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Abstract

When modelling the survival distribution of a disease for which the symptomatic progression of the associated
condition is insidious, it is not always clear how to measure the failure/censoring times from some true date of disease
onset. In a prevalent cohort study with follow-up, one approach for removing any potential influence from the
uncertainty in the measurement of the true onset dates is through the utilization of only the residual lifetimes. As the
residual lifetimes are measured from a well-defined screening date (prevalence day) to failure/censoring, these
observed time durations are essentially error free. Using residual lifetime data, the nonparametric maximum likelihood
estimator (NPMLE) may be used to estimate the underlying survival function. However, the resulting estimator can
yield exceptionally wide confidence intervals. Alternatively, while parametric maximum likelihood estimation can yield
narrower confidence intervals, it may not be robust to model misspecification. Using only right-censored residual
lifetime data, we propose a stacking procedure to overcome the non-robustness of model misspecification; our
proposed estimator comprises a linear combination of individual nonparametric/parametric survival function
estimators, with optimal stacking weights obtained by minimizing a Brier Score loss function.
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Introduction
The Canadian Study of Health and Aging (CSHA) was
a nation-wide study whose primary goal was to deter-
mine the prevalence of dementia in five different regions
in Canada [1, 2]. In 1991, at the first stage of the study
(CSHA-1), approximately 10,000 individuals over the age
of 65 were screened for various types of dementia. A total
of 823 participants were classified at CSHA-1 as having
either probable Alzheimer’s disease, possible Alzheimer’s
disease or vascular dementia. They were followed for a
subsequent five years until the second stage of the study in
1996 (CSHA-2). Death dates were recorded for those who
died between 1991 and 1996 together with the censoring
dates of those who were lost to follow-up or survived until
1996. The onset dates of the participants who screened
positive at CSHA-1 were retrospectively reported through
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the recollections of their caregivers. The observed (right-
censored) survival times were the durations of time from
reported onset to failure/censoring. The resulting failure
times were therefore considered to be left-truncated and
right-censored as typically occurs in a prevalent cohort
study with follow-up [3]. Suppose, further, it is assumed
that the underlying process that defines all of the onset
dates, including those not associated with the observed
prevalent cohort, is a stationary Poisson process. Then we
shall say that our inference is carried out “under the sta-
tionarity assumption” [4], an assumption that is crucial for
the methods proposed in this article.
Now, due to the onset date recording protocols in the

CSHA as well as the insidious symptomatic onset of
dementia, the true failure/censoring times were almost
surely measured with error. Under the stationarity
assumption, in more general prevalent cohort studies with
follow-up, uncertainty in the onset dates can be accounted
for in at least two ways. First, under the assumption
that the failure time distribution is defined parametrically,
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McVittie et al. defined an adjusted classical measurement
error model for the reported onset dates, to derive max-
imum likelihood estimators for the unknown failure time
distribution parameters [5].
A second approach, under stationarity, is to discard the

information contained in the uncertain onset times by
using only the residual lifetimes for estimation of the sur-
vival distribution. The residual lifetimes extend from the
date of screening to the date of failure/censoring. As the
residual lifetimes are not dependent on the onset dates,
these durations are error free. It should be noted that with-
out stationarity it is impossible to make inference about
the failure time distribution based only on observation
of the residual lifetimes. In order to review the literature
on this approach, we use notation which will be more
systematically introduced in Section 2. Let SU(·) be the
underlying (unbiased) survival function (the estimation
target) and letμ be its mean. Let fres(·) be the residual life-
time probability density function (pdf). Then, this setting
can be regarded as equivalent to the scenario in which the
residual lifetimes (with pdf fres(·)) of a stationary renewal
process, with interarrival time survivor function SU(·), are
the observations [6]. Exploiting this equivalence, and a
well known property of stationary renewal processes [7–
9], it can be shown that,

fres(·) = SU(·)/μ
= SU(·)fres(0) (1)

