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Abstract

Background: Statistical issues present while evaluating a diagnostic procedure for breast cancer are non rare but
often ignored, leading to biased results. We aimed to evaluate the diagnostic accuracy of the fine needle aspiration
cytology(FNAC), a minimally invasive and rapid technique potentially used as a rule-in or rule-out test, handling its
statistical issues: suspect test results and verification bias.

Methods: We applied different statistical methods to handle suspect results by defining conditional estimates. When
considering a partial verification bias, Begg and Greenes method and multivariate imputation by chained equations
were applied, however, and a Bayesian approach with respect to each gold standard was used when considering a
differential verification bias. At last, we extended the Begg and Greenes method to be applied conditionally on the
suspect results.

Results: The specificity of the FNAC test above 94%, was always higher than its sensitivity regardless of the proposed
method. All positive likelihood ratios were higher than 10, with variations among methods. The positive and negative
yields were high, defining precise discriminating properties of the test.

Conclusion: The FNAC test is more likely to be used as a rule-in test for diagnosing breast cancer. Our results
contributed in advancing our knowledge regarding the performance of FNAC test and the methods to be applied for
its evaluation.
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Background
Worldwide, breast cancer is considered the most preva-
lent cancer among women and the second most common
cancer overall [1]. According to the American Institute for
Cancer Research, France was classified in 2018 as having
the fourth highest prevalence of breast cancer world-
wide after Belgium, Luxembourg, and the Netherlands
[2]. Approximately 59,000 women are diagnosed with
breast cancer yearly in France according to Santé Publique
France [3].
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When diagnosing breast tumors, the Fine Needle Aspi-
ration Cytology (FNAC) test is widely used [4]. It has
been reported as a simple, minimally invasive, and cost-
effective technique for the diagnosis of breast cancer [5].
However, whether it could be used as a rule-out or rule-in
test is a matter of concern to be evaluated. A rule-out test
(also known as triage test) is characterized by a higher sen-
sitivity (Se) than specificity (Sp), establishing the absence
of disease when its result is negative, and requiring the use
of further testing to confirm the presence of the disease
when its result is positive. A rule-in test is characterized by
a higher Sp, to confirm the disease (rule-in) when its result
is positive [6–9]. Decisions for rule-in or rule-out could
also be based on likelihood ratios (LR), so that the diag-
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nostic test can lead to the highest disease probability for
a positive test result (rule-in) or the lowest disease prob-
ability for a negative test result (rule-out). Thus, to assess
the clinical utility of the diagnostic test, the Se, Sp, disease
probability, and LRmust be taken into account [8].
In breast cancer diagnosis, histology is the worldwide

recognized gold standard that is performed in case of
positive findings from either clinical, imaging, or FNAC
results (resulting in a “triple test” approach). Conse-
quently, only a non-representative sub-sample of the
original study subjects will benefit from the histology
gold standard [4, 10], leading to partial verification bias
[11]. Moreover, an alternative gold standard, that is the
long-term (18 months) follow-up of breast imaging find-
ings, is usually performed for the rest of the partici-
pants, defining a differential verification bias, given that
such a measure of disease status is less accurate than
histology [11–13].
In many cases, the results from a given diagnostic test

do not exclusively fall into the “positive” and “negative”
categories. This was notably the case with the FNAC test.
Clear report and analysis of such indeterminate (inconclu-
sive) test results are needed in order to avoid bias in the
estimation of the test performance [14].
The objective of this study was to evaluate the interest

of the FNAC in the diagnostic strategy of breast cancer,
using methods that allow handling these statistical issues.
To evaluate the performance of the FNAC test, we used

data collected from a retrospective observational study,
that included all patients consecutively seen at the Gus-
tave Roussy Institute.

Methods
A total of 1 740 women with 1 820 breast tumors were
included between April 2004 and March 2007. In addi-
tion to the FNAC, subjects’ imaging findings (mammog-
raphy and ultrasound) were evaluated for breast cancer
diagnosis, with a classification of the risk of breast can-
cer based on the American College of Radiology’s (ACR)
guidelines. Cytopathologic, and histopathologic results
were extracted from the hospital’s computerized medical
records.

