
Pr (seifa=0)

}

= ζ0 + ζ1mage+ ζ2cauc

Table 2  Description of multiple imputation approaches considered to handle missing covariate data

*All methods involve using multiple imputation to address the missing covariates, excluding the complete case analysis, with a weighted analysis model to address 
the unequal probabilities and missing exposure

FCS Fully Conditional Specification, MVNI Multivariate Normal Imputation, MI Multiple Imputation

Method* Accommodation of Weighting in MI MI Framework Label

Complete case No imputation completed. Analysis applied to observations with complete covariate data. N/A CCA​

Weight only Imputation models include weights (through the outcome) as a predictor of missingness FCS FCS-WO

MVNI MVNI-WO

Weight interactions Interaction between outcome (proxy for weight) and exposure/covariates included in impu‑
tation model through passive imputation (FCS) or ‘just another variable’ (MVNI), in addition 
to outcome as a predictor.

FCS FCS-WX

MVNI MVNI-WX

Stratum specific imputation Covariates imputed separately by weight status FCS FCS-SS

MVNI MVNI-SS

Weighted model Imputation model weighted with inverse probability of selection, outcome included as a 
predictor.

FCS FCS-WM
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iv.	Family history of allergy

	  v.	 Number of siblings

	vi.	 Pet ownership and antenatal vitamin D supplement 
usage

(6)log
{

Pr (seifa=2)
Pr (seifa=0)

}

= η0 + η1mage+ η2cauc

(7)logit
{

Pr (hxfamall = 1)
}

= ι0 + ι1cauc

(8)

log
{

Pr (nsib=1)
Pr (nsib=0)

}

= κ0 + κ1mage+ κ2cauc+ κ3[seifa = 1]

+κ4[seifa = 2]+ κ5hxfamall

(9)

log
{

Pr (nsib=2)
Pr (nsib=0)

}

= �0 + �1mage+ �2cauc+ �3[seifa = 1]

+�4[seifa = 2]+ �5hxfamall

(10)

logit{Pr (petown = 1)} = �0 + �1mage + �2cauc + �3

[

seifa = 1
]

+�4

[

seifa = 2
]

+ �5hxfamall

+�6

[

nsib = 1
]

+ �7

[

nsib = 2
]

	vii.	 The exposure, VDI

Finally, the outcome, food allergy at one-year, was gen-
erated from a Bernoulli distribution with a probability 
determined by either model (1) or model (2) so the target 
analysis was correctly specified. In these models we set 
θ1 = log(RRadj) = log(1.16) and β1 = log(ORadj) = log(1.18) 
as estimated from BIS. Given the weak exposure-outcome 
association in BIS, we also generated food allergy with an 
enhanced association where we set θ1 = β1 = log(2.0).

An additional extreme data generation scenario was 
considered as a means to stress-test the MI approaches 
under more extreme conditions. In this scenario, the 
associations between the continuous auxiliary variable of 
maternal age and the exposure, missing covariates, and 
missing indicator variables were strengthened.

(11)

logit{Pr (antevd = 1)} = �0 + �1mage + �2cauc + �3

[

seifa = 1
]

+�4

[

seifa = 2
]

+ �5hxfamall

+�6

[

nsib = 1
]

+ �7

[

nsib = 2
]

(12)

logit{Pr (vdi = 1)} = �0 + �1mage + �2cauc + �3

[

seifa = 1
]

+�4

[

seifa = 2
]

+ �5hxfamall + �6

[

nsib = 1
]

+�7

[

nsib = 2
]

+ �8petown + �9antevd

Fig. 1  Missingness directed acyclic graph (m-DAG) depicting the assumed causal structure between simulated variables and missingness 
indicators under the dependent missing mechanisms. For the independent missing mechanism, the dashed lines are absent. For simplicity, 
associations between baseline covariates have not been shown
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Inducing Missingness
Missingness was introduced into two covariates, ante-
natal vitamin D usage and pet ownership. Missingness 
was generated such that p% of overall observations 
had incomplete covariate information, with p2% hav-
ing missing data in just one covariate and p2% having 
missing data in both, where p was chosen as either 
15 or 30. Three missing data mechanisms were con-
sidered: an independent missing data mechanism and 
two dependent missing data mechanisms as depicted 
in the missingness directed acyclic graph (m-DAG) in 
Fig. 1.