It follows from (1), that if SU is parametrically defined,
its maximum likelihood estimator (MLE) can be found
by finding the MLEs of the parameters that define fres;
the (possibly censored) residual lifetimes can be used to
construct the likelihood function [7, 8]. Non-parametric
estimation of SU , however, requires much more care and
has been the subject of much research both in the context
of renewal processes and survival analysis. The difficulty
arises from the instability in ŜU(·) = f̂res(·)/f̂res(0), due to
its dependence on the boundary-point estimator f̂res(0).
For uncensored data, and recognizing that by (1), fres(u) is
non-increasing in u, Grenander showed that the NPMLE
of FU(·) = 1 − SU(·), is the least concave majorant of
the empirical distribution function [10]. Woodroofe and
Sun proposed a penalized maximum likelihood proce-
dure to consistently estimate the residual lifetime density
function at the boundary [11]. For right-censored residual
lifetime data, the least concave majorant of the cumulative
distribution function estimated using the Kaplan-Meier
estimator, in place of the empirical survival function, is no
longer the NPMLE [12, 13]. Denby and Vardi proposed
an iterative EM based algorithm to determine the NPMLE
using right-censored residual lifetime data [14]. They also
proposed a “corrected” NPMLE to account for the bad

behavior of the NPMLE at times close to zero. Huang
and Zhang remark that in the right-censored setting, the
boundary point estimator using the NPMLE is both unsta-
ble and inconsistent [15]. Although an approach combin-
ing the Denby and Vardi algorithm with the penalization
procedure of Woodroofe and Sun has been alluded to
in the literature, it has not been formally described and
compared to other methodologies. Recently, Westling and
Carone surveyed the asymptotic properties of nonpara-
metric survival function estimators subject to monotonic-
ity constraints [9]. Using current duration data, Keiding
studied the behaviour of the corrected NPMLE and asso-
ciated parametric models for modelling the time to preg-
nancy [7, 8]. He remarked that the confidence intervals
obtained from the corrected NPMLE were wide due to
the unstable boundary estimation problem at time t = 0
[7, 8]. Using data collected from the CSHA, this phe-
nomenon is most evident in the nonparametric maximum
likelihood survival function estimates for subjects with
possible Alzheimer’s disease and vascular dementia (see
Fig. 1).
There is another disadvantageous feature of the NPMLE

of SU : If the study follow-up period is short, the NPMLE
is unlikely to estimate SU well, beyond the largest obser-
vation in the sample. This feature is demonstrated in the
survival curve estimates of Fig. 1 as all three curves drop
to near 0 at approximately 60 months. When we started
on this research we anticipated using an estimator, based
on the (possibly censored) residual lifetimes, that includes
both the NPMLE and several suitable parametric esti-
mators, thereby counteracting the drawbacks of each of
these two types of estimator. We reasoned that in the con-
text of standard right-censored failure time data, Wey et
al. had proposed a stacking procedure which successfully
combines non/semi-parametric and parametric survival
function estimators into a single estimator of the underly-
ing survival distribution [16, 17]. To our surprise, however,
particularly when applied to right-censored residual life-
time data with short follow-up, we found that there was
little advantage to including the NPMLE in the stacking
procedure; that is, the NPMLE received very little weight.
We adapt the stacking approach ofWey et al. to estimate

SU using right-censored residual lifetime data. Our goals
are to: (i) enable estimation of the survival function past
the last observed failure/censoring time when follow-up is
short, (ii) provide an estimation procedure which is robust
to model misspecification and (iii) reduce the width of
the confidence intervals that would be obtained from the
NPMLE alone. In Section 2, we introduce notation for
prevalent cohort studies with follow-up and specify how
the procedure of Wey et al. is modified for residual life-
time data. In Section 3, we use simulated failure time
data to examine the performance of the stacked estimator
against estimators based on individual models. We apply
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Fig. 1 Corrected non-parametric maximum likelihood survival function estimates with 95% bootstrapped pointwise confidence limits (black) for
varying dementia subgroups in the Canadian Study of Health and Aging along with stacked survival function estimates with 95% bootstrapped
pointwise confidence limits (red)

our stackingmethodology to the CSHA data set in Section
4 and provide some concluding remarks in Section 5.