Table 1 summarizes the results of the FNAC test and of
the two standards used to assess the existence of breast
cancer (D+) or not (D−). Note that these figures refer
to tumor samples (not to patients). Indeed, according
to the study oncologist, we considered and analyzed the
1 820 breast tumors altogether, assuming independence
between the observations of the subjects with more than
one tumor. It is also noteworthy that some exceptions of
the diagnostic strategy were observed (with 38 patients
having positive FNAC tests but not verified by histology).
Cytologic diagnoses were classified into four cate-

gories: benign, suspect, malignant, and insufficient. Sus-
pect results were defined as neither positive nor negative
results, that is where the cytologist could not affirm nor
refute the malignancy, though the latter being highly sus-
pect of malignancy [5, 15]. Insufficient results were those
achieved due to insufficient materials. Indeed, due to sam-
pling technical issues, the FNAC test may have yielded
insufficient cellularity. Since the obtained material was
insufficient to be tested, no definitive diagnosis could be
done, resulting in missing data. However, according to
experts from the field, such data could not be combined
with suspect results, but considered completely missing at
random (MCAR). Therefore, the 53 samples with insuf-
ficient materials of the FNAC test were excluded from
further analyses.
Data presented in Table 1 holds some statistical issues

that should be taken into consideration in the analysis.

Handling suspect diagnostic test results
The first issue refers to the recorded responses of the
FNAC test. Indeed, while a diagnostic test usually yields
binary responses, the FNAC test is a 3-valued outcome
measure, that includes suspect results in addition to posi-
tive and negative test results. These latter outcomes (n =
154) could be defined and treated as a non-positive, non-
negative results [16].
For the gold standards, we first ignored its source, pool-

ing results from the histology and the follow-up, and
excluding missing data (lost to follow-up). Accordingly,
data can be described using a 3 × 2 decision matrix
(Table 2).

Table 1 Data presenting the results of FNAC test compared to histology and follow-up gold standards

Gold standard Histology Follow-up
Lost to follow-up Total

FNAC* D+ D− D+ D−

Positive 803 1 12 0 26 842

Suspect 120 31 0 1 2 154

Negative 24 115 1 471 160 771

Insufficient 18 26 0 6 3 53

Total 965 173 13 478 191 1820

*FNAC fine needle aspiration cytology
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Table 2 Decision matrix for handling suspect results

FNAC*
Gold standard

Disease (D+) No disease(D−)

Positive (T+) a b

Suspect (T±) e f

Negative (T−) c d

*FNAC fine needle aspiration cytology

Several strategies were used.

Estimates of performancemeasures based on a 2 × 2 cell
matrix
The simplest approach consisted in resuming the data in a
2×2 cell matrix, which allows applying the usual diagnos-
tic measures estimators directly. This required to combine
the suspect results with one of the positive or negative
values of the FNAC. Four approaches were considered.
The “conventional” strategy consisted in excluding sus-

pect results from the calculation [16]. In the “worst case”,
the suspect results were combined with negative results
in diseased patients and with the positive ones in non-
diseased participants [16]. In the “best case”, conversely,
the suspect test results were considered as positive in dis-
eased participants, and as negative in non-diseased [5, 16].
At last, we applied Multivariate Imputation by Chained
Equations (MICE) to impute those suspect results, assum-
ing missing at randommechanisms (MAR) [17, 18]. Given
the rate of such missing data, M = 10 complete datasets
were imputed, where the imputation model included all
the factors possibly impacting the presence of the disease
(patient’s age, lesion location within the breast, tumor size,
side of the breast tumor, and ACR), results of FNAC, his-
tology, and follow-up. Then, from each of these tables,
estimates (except for LR) of the diagnostic performance
of the cytology test with their intra-imputation variance
were pooled by using Rubin’s Rule [17]. We then calcu-
lated the corresponding 95% confidence interval of each
estimate [18].