Under the independent missing data mechanism, miss-
ingness in each covariate was randomly assigned to align 
with the desired proportions. Under the dependent miss-
ingness mechanisms, an indicator for missingness in pet 
ownership, Mpetown, was initially generated from a logistic 
model (13), followed by an indicator for missingness in 
antenatal vitamin D usage, Mantevd (model (14)).

The parameters, ν0 and τ0, and τ4 were iteratively cho-
sen until the desired proportions of missing information 
were obtained. Missingness indicators were generated 
dependent on the outcome (a setting where the com-
plete-case analysis would be expected to be biased) and 
an auxiliary variable (a setting where we expect a bene-
fit of MI over the complete-case analysis), as depicted in 
the causal diagram in Fig.  1. The dependency between 
the missing indicator variables was used to simultane-
ously control both the overall proportion of incomplete 
records and the proportion with missingness in both 
variables.

The two dependent missing mechanisms differed in 
the strength of association between predictor variables 
and the missing indicators. The first mechanism used 
parameter values set to those estimated in BIS (termed 
Dependent Missingness – Observed, or DMO). The sec-
ond used an enhanced mechanism where the parameters 
values were doubled (termed Dependent Missingness 
– Enhanced, or DME). The parameter values used to 
induce missingness under the dependent missingness 
mechanisms can be found in Additional file 1.

To mimic the case-cohort design, a subcohort was 
then randomly selected using one of three probabilities 
of selection (0.20, 0.30, 0.40). The exposure, VDI, was set 
to missing for participants without the outcome and who 
had not been selected into the subcohort.

Overall, we considered 78 scenarios (2 data generation 
processes, 2 exposure-outcome associations, 3 missing 

(13)
logit

{

Pr
(

Mpetown = 1
)}

= �0 + �1foodallergy + �2cauc + �3mage

(14)
logit

{

Pr
(

Mantevd = 1
)}

= �0 + �1foodallergy + �2cauc + �3mage + �4Mpetown

data mechanisms, 2 incomplete covariate proportions, 
and 3 subcohort selection probabilities, plus another 6 
scenarios under extreme conditions).

For the 6 extreme scenarios presented in the results 
section, the mean percentage of cases in the full cohort 
across the 2000 simulated datasets was 20.4% (standard 
deviation: 1.3%) for scenarios targeting RR estimation, 
and 18.4% (1.2%) for OR estimation. The average case-
cohort sample size ranged from 348 to 522, increasing 
with the probability of subcohort selection. The percent-
age of incomplete observations within the case-cohort 
sample ranged from 30.5 to 32.6%, with the percent-
age of incomplete cases increasing as the subcohort size 
decreased due to the dependency between the probabil-
ity of being incomplete and the outcome. Additional file 1 
contains a table showing summaries for the 2000 simu-
lated datasets for the 6 extreme scenarios.

Evaluation of MI approaches
For each scenario, the MI approaches outlined above 
were applied and 30 imputed datasets generated, to 
match the maximum proportion of missing observations. 
The imputed datasets were analysed using IPW with the 
corresponding target analysis model. A complete-data 
analysis (with no missing data in the subcohort) and a 
complete-case analysis (CCA) were also conducted for 
comparison. Performance was measured in terms of per-
centage bias relative to the true value (relative bias), the 
empirical and model-based SE, and coverage probability 
of the 95% confidence interval for the target estimand, 
the effect of VDI on food allergy (θ1 in model (1) and β1 
in model (2)). In calculating the performance measures, 
the true value was taken to be the value used during data 
generation with measures calculated using the simsum 
package in Stata (see [24] for details). We also report the 
Monte Carlo standard error (MCSE) for each perfor-
mance measure. For each scenario we presented results 
for 2000 simulations. With 2000 simulations, the MCSE 
for a true coverage of 95% would be 0.49%, and we can 
expect the estimated coverage probability to fall between 
94.0 and 96.0% [25]. Since convergence issues were 
expected across the methods, we generated 2200 datasets 
in each scenario and retained the first 2000 datasets on 
which all methods converged. These 2000 datasets were 
used to calculate all performance measures except the 
convergence rate, which was calculated across the 2200 
simulations.

Bias in RR estimation
Incompatibility between the imputation and analysis 
model may arise due to the imputation of missing val-
ues from a linear or logistic model when the analysis 
targets the RR [26]. To explore the bias introduced into 
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the point estimate in this context, MI was conducted on 
the full cohort with completely observed exposure (i.e. 
before data were set to missing by design) and analysed 
without weighting. This was conducted to understand the 
baseline level bias, prior to the introduction of weighting. 
Results for this analysis are presented in Additional file 2.