Notation andmethodology
Let (O,T) denote the random variable pair consisting,
respectively, of a generic onset date drawn from a sta-
tionary Poisson process and a generic failure time with
survival function SU(·) where O is independent of T.
Let the fixed constant R denote the screening date at
which the prevalent cohort is determined and which we
define as “prevalence day”. The prevalent cohort then con-
sists of subjects with (onset, failure time) pairs such that
O < R and O + T > R. Let C denote the censor-
ing time (measured from prevalence day) with cumula-
tive distribution G(·) corresponding to subjects who are
either lost to follow-up or have not failed by the end of
the study (administratively censored). The full prevalent
cohort data then comprises the triples {(Ai,Yi, δi) = (R −
Oi, min(Ti,R−Oi + Ci), 1{Ti<R−Oi+Ci}) : Ti > R−Oi, i =
1, 2, ..., n}. As the residual lifetimes consist only of the fail-
ure/censoring times measured from prevalence day and
their associated indicator functions, they are given by the
pairs {(Vi, δi) = (min(Ti − (R − Oi),Ci), 1{Ti<R−Oi+Ci}) :
Ti > R − Oi, i = 1, 2, ..., n}. For a depiction of residual
lifetime data, see Fig. 2.
For convenience, we repeat Eq. 1, now numbered (2):

fres(·) = SU(·)
μ

(2)

where μ = E(T). By evaluating the pdf fres, at time t = 0,
and utilizing the property that SU(0) = 1, from Eq. 2, it
follows that μ = 1

fres(0) , and hence fres(·) = SU(·)fres(0).
This suggests

ŜU(t) = f̂res(t)
f̂res(0)

(3)

as a plug-in estimator for SU . When SU(·; θ) is defined
parametrically, for some unknown p-dimensional param-
eter θ , the likelihood function is given by [7]:

L(θ) =
n∏

i=1

(
SU(vi; θ)

μ(θ)

)δi (∫ ∞

vi

SU(x; θ)

μ(θ)
dx

)1−δi

(4)

Let θ̂ be the MLE of θ , obtained from (4). Although
the parametric maximum likelihood estimator SU(·; θ̂) is
model-dependent and possibly biased, it has a smaller
variance than does its non-parametric counterpart in (3).
One approach which combines nonparametric and

parametric estimators is through the machine learning
procedure known as stacking. A stacked survival function
estimator is a weighted linear combination of sub-model
survival function estimators for which the optimal weights
are determined through optimization of a particular loss
function. Here, we consider the approach of Wey et al.
which allows for right-censoring of the data [16]. We
begin by proposing m − 1 parametric models for fres(·):
fres,1(·; θ1), fres,2(·; θ2), ..., fres,m−1(·; θm−1) for m ≥ 2.
Let f̂res,1(·), f̂res,2(·), ..., f̂res,m(·) = fres,1(·; θ̂1), fres,2(·; θ̂2), ....,
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Fig. 2 A depiction of a sample of right-censored residual lifetime data. The open circles represent the calendar dates of censoring and the crosses
represent the calendar dates of failure. Brackets represent the earliest confirmed time for the start of the failure/censoring time durations. Dashed
lines represent uncertainty in the measurement of the underlying onset dates (represented by open squares)

fres,m−1(·; θ̂m−1), f̂res,m(·) be m estimators of fres(·), where
f̂res,m(·) is the (non-increasing) corrected NPMLE defined
by Denby and Vardi, and f̂res,i(·) is the parametrically
definedMLE for i = 1, 2, ...,m−1 [14].We define a stacked
density estimator of fres(·) as:

f̂res,stack(·) = α1 f̂res,1(·) + α2 f̂res,2(·) + ... + αmf̂res,m(·),

where αi ∈[ 0, 1] and ∑m
i=1 αi = 1. Since each f̂res,i(·) is

non-increasing, f̂res,stack is also non-increasing. By inte-
grating the linear combination of pdf estimators, we
obtain a stacked residual lifetime survival function estima-
tor given by:

Ŝres,stack(·)=α1Ŝres,1(·)+α2Ŝres,2(·)+...+αmŜres,m(·) (5)

The general idea is to find the optimal weights
α̂1, α̂2, ..., α̂m by minimizing an objective function of
Ŝres,stack(·). Specifically, let V ′

i (t) = min(Vi, t), δ′
i(t) =

1{(min(Vi,t)<Ci)}, Zi(t) = 1{Vi>t} and let Ĝ(·) be the Kaplan-
Meier estimator of the residual censoring time distri-
bution function. Following Wey et al., we minimize the
inversely weighted (by the probability of censoring) objec-
tive function, the Brier score, to determine the optimal
weights, α̂1, α̂2, ..., α̂m [16]. To control for possible overfit-

ting, we use cross-validation and evaluate the Brier score
over a set of s specified evaluation points to obtain:

α̂ = argmin
α:αk∈[0,1]

s∑

r=1

n∑

i=1

δ′
i(tr)

Ĝ(Zi(V ′
i (tr)))

×
{
Zi(tr) −

m∑

k=1
αkŜ(−i)

res,k(tr)
}2 (6)

where the superscipt (−i) denotes that the estimate was
determined by leaving the ith observation out during the
estimation procedure. Due to computational constraints,
we performed 5 fold cross-validation and evaluated the
optimal weight parameters over nine equally spaced out
points covering the support of the observed residual life-
times, as suggested by Wey et al. [16]. Finally, exploiting
Eq. 6 to obtain α̂, and Eq. 3 to obtain ŜU ,m(·) from f̂res,m(·),
we define the stacked survival function estimator

ŜU ,stack(·) = α̂1ŜU ,1(·) + α̂2ŜU ,2(·) + ... + α̂mŜU ,m(·). (7)

The estimator presented in (7) is, admittedly, an ad-hoc
proposal, but one that is necessary given our lack of access
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to data arising from the underlying survival distribution,
but rather from the residual lifetime distribution.

Simulations
Using (potentially) right-censored simulated residual life-
time data, we evaluated the stacking estimator. We
examined the performance of the individual paramet-
ric/nonparametric estimators relative to the stacked esti-
mator when the residual lifetime data were subject to
random right-censoring as well as increasing propor-
tions of administrative right-censoring. The goal was to
assess the increasing advantage, as follow-up decreases,
of using a stacking estimator with both the corrected
NPMLE and parametric survivor functions in the stack.
A general description of the simulations examined in this
manuscript is given in Table 1.
To simulate a set of right-censored residual lifetime

data, we first generated an onset date, O, from a Uni-
form distribution with support (0, 50). We generated a
failure time, T, from either a Weibull distribution with
shape and scale parameters equal to 2 and 2, respec-
tively or from a mixture model of Weibull, Log-Logistic,
Log-Normal and Gamma distributions. The latter failure
time distribution was used to assess the predictive per-
formance of the stacked estimator when the underlying
failure time distribution was not included in any of the
parametric models included in the stack. With the addi-
tion of covariates, the methods described by Bender et al.
may be used to simulate failure times from a proportional
hazards model [18]. However, with our proposedmethod-
ology, we do not consider the inclusion of covariate data
through a regression-type model. We sampled onset, fail-
ure time pairs (O,T), for which T > 50−O, until a sample
of size n was selected. The sampled residual failure times,
Ti − (50 − Oi) for i = 1, 2, ..., n were then right-censored
either by a constant C∗ to correspond to administrative
censoring or by the random variable Ci drawn from an
Exponential distribution to allow for random censoring
(i.e. loss to follow-up).

Table 1 A summary of the simulation studies examining the
performance of the proposed stacked survival model estimation
procedure

Simulation Number Simulation Study Description

Simulation 1 Weibull distributed failure times with various
amounts of administrative censoring (10%,
20%, 30%, 40%) acting on the residual failure
time data.

Two stackedmodels fitted: All submodels, All
submodels except Weibull

Simulation 2 Mixture model distributed failure times with
30% random censoring.

One stacked model fitted: All submodels

In our first set of simulations, we assumed the underly-
ing failure times were distributed according to a Weibull
distribution and the residual failure times were admin-
istratively censored by moving up end-of-study dates to
result in, respectively, 10%, 20%, 30% or 40% censor-
ing. For each censoring percentage, we fit the corrected
NPMLE, Weibull, Log-Logistic, Log-Normal and Gamma
models. Using all five submodels, we determined the
optimal stacking weights and computed the discrete inte-
grated squared survival errors (DISSE) for the models
when fitted separately and when combined in a stacked
model. The DISSE is given by:

DISSE =
k∑

j=1
(tj − tj−1)(Ŝ(tj) − S0(tj))2

where we defined a uniform mesh, 0 = t1 < t2 < ... <

tk = 50, to evaluate the predictive performance of the esti-
mated survival functions over the support of the underly-
ing survival function. The DISSE is the discretized version
of the integral given by:

∫ ∞
0

(
Ŝ(t) − S(t)