Estimates of performancemeasures based on a 3 × 2 cell
matrix
In contrast with the previous approaches, we secondly
tried to respect the data structure of the 3 × 2 matrix.
Simel et al. [16] proposed conditional definitions of

diagnostic performance measures, conditioned on the
positive or negative test results, so-called positive or neg-
ative “test yield” (Y+,Y−):

Y+ = P(T+ ∪ T−|D+) = a + c
a + e + c

and

Y− = P(T+ ∪ T−|D−) = b + d
b + f + d

Conditional measures of sensitivity (Sec) and specificity
(Spec) were defined, resulting in similar estimators as
those of the “conventional strategy” described above [16]:

Sec = P(T+|D+)

P(T+ ∪ T−|D+)
= a

a + c

Spec = P(T−|D−)

P(T+ ∪ T−|D−)
= d

b + d
Simel et al. [16] and Eusebi et al. [19] also defined the

conditional LR of suspect results (LR±), the overall test
yield, and the test accuracy of the test, as follows:

LR± = P(T ± |D+)

P(T ± |D−)
= 1 − (Y+)

1 − (Y−)
(1)

Overall test yield = a + b + c + d
a + b + c + d + e + f

(2)

Accuracy = a + d
a + b + c + d + e + f

(3)

Exact 95% confidence interval (95% CI) of Se, Sp, test
yields, and accuracy, were estimated.We used the Simel et
al. 95% CI formula for the positive and negative LR (LR+
and LR−) [16, 20].

Handling verification bias in gold standard
In the previous sections, we ignored the different sources
of the gold standard, that is, assuming that disease sta-
tus was similarly measured at the same time as the FNAC
for all subjects. The estimates of the 2 x 2 matrix will
be considered as naive estimates in the further analyses,
since they did not take into account the presence of ver-
ification bias. However, the disease status was not always
measured by histology, but only when the “triple test” pro-
vided positive findings. Otherwise, diagnosis was based
on follow-up imaging of the breast. Moreover, there were
missing data in the verification procedure (lost to follow-
up, n = 191). We thus applied methods to handle this
verification bias.

Partial verification bias
First, we considered the partial verification bias, which is,
treating histology as the only gold standard for diagnosis
measure, so that patients not verified by histology (either
with or without follow-up) had missing disease status.

Begg and Greenes method Begg and Greenes proposed
to infer about the probabilities of test results (T) given the
disease status (D), in the presence of missing disease sta-
tus, that is, when there is only a subset of patients whose
disease status has been completed (V = 1).
Let X be the vector capturing all the other information

likely to influence the selection of V. In our setting, it
represents the imaging and clinical information. Although
the disease process affects both T and X, it only affects
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selection (V ) through its influence on T and X. Thus,
given that conditional independence between the verifica-
tion status V and D, the probability of T given D and X is
defined by:

P(T |D,X) = P(T ,X)P(D|T ,X,V = 1)
∑

T P(T ,X)P(D|T ,X,V = 1)

They proposed to estimate the non verified patients by
applying inverse weighting, using the observed propor-
tions of diseased and non-diseased among the verified
patients by histology (V = 1) to calculate the expected
number of diseased and non-diseased patients among
non-verified patients (follow-up or lost to follow-up),
as reported in Table 3. Accuracy measures were then
computed as if all disease status had been measured by
histology [11].
We applied the method on the “conventional strategy”

described above. We combined the verified with non-
verified patients as if all of them had been verified by
histology [11], applied the adjusted Se = (a+ a′)/(a+ a′ +
c+ c′) adjusted Sp = (d+d′)/(d+d′ +b+b′), and derived
the LR+ and LR−.