Case study
Each of the MI methods were also applied to the target 
analyses using BIS data. For consistency with the simu-
lation study, the analysis was limited to observations 
with complete outcome and exposure data (n = 246). 
In the case study there were also missing values in the 
covariates, Caucasian ethnicity (1%) and family history 
of allergy (1%), and the auxiliary variable SEIFA ter-
tiles (2%), which were imputed alongside pet ownership 
(1%) and antenatal vitamin D usage (23%). For the FCS 
approaches, all variables were imputed using a logistic 
model, except for SEIFA tertile, which was imputed using 
an ordinal logistic model. Imputed datasets were ana-
lysed under each target analysis model with weights of 1 
for cases and (0.31)−1 for non-case subcohort members. 
A CCA was also conducted.

Results
Given that the pattern of results were similar across 
the range of scenarios, we describe the results for 
the 6 scenarios under extreme conditions (enhanced 

exposure-outcome association, 30% missing covariates 
under DME, and enhanced auxiliary associations). The 
results for the remaining scenarios are provided in Addi-
tional file 3.

Across the 2200 simulations, only FCS-WX and FCS-
SS had convergence issues (i.e., successfully completing 
the analysis without non-convergence of the imputa-
tion procedure or numerical issues in the estimation). 
The rate of non-convergence was greatest for FCS-WX 
with the smallest subcohort size (probability of selec-
tion = 0.2), with 4.0% of simulations under RR estimation 
and 3.2% under OR estimation failing to converge. Less 
than 0.2% of simulations failed to converge for FCS-SS 
under any combination of estimand and subcohort prob-
ability of selection.

Figure 2 shows the relative bias in the estimate of the 
association (RR or OR) between VDI and food allergy 
at one-year for each scenario considered under extreme 
conditions. The largest bias for the large sample com-
plete-data analysis occurred for the coefficient of the OR 
and the largest subcohort size at 1.5%, with the MCSE 
range covering a relative bias of 0%. In all scenarios 
shown, the CCA resulted in a large relative bias, ranging 
between 10 and 20%. All MI approaches reduced this 
bias drastically, irrespective of estimand and subcohort 
size. When the target estimand was the coefficient for 
the OR and the smallest subcohort probability was used, 
all MI approaches were approximately unbiased, with 

Fig. 2  Relative bias in the coefficient under the extreme scenarios with 30% missing covariate information. Error bars represent 1.96xMonte Carlo 
standard errors
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MVNI-WX showing the largest relative bias at 1.4% and 
FCS-WX showing the least at 0.4%. For the remaining 
scenarios across both estimands, the complete-data 
analysis and MI approaches showed a positive bias, with 
the largest occurring with the log (OR) estimand and 
a probability of selection of 0.3, where the relative bias 
was centred around 5%. Overall, minimal differences 
can be seen between the MI approaches when the esti-
mation targeted the RR. When the target estimand was 
the log (OR), there was a slight decrease in relative bias 
for FCS-WX, when compared to other MI approaches, 
and a slight increase in the relative bias for MVNI 
approaches, when compared to FCS approaches.

The empirical SE and model-based SE are shown 
in Fig.  3. For most scenarios, we can see the SE has 
been underestimated in the CCA. There was a slight 
underestimation of the SE when the subcohort selec-
tion probability was 0.3 and the target estimand the 
log (RR), however, the model-based SE appears to fall 
within the MCSE intervals for the empirical SE. There 
appears to be no systematic deviation between the 
empirical SE and the model-based SE for any scenario. 
An increase in the precision can be seen as the subco-
hort size increases, and there is an increase in precision 
for all MI methods compared to the CCA for any given 
scenario, as expected.

The estimated coverage probabilities are shown in 
Fig. 4. For a nominal coverage of 95%, all MI approaches 

have a satisfactory coverage with 95% falling within the 
MCSE range for all scenarios, with the exception of the 
smallest subcohort size with OR estimation. Under this 
scenario, all MI approaches produce over-coverage, as 
a result of the point estimate being unbiased and the SE 
overestimated (but with the average model-based SE fall-
ing within the MCSE range). There is no apparent pattern 
in the coverage probability across the MI methods, with 
all methods performing similarly. Results from the CCA 
showed acceptable levels of coverage.