)2
dt. To evalu-

ate this integral numerically, we proposed a uniformmesh
over the majority of the support of the estimated/true sur-
vival functions (Ŝ, S, respectively). The upper bound of the
support was set to “50” as the underlying survival func-
tions in both the Weibull simulations and mixture model
simulations had negligible probability beyond this point.
The gauge of the mesh was set to 0.1 but could be made
finer for a better approximation to the integral. We also
considered a second stacked model which included the
corrected NPMLE and all parametric models except the
Weibull (i.e., the true data generating model). We utilized
samples of size 125 (i.e. 125 observed residual lifetimes)
over 100 simulation runs and report the average DISSEs in
Table 2 as well as the average weights for the stackedmod-
els in Table 3. The average survival function estimates and
95% pointwise confidence intervals using the NPMLE or
stackedmodel (without theWeibull submodel) are plotted
in Fig. 3. As the proportion of administrative censoring
increases, we see that although the average DISSEs of the
individual and stacked models all increase, the NPMLE
DISSE increases at a much faster rate than those of the
individual parametric models and the stacked models.
This is expected as administrative censoring shortens the
follow-up period and the range of the observed residual
lifetime data thus affecting the nonparametric maximum
likelihood estimator most severely. In Fig. 3, the corrected
NPMLE is clearly biased beyond the administrative cen-
soring times with narrow confidence interval widths in
this range. Using the stackedmodel, we find that almost all
of the weight is shifted away from the corrected NPMLE
and to the correct underlying Weibull failure time dis-
tribution. When the Weibull model is excluded from the
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Table 2 Average discrete integrated squared survival errors for individual and stacked models for a Weibull (2,2) failure time
distribution with varying amounts of administrative censoring for samples of size 125 over 100 simulation runs

Proportion of Administrative Censoring

Model 10% 20% 30% 40%

NPMLE 0.09594 0.1639 0.2414 0.3645

Weibull 0.02776 0.03843 0.06635 0.09601

Log-Logistic 0.03244 0.03350 0.05696 0.08661

Log-Normal 0.03009 0.03660 0.06222 0.07615

Gamma 0.03056 0.04181 0.06025 0.08460

Stacked Model (all) 0.02877 0.04203 0.06680 0.09865

Stacked Model (w/o Weibull) 0.03049 0.04303 0.06546 0.09010

stack, the majority of the weight shifted to the Gamma
model and the stacked model still yielded a smaller DISSE
than the corrected NPMLE. The stacked model with-
out the Weibull submodel appears roughly unbiased and
exhibits narrower pointwise confidence intervals than the
NPMLE when the censoring proportion is low.
Our second simulation considered residual failure time

data that were generated from a mixture model. The fail-
ure time mixture model was comprised of four evenly
weighted (25%) models consisting of the Weibull (shape,
scale equal to 4, 2), Log-Logistic (shape, scale equal to 1,
2), Log-Normal (meanlog, standard deviation-log equal to
-5 and 1) andGamma (shape, scale equal to 25, 1) distribu-
tions. To generate a sampled failure time from the mixture
model, first wemade a single draw from amultinomial dis-
tribution with four states with equal probabilities of 0.25.
The multinomial draw determined from which paramet-
ric model we sampled the failure time. Once the failure
time was sampled, we sampled an onset time and then
repeated the same left-truncating/right-censoring proce-
dure as was conducted in the first set of simulations to

generate residual lifetime data drawn from a prevalent
cohort study with follow-up. We chose a mixture model
in order to produce a survival function, with "kinks",
that does not resemble the survival function of any of
the standard parametric models used in survival analy-
sis. With this mixture model, we anticipated that because
of its flexibility, the NPMLE would out-perform any of
the estimators based on the standard models, even the
stacking model. We believe, though, that in most appli-
cations the survival function is unlikely to arise from a
mixture. The residual failure times were randomly right-
censored to allow for approximately 30% censoring. In this
simulation scenario, there was no administrative censor-
ing. We chose not to allow for administrative censoring
in order to isolate the effect on the predictive perfor-
mance of the stacked model when the underlying failure
time model was not a member of the class of submod-
els included in the stacking procedure. We fit all five
submodels individually and combined them in a stacked
model. In Fig. 4, we plot the underlying mixture sur-
vival function in black with the corrected NPMLE and