MICE Given that the verification by histology depends
on patients’ observed data, missing gold standard could be
considered as missing at random (MAR). Thus, multiple
imputation by chained equations (MICE) was applied [11,
21, 22], and compared to the Begg and Greenes method.
It was applied to the conventional strategy of naive esti-
mates. Missing data of unverified patients (with follow-up
or not) was imputed with M = 38 complete tables,
given the percentage of missing data in this sample. The
imputation model included all the factors likely to impact
the presence of the disease (patient’s age, lesion location
within the breast, size of the tumor, side of the breast
tumor, and ACR), results of FNAC, and histology. Esti-
mates of Se and Sp of each of the M analyses were then
combined using Rubin’s rule to produce the estimate and
confidence interval that incorporate between and within
imputation variability [23]. We could then estimate the
LR+ and LR−.

Table 3 Begg and Greenes correction method

D+ D− Total

V = 1(histology) T+ a b

T− c d

V = 0 (non verified) T+ a′ b′ T+
0

T− c′ d′ T−
0

where a′ = a/(a + b) × T+
0 ;

b′ = b/(a + b) × T+
0 ;

c′ = c/(c + d) × T−
0 ;

d′ = d/(c + d) × T−
0

Differential verification bias
Second, we corrected for the differential verification bias,
considering “follow-up” as an alternative gold standard to
histology.
Due to the imperfect nature of follow-up, the estimated

Se and Sp may be incorrect [10]. A Bayesian correction
approach [12] was applied to the conventional strategy.
First, patients lost to follow-up were excluded. Second,
they were imputed by applying MICE [21]. The infor-
mation from the observed data was summarized into a
likelihood function, defined as a product of four indepen-
dent binomial density functions, each corresponding to
the probability of a positive result on a gold standard (D+)
conditional on the index test (FNAC) (T)[12]:

P(D+|T+)×(1−P(D+|T+))×P(D+|T−)×(1−P(D+|T−))

(4)

with

P(D+|T+) = sD
prev × sT

(prev × sT) + (1 − prev)(1 − cT)

+ (1 − cD)
(1 − prev)(1 − cT)

(prev × sT) + (1 − prev)(1 − cT)

(5)

And

P(D+|T−) = sD
prev × (1 − sT)

(prev × (1 − sT)) + (1 − prev)cT

+ (1 − cD)
(1 − prev)cT

(prev × (1 − sT)) + (1 − prev)cT
(6)

where:

- sT , cT : sensitivity, specificity of FNAC,
- sD, cD: sensitivity, specificity of histology or
follow-up,

- prev: prevalence of the disease.

These formulas were applied for each of the histol-
ogy and follow-up gold standards. Bayesian inference was
applied, where sT, cT, sD, cD, and prev, were considered
as random variables with prior distributions. According to
deGroot et al, we used independent Beta (α,β) prior dis-
tributions [12]. Given that the histology reference is the
perfect gold standard for breast cancer diagnosis, its Se
and Sp were set at 1 [24, 25]. We used informative prior
distribution Beta (172.55, 30.45) for both Se and Sp of
imaging follow-up, corresponding to a density centered at
0.85 with estimated standard deviation derived from 1/4
of the range, 0.80-0.90 [12].We used non informative Beta
(1,1) priors for sT , cT , prev, to limit the incorporation of
any subjective prior opinion [12].
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Using Jags software, the likelihood function was com-
bined with the prior using Bayes theorem to derive pos-
terior distribution. We ran a total of 20 000 iterations, of
which we dropped the first 2 000 to allow for a burn-
in period. The convergence of the Markov Chain Monte
Carlo was checked and summary statistics (posterior
mean, 2.5% and 97.5% quantiles) of the parameters of
interest were computed.
We checked the effect of the priors chosen by a sensitiv-

ity analysis (see Additional file 1).

Handling both suspect test results and verification bias
At last, we aimed to handle both statistical issues (suspect
results and verification bias) in evaluating the perfor-
mance of the FNAC test.
We proposed to apply the Begg and Greenes method to

the 3 × 2 matrix that estimated test characteristics con-
ditionally to the suspect results. Disease status was only
based on histology, and all the other patients (followed-
up or lost to follow-up) were considered as non-verified.
We extended formulas used to estimate the results of non-
verified patients, in order to estimate their suspect results
(e′ and f ′), as reported in Table 4.
We estimated the adjusted Se, Sp from the combination

of verified and non-verified patients results, and derived
the Y+, Y− and the LR±, by applying the conditional mea-
sures defined in the section Handling suspect diagnostic
test results.