The results from the case study are shown in Fig.  5. 
Results are consistent with the simulation study in that 
there is little variation in the estimated association across 
the MI methods. Unlike the simulation study under 
extreme conditions, the estimated coefficient is similar 
in the CCA and the MI approaches. There is an expected 
recovery of information leading to an increase in preci-
sion for MI approaches compared to the CCA.

Discussion
In this study we compared a number of different 
approaches for accommodating unequal sampling prob-
abilities into MI in the context of a case-cohort study. 
We found that how the weights were included in the 
imputation model had minimal effect on the estimated 
association or performance of MI which, as expected, 
outperformed CCA. Results were consistent across 

Fig. 3  Empirical standard error and model based standard error under the extreme scenarios with 30% missing covariate information. Error bars 
represent 1.96xMonte Carlo standard errors
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different levels of missing covariate information, target 
estimand and subcohort selection probability.

While bias was seen in some scenarios, this was mini-
mal (~ 5%) and consistent across all MI approaches. We 

conducted a large sample analysis to confirm the data 
generation process was correct, given the bias observed 
in the complete-data analysis, which showed minimal 
bias. We have therefore attributed the positive bias seen in 

Fig. 4  Coverage probability across 2000 simulations under the extreme scenarios with 30% missing covariate information. Error bars represent 
1.96xMonte Carlo standard errors

Fig. 5  Estimated parameter value with 95% confidence interval in case study dataset
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the simulation study to a finite sampling bias, which was 
observed for large effect sizes in similar studies [16]. The 
minimal difference across MI methods seen in the current 
study may be due to the case-cohort setting having only 
two weight strata that are collinear with the outcome and 
all MI approaches including the outcome either directly 
or indirectly (in the case of stratum-specific imputation). 
The results of this study complement the work by Marti 
and Chavance [14] who showed that inclusion of the out-
come in the imputation model was sufficient to account 
for the unequal sampling probabilities in the context of 
a case-cohort survival analysis. In the case study, the MI 
approaches performed similarly to the CCA and we believe 
this is due to the observed weak associations in BIS.

Our simulation study was complicated by potential 
bias due to the incompatibility between the imputation 
and analysis model when the target analysis estimated 
a RR through a Poisson regression model. The same 
would be true if the RR was estimated using a binomial 
model, as in the case study. We assessed this explicitly 
through imputation of the full cohort prior to subcohort 
selection, with results shown in Additional file 2. Mini-
mal bias was seen due to this incompatibility. This may 
be because we only considered missing values in the 
covariates, which have been generated from a logistic 
model. Studies that have shown bias due to this incom-
patibility had considered missing values in both the out-
come and exposure [26].

One strength of the current study was that it was based 
on a real case study, with data generated under a causal 
structure depicted by m-DAGs informed by subject mat-
ter knowledge. This simulation study also examined a 
range of scenarios; however, it is important to note that 
not all possible scenarios can be considered, and these 
results may not extend to scenarios with missingness 
dependent on unobserved data or with unintended miss-
ingness in the exposure or outcome. This study also has a 
number of limitations. The simulations were conducted 
under controlled conditions such that the analysis model 
was correctly specified, and the missing data mechanism 
was known. Under the specified missing data mecha-
nisms, the estimand was known to be recoverable and 
therefore MI was expected to perform well [27]. The 
missing data mechanism is generally unknown in a real 
data setting and results may not be generalisable.

Another limitation of this study is that only covari-
ates have been considered incomplete. Often there can 
be missingness in the outcome (e.g. subcohort members 
drop-out prior to one-year follow-up and outcome col-
lection) and/or unintended missingness in the exposure 
(e.g. cord blood not stored for infants selected into the 
subcohort or with food allergy). This study has also only 

considered a combination of MI and IPW. There are other 
analytic approaches that could have been used, for exam-
ple using weighting to account for the missing covariates 
as well as the missing data by design, or imputing the 
exposure in those not in the subcohort and conducting a 
full cohort analysis. These approaches have been explored 
in a time-to-event setting [14, 16, 17] but little is known 
on the appropriateness for the case-cohort setting with a 
binary outcome. Furthermore, no study to date has con-
sidered the scenario of additional exposure missing by 
chance within the subcohort. The limitations mentioned 
here offer an avenue for future work.

Conclusions
When performing MI in the context of case-cohort stud-
ies, how unequal sampling probabilities were accounted 
for in the imputation model made minimal difference in 
the analysis. In this setting, inclusion of the outcome in 
the imputation model, which is already standard practice, 
was a sufficient approach to account for the unequal sam-
pling probabilities incorporated in the analysis model.
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