Table 3 Mean weights for a stacked model including all submodels or including all submodels except Weibull. The failure time data
were generated according to a Weibull (2, 2) distribution with varying amounts of administrative censoring for samples of size 125 over
100 simulation runs

Individual submodel type of stacked estimator

Administrative Censoring Proportion NPMLE Weibull Log-Logistic Log-Normal Gamma

10% 0.01394 0.08208 0.02781 0.04167 0.09579

0.01607 N/A 0.05645 0.08028 0.8472

20% 5.586 × 10−9 0.9061 0.01439 0.04962 0.02992

8.419 × 10−9 N/A 0.04088 0.08901 0.8701

30% 3.900 × 10−9 0.8503 0.03581 0.04999 0.06389

5.520 × 10−9 N/A 0.07797 0.08018 0.8418

40% 2.169 × 10−9 0.7888 0.02656 0.01465 0.1700

3.463 × 10−9 N/A 0.1319 0.04835 0.8197



McVittie et al. BMCMedical ResearchMethodology           (2022) 22:10 Page 7 of 10

Fig. 3 Graphical comparison of the NPMLE estimate (blue lines), stacked model estimate (without the Weibull submodel included) (red lines)
relative to the underlying Weibull failure time survival function (black line) using samples of size 125 over 100 simulation runs with varying amounts
of administrative censoring

stacked survival function estimates, with their respec-
tively bootstrapped 95% pointwise confidence intervals, in
red. From the various plots, we find that the NPMLE tends
to capture the general shape of the underlying survival
function and captures the survival curve within its 95%
pointwise confidence intervals. Other than the Gamma
distribution, the individual parametric models do not cap-
ture the shape of the underlying survival function and for
variousmodels, their 95% confidence intervals do not cap-
ture the underlying survival curve at certain time points.
Over 100 simulation runs, using the stacked model esti-
mates, the mean weight for the corrected NPMLE was
0.4372 whereas the average weights for the other paramet-
ric models were 0.1475 (Weibull), 0.2581 (Log-Logistic),
0.01849 (Log-Normal) and 0.1387 (Gamma). The average
DISSEs are listed in Table 4. Although the stacked model
estimate did not perform as well as the corrected NPMLE
with respect to the average DISSE, the stacked estimator

yielded an improvement over the other parametric mod-
els. In addition, unlike the parametric estimators, there
were no time points at which the stacked model estima-
tor’s bootstrapped 95% pointwise confidence interval did
not capture the underlying survival function.

Application
We demonstrated our proposed stacking estimator by
using it to estimate survival with dementia from for-
ward recurrence time data obtained from the CSHA, as
described at the beginning of Section 1. We estimated the
underlying survival functions for the probable Alzheimer’s
disease group (389 participants, approx. 21% censor-
ing), possible Alzheimer’s disease group (253 participants,
approx. 24% censoring) and vascular dementia group (172
participants, approx. 19% censoring), separately, and com-
puted bootstrapped 95% pointwise confidence intervals.
The stacked estimator included the corrected NPMLE,
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Fig. 4 Graphical comparison of the individual model mean survival estimates (solid red line) with bootstrapped 95% pointwise confidence intervals
(dotted red lines) relative to the underlying mixture failure time survival function (solid black line) using samples of size 125 over 100 simulation runs
with 30% random censoring (Panel a - NPMLE, Panel b - Stacked Estimator)

Weibull, Log-Normal and Gamma estimators (See Addi-
tional file 3 for individual parametric estimates of sur-
vival). We did not include the Log-Logistic distribution in
the stacking procedure as it admits only a decreasing haz-
ard function, and is therefore not suitable as a model for
survival with dementia. In Fig. 1, we plot the stacked esti-
mates with 95% pointwise confidence limit curves in red
along with the corrected NPMLE and the associated 95%
pointwise confidence limit curves in black.
From Fig. 1, the stacked estimate generally captures

the same shape as the NPMLE until approximately 60

months. The 60 month mark corresponds to the approx-
imate follow-up time for subjects in the study and thus
the non-parametric estimate does not capture the under-
lying survival function behaviour past this point. On the
other hand, since the stacked estimator is defined as a
linear combination of both the corrected NPMLE and
parametric estimators with support unconstrained by the
observed data, the resulting stacked estimate captures the
survival function tail behaviour past 60months. Addition-
ally, from Fig. 1, we see that the bootstrapped confidence
intervals based on the stacked estimator and the NPMLE
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Table 4 Average discrete integrated squared survival errors
(DISSE) for individual and stacked models for a mixture failure
time distribution with 30% random censoring for samples of size
125 over 100 simulation runs

