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Abstract 

Background:  Manually extracted data points from health records are collated on an institutional, provincial, and 
national level to facilitate clinical research. However, the labour-intensive clinical chart review process puts an increas-
ing burden on healthcare system budgets. Therefore, an automated information extraction system is needed to 
ensure the timeliness and scalability of research data.

Methods:  We used a dataset of 100 synoptic operative and 100 pathology reports, evenly split into 50 reports in 
training and test sets for each report type. The training set guided our development of a Natural Language Process-
ing (NLP) extraction pipeline system, which accepts scanned images of operative and pathology reports. The system 
uses a combination of rule-based and transfer learning methods to extract numeric encodings from text. We also 
developed visualization tools to compare the manual and automated extractions. The code for this paper was made 
available on GitHub.

Results:  A test set of 50 operative and 50 pathology reports were used to evaluate the extraction accuracies of the 
NLP pipeline. Gold standard, defined as manual extraction by expert reviewers, yielded accuracies of 90.5% for opera-
tive reports and 96.0% for pathology reports, while the NLP system achieved overall 91.9% (operative) and 95.4% 
(pathology) accuracy. The pipeline successfully extracted outcomes data pertinent to breast cancer tumor charac-
teristics (e.g. presence of invasive carcinoma, size, histologic type), prognostic factors (e.g. number of lymph nodes 
with micro-metastases and macro-metastases, pathologic stage), and treatment-related variables (e.g. margins, neo-
adjuvant treatment, surgical indication) with high accuracy. Out of the 48 variables across operative and pathology 
codebooks, NLP yielded 43 variables with F-scores of at least 0.90; in comparison, a trained human annotator yielded 
44 variables with F-scores of at least 0.90.

Conclusions:  The NLP system achieves near-human-level accuracy in both operative and pathology reports using 
a minimal curated dataset. This system uniquely provides a robust solution for transparent, adaptable, and scalable 
automation of data extraction from patient health records. It may serve to advance breast cancer clinical research by 
facilitating collection of vast amounts of valuable health data at a population level.
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Background
Cancer burden is an important challenge in health-
care due to the growing incidence, morbidity, and cost 
[1–4]. Breast cancer is the most common cancer in 
women, with over 1.6 million women diagnosed per 
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year globally [5]. Over the last 2 decades, translation 
of clinical research into practice has led to significant 
improvement in breast cancer survival and quality of 
life. Advances in clinical research have relied on popu-
lation-based data, including cancer staging and clinical 
outcomes data collected in regional databases and col-
lated in national databases. As the number of patients 
with cancer increases, a parallel growth has occurred 
in recorded health data. Electronic formats of medi-
cal records are becoming ubiquitous across health care 
systems [6]. Electronic health records (EHRs) are a fruit-
ful source of information that can be utilized to garner 
novel understanding of a disease’s natural history [7], 
treatment responses, and prognosis [8–10] to guide and 
advance clinical breast cancer research [11–15]. National 
research and quality improvement registries aim to effi-
ciently collate population-based health data [16, 17]. 
Across North America, with a few potential exceptions 
[12, 13], the bulk of this valuable EHR information is 
currently being extracted by manual review, which sig-
nificantly limits timeliness, scalability, and research due 
to high costs.

With exponential growth of health data and con-
strained healthcare budgets, the volume of work for 
data extraction can rapidly exceed capacity, leading to 
time delays, and restrictions on the scope of variables 
extracted. This challenge is amplified by the increased 
volume and complexity of data rising with the synchro-
nous expansion of cancer cases and clinical knowledge 
pertinent for diagnosis, management, and prognosis [18]. 
Regional cancer registries, including some institutions, 
are mandated to report on cancer outcomes and sup-
port oncologic population health research. With finite 
resources in the health care system for cancer surveil-
lance and monitoring, regional cancer databases must 
limit and prioritize the extraction of specific variables of 
known relevance to treatment planning and prognosis. 
In response to strained resources, the scope of informa-
tion and timeliness of data input into cancer databases 
have suffered and are limited as opposed to expanding. 
This inefficiency hinders innovative exploratory clinical 
research using big data [19].