Computation
For data description, continuous variables were presented
as mean (standard deviation), and categorical variables as
frequency (percentage). The diagnostic performancemea-
sures of the FNAC were presented by the point estimate
with 95% confidence interval, or by the posterior mean
with 95% credible intervals when the Bayesian approach
was applied.
Analyses were performed using the statistical software

R, version 4.0.4 (https://cran.r-project.org/).

Table 4 Begg and Greenes correction method for the 3 × 2
matrix

D+ D− Total

V = 1 (histology) T+ a b

T± e f

T− c d

V = 0 (non verified) T+ a′ b′ T0+
T± e’ f’ T0±
T− c′ d′ T0−

where e′ = e/(e + f ) × T0±
and f ′ = f/(e + f ) × T0±

Results
The flow chart of the study is reported in Fig. 1.
Table 5 summarizes participants’ characteristics and

disease status according to the FNAC results. Most of the
subjects with positive (77%) and suspect results (51%) had
a breast imaging coded by an ACR of 5 or 4 (21% and 41%
for positive and suspect results, respectively). Conversely,
most of the participants with negative results had an ACR
of 3. Concerning the disease status, most of the patients
having positive or suspect FNAC results were verified by
histology proving a malignant tumor status (95.5% and
78% respectively), and most of the participants with neg-
ative FNAC results had a benign histological status (61%).
Lost to follow-up patients weremainly those with negative
FNAC results (21%).

Handling suspect diagnostic test results
The standard diagnostic measures of the 2 × 2 cell matrix
are presented in Table 6. As expected, the Se, Sp, LR+
and LR− of the conventional strategy ranged between
the worst and best cases, with values higher than those
provided by MICE.
As reported above, using the 3 × 2 cell matrix only pro-

vided different estimates of test accuracy and of disease
frequency than the naive conventional strategy. Moreover,
the test yields could be computed, Y+= 0.875; Y−= 0.948;
overall test yield = 0.903 [0.888-0.918]; and LR± = 2.4
(Table 6).

Handling verification bias in gold standard
Figure 2 presents estimates reached from the different
methods, compared to the naive conventional strategy
that did not take into account the verification bias. All
the methods in Fig. 2 were applied on the conventional
strategy (excluding suspect results).
When handling partial verification bias, estimates of

Se and LR+ were the most impacted, while those of Sp
and LR− were poorly affected. Actually, the Se decreased
from 97% to 86% with Begg and Greenes and to 87%
with MICE, while effects on Sp were slight (with esti-
mates ranging from 99.8% when ignoring this source of
bias down to 99.6% with MICE). Estimations from Begg
and Greenes and MICE were close. When applying the
Bayesian approach, the Se with respect to histology either
when excluding lost to follow-up (NA) or imputing them
was the lowest (0.855 and 0.875), compared to the one
with respect to follow-up and to the naive estimate, and
very close to the values of partial verification correction
methods.
By contrast, the LR+ decreased from 570 to 222 (that

is, a 61% decrease) with MICE and LR− increased from
0.029 to 0.137 (that is, a 3.72 fold increase) with Begg and
Greenes for LR−. When applying the Bayesian approach,
the LR+, and LR− with respect to follow-up were the

https://cran.r-project.org/
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Fig. 1 Flow Chart of the study
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Table 5 Description of the results according to the FNAC* results

Characteristic Negative (N = 771)a Positive (N = 842)a Suspect (N=154)a

Age (years) 50 (13) 61 (14) 57 (13)

Side

Right 373 (48%) 383 (45%) 71 (46%)

Left 398 (52%) 459 (55%) 83 (54%)

Size (mm) 15 (37) 28 (41) 17 (15)

ACR*

1 4 (1%) 1 (0.1%) 0 (0%)

2 97 (12.5%) 3 (0.4%) 0 (0%)

3 440 (57%) 13 (1.5%) 12 (8%)