Model Average DISSE

NPMLE 1.478

Weibull 2.755

Log-Logistic 5.612

Log-Normal 4.655

Gamma 3.075

Stacked Model (all) 2.273

are approximately of equal width in the case of the proba-
ble Alzheimer’s group. In the possible Alzheimer’s group,
the widths based on the stacked estimator are visibly
reduced, while the widths are strikingly reduced in the
vascular dementia group. We note that in the possible
Alzheimer’s disease group, decline in the first 60 months
appears to be more rapid than in the other two groups.
We speculate that the possible Alzheimer’s disease group
included a variety of non-Alzheimer’s disease dementias,
some of which are characterized by rapid decline.
In the probable and possible Alzheimer’s disease groups,

the Weibull model received most of the weight, while
in the vascular dementia group, the Gamma model was
heavily favoured. This demonstrates the ability of the
stacking model to shift its assignment of weight to a dif-
ferent model in the stack, a model (such as the Gamma)
for example, that may not have been considered alone ini-
tially. For a listing of the individual submodel weights of
the stacked models, see Table 5. The median survival esti-
mated for all three dementia types was roughly 4.2 years
when using a stacking model for the residual lifetimes. In
comparison, the estimated median survival for the three
dementia groups combined was roughly 4.5 years when
using the full data that included the current lifetimes [3].
The latter (full) data, naturally, produced much narrower
pointwise confidence intervals.

Discussion
We originally hoped to improve the corrected NPMLE
when estimating the survival function using only the
observed residual lifetimes from a prevalent cohort study
with follow-up. Our goal was to introduce parametric

models into a stacking estimator, while retaining the cor-
rected NPMLE, speculating that the parametric models
would mitigate the two major shortcomings of the cor-
rected NPMLE: (i) the wide pointwise confidence inter-
vals that are often produced, and (ii) the failure of the
corrected NPMLE to capture the tail behaviour of the
survival function, particularly when follow-up is short.
However, we found that when comparing the estima-
tors using, essentially, their average DISSEs, the corrected
NPMLE did not perform well either alone or as a member
of the stack when follow-up was short.
The sample mean discrete integrated squared survival

error takes into account both bias and variance. Never-
theless, our application suggests that even though confi-
dence interval width is concerned only with variance, the
stacked estimator produces narrower (sometimes consid-
erably narrower) confidence intervals than those of the
corrected NPMLE. A potential objection to the use of
parametricmodels in the setting of this article, is their lack
of robustness to model misspecification. By building the
stack with several different parametric models, we believe
that to a large extent, these fears can be allayed. It is com-
forting to see that in our example, the survival function
produced by the stacking estimator is smooth, in that it
does not have difficult-to-explain kinks.
An alternative approach for modelling the underlying

survival function is through a parametric mixture model.
Rather than fitting the individual parametric models sep-
arately for the residual lifetime density functions and then
subsequently estimating the weights, one can define a
mixture model likelihood function and then maximize
the likelihood to estimate the failure time parameters and
model weights simultaneously [19]. In contrast, it is possi-
ble to define a parametric mixture model of the submodel
survival functions and then estimate the unknown param-
eters by maximizing the corresponding likelihood func-
tion. In both proposed approaches however, it remains
an area of future research as to how to incorporate the
non-parametric estimates into the mixture models and
how these various procedures compare when predict-
ing the underlying survival function. It is worth noting
that multi-state models are often applied to survival (or
event history) data. However, their use is somewhat lim-
ited under stationarity and it is hard to see how their
introduction would enhance the proposed methods.

Table 5 Weights of stacked survival models applied to the three dementia type strata of the Canadian Study of Health and Aging

Individual submodel type of stacked estimator

CSHA Strata NPMLE Weibull Log-Normal Gamma

Probable Alzheimer’s Disease 1.282 × 10−8 0.9928 2.523 × 10−7 0.007240

Possible Alzheimer’s Disease 1.000 × 10−8 6.556 × 10−7 1.353 × 10−7 0.9999

Vascular Dementia 1.126 × 10−8 0.7179 2.022 × 10−7 0.2821
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