Computational methods are rapidly being developed 
and translated into healthcare to automate and expedite 
data extraction from EHRs. Natural Language Process-
ing (NLP) utilizes computational methods to analyze 
language, where text and speech data inputs are used 
for processing and capturing meaning from words. NLP 
algorithms are most commonly tasked to extract text 
and recognize specific entities. Current methods for text 
processing in the cancer domain include three relevant 
categories of NLP strategies: named entity recognition 
(NER), information extraction (IE), and text classification 

(TC). NER identifies terms and classifies these accord-
ing to predefined categories, relying on dictionaries of 
biomedical terms, for e.g. Unified Medical Language Sys-
tem (UMLS) metathesaurus used via MetaMap to obtain 
terms annotated to entities [13]. An important challenge 
with reliance on standardized dictionaries is the com-
mon existence of term variability. Terms may often not 
be found in the source dictionaries because of synonyms, 
acronyms, abbreviations, or idiosyncrasies (like gram-
matical errors) which requires additional strategies [20]. 
IE methods identify predefined facts and relationships of 
interest, often using NER and additional modelling using 
regular expression pattern-matching rules and negation 
rules. This fine-tuning approach is highly reliable for IE 
of valuable clinical information specific to a cancer type 
(i.e. Nottingham score for breast cancer), especially when 
records have structural conformity [21]. TC extends the 
benefits of IE to infer information that is not explicitly 
stated, but derived by predefined rules, whereby a can-
cer can be classified into a predefined category according 
to an expert-derived program of rules for inductive rea-
soning [22]. With the hierarchical building of IE and TC 
strategies on foundational methods of NER, it is critical 
to have high accuracy in the lexicon. Any baseline errors 
or compromise in the entities upon which the final algo-
rithm is built will limit the scalability, accuracy, and gen-
eralizability of the algorithm.

Recent advances in deep learning (DL) methods have 
yielded new breakthroughs as well as challenges. While 
traditional algorithms rely on explicit rules engineered 
by humans, DL methods autonomously formulate infer-
ence parameters by learning from large datasets. The 
robustness of a DL model relies on the size and quality 
of its training datasets. For example, state-of-the-art bio-
medical language models [23–25] were trained on bil-
lions of words from Wikipedia and PubMed. Although 
DL models can be fine-tuned to perform a wide range of 
downstream tasks, their inherent dependence on mas-
sive volumes of data poses new challenges to healthcare 
adopters who lack access to large-scale EHR datasets 
[26]. Even with sufficient training data, the “black box” 
unexplainable nature of DL models often concern health-
care stakeholders [27].

To address the challenges, this study aimed to develop 
a fully customized NLP extraction system to automate 
extraction of clinically relevant diagnostic, treatment, 
and prognostic outcomes data into a population-based 
regional cancer database. Given the real-world limi-
tations of massive annotated EHRs, we leveraged an 
optimal use of NLP computational strategies and word 
embeddings trained on open access biomedical data-
sets. While the system does not use DL methods directly, 
we do use pre-trained embedding models to develop 
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the algorithm using a small subset of annotated clinical 
cases. This de novo rule-based, transparent, and explain-
able algorithm is user-friendly, adaptable, and scalable to 
expand volumes and variety of information, providing 
oncology clinical researchers with a tool to expedite data 
collection, a laborious task inherent in most research 
endeavors.

Methods
Overview
The NLP pipeline was developed to automate the extrac-
tion of salient breast cancer outcomes designated for 
automated extraction from breast cancer patient EHRs, 

specifically from structured operative and pathology 
reports. Fig. 1 displays a high-level summary of the study 
design, datasets, and the NLP system.

The operative and pathology EHRs contain a stand-
ardized synoptic section, and we leveraged its structural 
conformity to develop the customized NLP algorithm. 
Using optimized EHR formats, the NLP algorithm first 
runs a uniquely generated “pattern matcher” of custom 
rules to extract text phrases corresponding to each vari-
able. We then encode the extractions with a biomedi-
cal word embedding model pre-trained on large-scale 
biomedical datasets [28]. The algorithm development 
was based on a curated sample of 100 records, with 50 

Fig. 1  Overview of the NLP system design, input, and outputs
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pathology and 50 operative reports. The testing was per-
formed on an additional 50 pathology and 50 operative 
records. Institutional study ethics approval was obtained 
with waiver of consent.