4 188 (24.5%) 177 (21%) 62 (41%)

5 39 (5%) 643 (77%) 78 (51%)

Unknown 3 5 2

Echoguided 626 (81%) 342 (41%) 96 (62%)

Infiltrating canal carcinoma 22 (2.9%) 707 (84%) 98 (64%)

Unknown 2 0 0

Intracanalar carcinoma 8 (1.0%) 161 (19%) 33 (21%)

Infiltrating lobular carcinoma 9 (1.2%) 95 (11%) 20 (13%)

Lobular carcinoma in situ 5 (0.6%) 17 (2.0%) 8 (5.2%)

Disease status

Benign histology 115 (15%) 1 (0.1%) 31 (20%)

Malignant histology 24 (2.9%) 803 (95.5%) 120 (78%)

Benign follow-up 471 (61%) 0 (0%) 1 (0.5%)

Malignant follow-up 1 (0.1%) 12 (1.4%) 0 (0%)

Lost to follow-up 160 (21%) 26 (3%) 2 (1.5%)

*FNAC fine needle aspiration cytology, *ACR american college of radiology
aMean (SD); n (%)

lowest among all the methods (except for the naive esti-
mate having the lowest LR−). There were minimal differ-
ences between excluding NA and imputing them when
using the Bayesian approach for all the tested parameters.

Handling both suspect test results and verification bias
When applying Begg and Greenes on the 3 × 2 matrix
to handle suspect results (with histology as the only gold
standard), we completed missing data of non-verified
patients and obtained: e′ = 2 and f ′=1. Then we estimated
the adjusted conditional measures and yielded the same
Sec, Spec, LR+ and LR− than those obtained when apply-
ing the Begg and Greenes on the conventional strategy
(Fig. 2).
In addition, we estimated the Y+ = 0.889, Y− = 0.952

and LR± = 2.5, that were close to those obtained when
applying the 3 × 2 matrix that handled only the suspect
test result and neglected the verification bias (Table 6).
In all presented results from different proposed meth-

ods, the Sp was always higher than Se with minimal

variation between methods. The LR+ estimates depended
on the method, varying from 16 to 603 between methods,
with very large 95% CI.

Discussion
To our knowledge, this is the first study to be apply-
ing methods for correcting the major statistical issues
encountered while evaluating the FNAC test in diagnos-
ing breast cancer. These issues, namely suspect results
and verification bias, are common in diagnostic research
settings [26]. They should be reported in the data anal-
ysis and treated in order to avoid biased estimations of
the test characteristics. Therefore, we focused on pro-
viding unbiased estimates of diagnostic test sensitivity,
specificity, positive and negative test yields, and positive,
negative, and conditional likelihood ratios, using methods
previously proposed to handle such data issues.
First, the suspect results had to be taken into account.

The general description of the patients according to the
FNAC results (Table 5) shows that the characteristics of
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Table 6 Different estimates [with 95% CI] of FNAC test performance according to the different methods

Handling verification bias Without With (Begg and Greenes)

Cell matrix 2 × 2 3 × 2 3 × 2

Methods Worst case Conventional Best case MICE Conditional Conditional

Se/Sec 0.848 0.970 0.974 0.946 0.970 0.863

[0.82-0.87] [0.96-0.98] [0.96-0.98] [0.93-0.96] [0.96-0.98] [0.84-0.884]

Sp/Spec 0.946 0.998 0.998 0.986 0.998 0.998

[0.93-0.96] [0.99-0.99] [0.99-0.99] [0.98-0.99] [0.99-0.99] [0.991-0.999]

LR+ 16 570 603 67.5 570 552

[11.4-22.2] [80.4-4,037] [85-4,273] [-] [80.4-4,037] [78-3911.5]

LR− 0.160 0.029 0.026 0.055 0.029 0.137

[0.14-0.19] [0.02-0.04] [0.02-0.04] [-] [0.02-0.04] [0.117-0.160]