Data sources
The training and test datasets were derived from a cohort 
of consecutive patients treated at the University of British 
Columbia between January 1st 2015 to 2021 for breast 
cancer resection and reconstruction. Patients received 
their operative intervention at one institution by a group 
of 7 clinicians. Operative and pathology report text and 
speech inputs were generated by a heterogenous group of 
over 20 medical experts in breast cancer care, including 
surgical oncologists and pathologists. All reports con-
tain a structured, Synoptic Report section upon which 
we applied NLP. Patients were excluded if the reports 
were inaccessible, were archived in error, or contained 
addendums to prior reports. All operative and pathol-
ogy reports were annotated to capture salient outcomes 
determined a priori, defined and outlined in a codebook. 
This codebook was used by both the human review-
ers and the NLP system. Each report was independently 
reviewed by human data extractors with expert medical 
knowledge and experience in medical record review. Sali-
ent outcomes were manually extracted and encoded into 
curated database. To enable comparison of data qual-
ity between human and algorithm accuracies, human 
reviewers were selected with differing baseline experi-
ences, and a third expert reviewer assessed and con-
firmed the data quality.

The NLP system was developed using a training data-
set of 50 operative and 50 pathology reports derived from 
the study cohort. The NLP system was evaluated using 
a separate unseen test dataset of 50 operative and 50 
pathology reports derived from the same study cohort. 
The training and test datasets had the same inclusion and 
exclusion criteria. There was no overlap between patient 
sources of the training and test sets.

Variables
Operative outcomes included data on indication, diag-
nosis, laterality, procedure type, lymph nodes removal, 
incision type, wire localization, and immediate recon-
struction methods. Pathology outcomes included details 
of tumor diagnosis, size, margins of resection, Notting-
ham score, focality, number of positive lymph nodes, and 
pathologic stage. Variable types are defined and reported 
in the codebook (Supplemental Table 1).

Pipeline development
The extraction pipeline combines novel custom algo-
rithms with peer-reviewed biomedical text processing 

[28, 29], including NER and TC strategies. The pipeline 
algorithm may be viewed as having three-steps: pre-
processing, processing, and post-processing (Fig.  1). 
Transparency, adaptability, and data quality assurance 
mechanisms are embedded throughout NLP system to 
optimize integration of human and artificial intelligence.

Pre-processing modules were used to convert the 
input documents into correct formats. Two methods 
were employed to pre-process PDF formats depending 
on their content. For reports that mainly contain alpha-
betical values (operative reports), an open-source Opti-
cal Character Recognition (OCR) tool, pytesseract [29], 
was used to transform scanned PDF images to text. 
Pytesseract offers significant accuracy gain compared to 
Adobe Acrobat on reports with mainly alphabetical val-
ues. However, pytesseract often misinterprets numerical 
values, thus Adobe Acrobat’s OCR tool was applied to 
pathology reports to improve the recognition of numeri-
cal values (e.g., tumour size, distance from margins, etc.). 
To increase the accuracy of these OCR tools, we devel-
oped auto-correction algorithms that address common 
OCR errors (e.g., word fragmentation). A Graphical User 
Interface displays the auto-corrected text for NLP sys-
tem transparency and quality assurance, allowing human 
users to easily review and rectify any remaining OCR 
errors and re-run the system. These manual corrections 
were permanently integrated into the NLP system via 
persistent disk storage. The system is able to work fully 
autonomously on unseen EHRs because the most com-
mon OCR issues are repetitive (e.g., “DCIS” vs “DC1S”) 
and have already been addressed.

After pre-processing, the processing module uses a 
template-based pattern-matching algorithm to extract 
the targeted outcomes defined in the codebook, with 
each variable defined as a Field of Interest (FoI). We 
developed a regular expression pattern generator to 
search for the FoIs based on signpost phrases and posi-
tion relative to the EHR template. Note, in contrast with 
hardcoded rule-based regular expressions, the genera-
tor is generic and can be expanded to extract additional 
new FoIs. When the system cannot find a FoI, a custom 
search algorithm uses Levenshtein edit-distance meth-
ods [30] to find the most similar spelling candidate. The 
Levenshtein distance between two strings is the number 
of single-character edits required to turn one string into 
another. For example, the edit distance between “biopsy” 
and “biopsies” is 3. The extracted FoIs progress to the 
post-processing step in original raw text format to main-
tain data granularity of information and facilitate review.

The post-processing module encodes the extracted text 
into numeric labels. To ensure robustness in processing 
rare biomedical terms, we used a biomedical word embed-
ding model, scispaCy, which was pre-trained on biomedical 
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text [28]. Embeddings of words are numeric vector repre-
sentations in high-dimensional space, such that seman-
tically similar words are clustered together (Additional 
file 3). To encode the original text, we compare the cosine 
similarity between embeddings of codebook candidates 
and extracted text with customized thresholds (Additional 
file 4). We choose the encoding with the highest similarity 
to the EHR text. If none of the encoding candidates scored 
above the threshold, the actual text value was extracted.