Accuracy 0.887 0.982 0.984 0.962 0.887 0.837

[0.87-0.90] [0.97-0.99] [0.98-0.99] [0.95-0.97] [0.871-0.902] [0.819-0.854]

prev 0.608 0.588 0.608 0.608 0.608 0.620

[0.583-0.632] [0.561-0.612] [0.583-0.632] [0.583-0.632] [0.583-0.632] [0.597-0.643]

Y+ - - - - 0.875 0.889

[0.852-0.895] [0.868-0.907]

Y− - - - - 0.948 0.952

[0.928-0.964] [0.933-0.967]

LR± - - - - 2.4 2.5

[1.7-3.5] [1.5-3.5]

Se sensitivity, Sp specificity, Sec conditional sensitivity, Spec conditional specificity, LR likelihood ratio, prev disease prevalence, Y test yield

women with suspect tests are not always similar to those
of women with positive tests. In some cases, they could
be closer to those of negative results, thus, preventing a
combination of the suspect results with the positive ones
in all cases. This explains the way of combination of the
suspect results with the positive or negative ones applied
in the 2 × 2 matrix. However, forcing suspect results into
negative or positive cells applied in the worst and best
case of the 2 × 2 matrix may lead to biased estimations.
The 3 × 2 cell matrix summarizes all the data observed
including suspect results, giving more characteristics to
the diagnostic test such as Y+, Y− and LR±. Note that the
Sec and Spec obtained when we only handled the suspect
results, applying the conditional 3×2 cell matrix proposed
by Simel et al. [16], were close to those obtained by Sus-
tova et al [4]. However, verification bias had to be handled
too.
To correct partial verification bias and assuming a MAR

mechanism, we used the Begg and Greenes method, then
MICE, as applied by several previous studies [11, 22,
27–29]. De Groot et al.[11] concluded that both meth-
ods could be used when missing mechanisms are known,
though multiple imputation could be used otherwise.
Other studies [13, 27] used different methods such as
an empirical Bayesian approach with Beta prior for test
characteristics estimates, and the maximum likelihood

estimates given by the expectation–maximization algo-
rithm by Kosinski and Barnhart [30], when the mecha-
nism is missing not at random (MNAR), that is, when
missing data depended on unrecorded information related
to the disease status [27].
In our data, a verification by follow-up was further

introduced as an alternative reference for diagnosing
breast cancer, defining a differential verification bias, not
to be confused with partial disease verification. Neglect-
ing this differential verification will overestimate the Se
and Sp explaining the higher estimates in Table 6. Results
were reported with respect to each gold standard sepa-
rately, to provide informative and unbiased measures of
accuracy, as previously presented in published studies [10,
12].
In this study, suspect test results, and verification bias

were both present. Therefore, a correction targeting both
issues had to be implemented. We thus extended the
Begg and Greenes method to handle suspect results. Our
results were in the range of previous reports. The Se
was estimated at 0.863 which is lower than the previ-
ously reported ones [4, 15], and slightly higher than the
Se of 0.83 reported by Nemer [31]. The Sp was estimated
at 0.998, equal to that obtained by Sustova et al. [4],
higher than that reported by Farras et al.(0.908) [15], and
non markedly lower than the 100% reported by Nemer
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Fig. 2 Different methods correcting for verification bias. For the Begg and Greenes method, missing data of non-verified patients were computed,
with a= 38, b= 0, c= 109 and d= 523. Legend: (E) Bayesian: Bayesian method excluding patients lost to follow-up (NA) ; (I) Bayesian: Bayesian method
imputing NA; H: withrespect to histology; F: with respect to follow-up