Following NLP pipeline development, errors in the 
NLP pipeline extraction dataset outcomes were exam-
ined in preliminary analysis. The FoIs with the accuracies 
below 80% were analyzed and strategies employed to cor-
rect these extraction failures (Supplemental Table 2).

For user-friendly adaptation and evolution of the NLP 
pipeline, new reports and FoIs added are rapidly evalu-
ated using a visualization accuracy tool which displays 
the comparison of results between the NLP pipeline and 
human derived data.

We have released the codebase for the NLP system 
along with a usage guide at: https://​github.​com/​chen-​
yifu/​EMR_​pipel​ine .

Statistical analysis
Clinical characteristics of training and test sets were 
summarized with descriptive statistics in Table 1.

To evaluate the performance of the NLP pipeline against 
human manual extraction, a ground truth (GT) or “gold 
standard” of the manual extraction was required. Human 
data extractors consisted of two senior medical students 
and third independent review was conducted by academic 
breast surgeon. GT was selected by identifying the human 
extracted dataset with the highest accuracy established 
by a third independent human reviewer who compared 
the two human-derived datasets and original reports. 
GT represents the human-derived dataset with the high-
est accuracy, defined as the number of extracted variables 
matching the original reports. The inter-rater agreement 
between two human-extracted datasets was measured.

Detailed performance metrics for each Field of Interest 
(FoI) were calculated by the following formulae:

Overall NLP pipeline performance was compared to 
the GT, defined as the most accurate human extracted 
dataset. Study size was defined by the size of data set 
required to develop an algorithm with over 90% accuracy 

Accuracy = Correct predictions÷ Total predictions = (TP+ TN)÷ (TP+ TN + FP+ FN)

Precision = True positive÷ Predicted positive = TP÷ (TP+ FP)
Recall = True positive÷ Actual positive = TP÷ (TP+ FN)

F− Score = 2× ((Precision + Recall)÷ (Precision + Recall))
Cohen′s Kappa = (po − pe)÷ (1− pe)

in the training set. To minimize bias of datasets, consecu-
tive cases were considered for inclusion.

Results
The NLP system was developed to automate the collec-
tion of 48 salient outcomes based on 2607 training data 
points from 100 EHRs and was evaluated using the test 
dataset of another 100 EHRs. Clinical characteristics of 
the study cohort in each training and test set is displayed 
in Table 1. Majority of the targeted outcomes (FoI) were 
derived from pathology reports (n = 37, 76%), as com-
pared to operative reports (n = 11, 24%).

NLP system development with training cohort
The highest accuracy human-derived dataset, defined 
as GT, was used for development of NLP pipeline and 
performance assessments in the training cohort. The 
NLP pipeline achieved 93.3 and 96.1% overall accuracy 
as compared to the GT. In the training cohort, the NLP 
pipeline outperformed the second, less accurate, human-
derived dataset on both the operative and pathology 
training cohorts.

NLP system performance evaluation with test cohort
To evaluate the NLP pipeline’s performance, it was 
deployed on a test cohort which is previously com-
pletely unseen by the NLP pipeline and its programmers. 
Detailed performance metrics for each FoI are shown 
in Tables  2 and 3. The NLP pipeline achieved an over-
all 91.9% accuracy for the operative reports and 95.4% 
accuracy for the pathology reports as compared to GT. 
A precision score of 0.95 was achieved for operative FoIs 
and precision score of 0.97 for pathology FoIs. Recall of 
0.97 was achieved on both operative and pathology FoIs. 
F-scores of 0.96 and 0.97 was achieved on operative and 
pathology FoIs, respectively. Of the 11 FoIs derived from 
the operative reports, all achieved F-scores and recall of 
at least 0.90 and nearly all (10 of 11) have precision of 
0.90. From the pathology reports, most of the 37 FoIs 
have precisions (34 of 37), recall (32 of 37), and F-score 
(32 of 37) of at least 0.90. In summary, out of the 48 oper-
ative and pathology FoIs, 44 (92% of 48 FoIs), 43 (90%), 

and 43 (90%) FoIs have at least 0.90 precision, recall, and 
F-scores, respectively. At higher standards, 35 (73%), 
41 (85%), and 38 (79%) FoIs have at least 0.95 precision, 
recall, or F-scores, respectively.