[31]. Regarding test yields, they were defined and used by
Simel et al. [16], who concluded with the need to incor-
porate them into the operating characteristics, to assess
the probability of obtaining useful and exact results. Con-
sequently, if the test is expansive and risky, with a low
test yield, the test would not be obtained. Due to the
very low frequency of non-verified patients having sus-
pect results (n = 3), the Y+ and Y− were very close
to those obtained with the 3 × 2 matrix that neglected

the verification bias. We reported high rates of 88% and
95% respectively, indicating a high probability of obtain-
ing positive or negative results when disease is absent or
present, with a higher probability with the absence of the
disease, thus, the test has a low probability to yield non-
positive, non-negative results. No prior studies reporting
these values were found in the literature. The precision
of the estimations was illustrated by the 95% CI that was
narrow.
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All the Se, Sp, Y+ and Y−, LR+ and LR− estimated in
our study showed that the FNAC test could be a reliable
method for differentiating benign frommalignant masses.
Indeed, regardless of the used method, all the results vary
in a way that labels the FNAC as a rule-in test. Sp of
FNAC was always higher than its Se, with minimal vari-
ation between methods and a narrow 95% CI indicating
precise estimations. As well, the LR+ was always greater
than 10 indicating important FNAC properties to yield
a positive result in diseased patients. But, the LR+ was
the most dependent parameter with very different values
varying between methods, and with large 95% CI, lead-
ing to imprecision.Moreover, such a position (rule-in test)
could be related to the fact that women benefited first
from clinical and imaging testing.
Some limitations of our work should be considered.

First, we proposed a method that takes into account both
issues of suspect results and verification bias, however we
only corrected for a partial verification bias, while a differ-
ential verification was also present in the data collected.
Our method could be extended to apply the Bayesian
approach in correcting the differential verification bias on
a 3×2 matrix, by defining a likelihood function and priors
of Y+ and Y−. Second, a simulation study could take place
in further researches to confirm the ideal fitted method to
be applied when evaluating such a diagnostic procedure.
Moreover, many other statistical issues were not treated
in this paper. As above mentioned, subjects in this ret-
rospective study also benefited from clinical and imaging
findings, that were not taken specifically into considera-
tion when analyzing FNAC characteristics due to lack of
accessibility to the clinical data. Further studies evaluat-
ing the importance of integrating FNAC in combination
with clinical and imaging data (triple test) for the improve-
ment of diagnostic performance should be conducted [5].
Furthermore, women for whom the histological diagno-
sis was not initially performed, diagnosis was based on
the disease status evolution in the upcoming 18 months of
follow-up. This will further result in using potentially, at
the time of the FNAC test, a prediction, rather than a diag-
nosis, due to the time-lag between the cytology test and
the gold standard. This needs to be taken into account in
order to avoid biased estimations of the test performance.
Last, note that we used a four-class system of cotation
for the FNAC since the study was scheduled at Gustave
Roussy cancer center in 2014, that was before the pro-
posal of a five-category classification (insufficient, benign,
atypical, suspicious, malignant) published by Vielh et al.
in 2017 [32], and internationally recommended under the
auspices of the International Academy of Cytology in 2019
[33]. Further work should report and analyze indetermi-
nate (inconclusive) test results with the use of the newly
proposed 5-class system. This will allow the reevaluation
of the FNAC performance by distinguishing atypical and

suspicious among the indeterminate category. Despite the
study limitations, our results contributed in advancing our
knowledge regarding the performance of FNAC test and
the methods to be applied for the evaluation.
In conclusion, FNAC is widely used in the diagnostic

strategy of breast cancer. The present study shows the
variability of resulted estimations among the proposed
methods, though the specificity of the FNAC test was
always higher than its sensitivity suggesting the use of
FNAC as a rule-in test, that highly indicates a malignancy
if positive. Future clinical studies should be encouraged to
evaluate and validate this test’s characteristic. Insufficient
results due to technical issues or inconclusive findings are
often ignored in many studies in order to fit the stan-
dard approach based on a 2x2 matrix. As the histology
is an expensive and invasive test, it is exclusively indi-
cated when “triple test” finding is positive, making the
verification bias unavoidable. All these statistical issues
should be clearly reported and handled in the analysis of
any future clinical study aiming at evaluating this diag-
nostic test in other settings. Ideally, researchers should
avoid partial and differential verification when conduct-
ing a diagnostic study. Nevertheless, if unpreventable,
data should be analyzed separately for each gold standard
[30], and researchers should clearly discuss the potential
clinical consequences.
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