https://github.com/chen-yifu/EMR_pipeline
https://github.com/chen-yifu/EMR_pipeline
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Error analysis
For operative reports, NLP system incurred the 
greatest difficulty extracting the variables “inci-
sion type” (precision 0.89, recall 0.96, F-score 0.93), 
“immediate reconstruction type” (precision 0.89, 
recall 0.96, F-score 0.93), and wire localization (pre-
cision 0.92, recall 0.96, F-score 0.94) (Table  2). In 

the pathology reports, variables with the greatest 
inaccuracies were related to details of Ductal Carci-
noma In  Situ disease (DCIS) and surgical margins. 
Specifically, the NLP pipeline failed to reach 90% 
threshold of accuracy for DCIS margins positiv-
ity (precision 0.79, recall 1.00, F-score 0.88), DCIS 
extent (precision 0.86, recall 0.79, F-score 0.83), 
closest DCIS margin location (precision 0.90, recall 
0.76, F-score 0.83), and closest invasive carcinoma 
margin distance (precision 0.91, recall 0.81, F-score 
0.86) (Table 3). While the NLP pipeline was accurate 
in reporting the number of lymph nodes with metas-
tases (precision 1.00, recall 1.00, F-score 1.00), the 
algorithm failed to correctly extract the presence or 
absence of micro or macro-metastases as a binary 
encoding (precision 0.87, recall 1.00, F-score 0.93).

Through an error analysis of the extractions, we 
found three main causes affecting performance. First, 
false negatives occurred when information was absent 
from the structured section of the report and was 
instead located in unstructured text, which is ignored 
by the NLP system and reviewed by the human anno-
tator. Second, there exists differences in terminology 
used across cohorts. For example, most training pathol-
ogy reports used “DCIS Extent” to indicate the “DCIS 
Extent” FoI, while “DCIS Estimated Size” was used in 
other test reports – resulting in false negatives. Third, 
the NLP system and human rarely disagreed on how to 
encode the same text. For example, an EHR reported 
the “Distance from Closest Margin” as “cannot be 
determined - greater than 10 mm.” The NLP and GT 
extracted “N/A” and “> 10”, respectively.

Table 1  Diagnostic and treatment characteristics in operative 
and pathology report cohorts. SD; standard deviation, LN; lymph 
node

Pathology Reports Training Cohort
(n = 50)

Validation Cohort
(n = 50)

Laterality

  Unilateral 45 (90%) 49 (98%)

  Bilateral 5 (10%) 1 (2%)

Cancer Type

  Invasive 42 (76.4%) 41 (80.4%)

  Non-Invasive 13 (23.6%) 10 (19.6%)

Margins

  Positive 10 (18.2%) 9 (17.6%)

  Negative 45 (81.8%) 42 (82.4%)

Lymph Nodes

  Avg. LNs Examined (SD) 4.6 (4.3) 4.3 (3.4)

  Micro/Macro Metastasis 16 (29.1%) 13 (25.5%)

  Extranodal Extension 8 (14.5%) 3 (5.9%)

Pathologic Diagnosis

  Avg. Number of Foci (SD) 1.9 (2.0) 2.0 (2.2)

  Avg. Nottingham Score (SD) 6.3 (1.6) 6.7 (1.6)

  Avg. Tumour Size in mm. (SD) 28.2 (28.8) 27.9 (20.0)

  Lymphovascular Invasion 11 (20%) 10 (19.6%)

Operative Reports Training Cohort
(n = 50)

Validation Cohort
(n = 50)

Laterality

  Unilateral 48 (96%) 49 (98%)

  Bilateral 2 (4%) 1 (2%)

Procedure Type

  Lumpectomy 19 (36.5%) 16 (31.4%)

  Nipple-Sparing Mastectomy 15 (28.9%) 21 (41.2%)

  Skin-Sparing Mastectomy 16 (30.7%) 14 (27.5%)

  Total Mastectomy 2 (3.8%) 0

Neoadjuvant Treatment

  Chemotherapy 4 (7.7%) 14 (27.5%)

  None 48 (92.3%) 37 (72.5%)

Immediate Reconstruction

  Mentioned 50 (96.2%) 45 (88.2%)

  Not Mentioned 2 (3.8%) 6 (11.8%)

Axillary Surgery

  Sentinel LN Biopsy 40 (76.9%) 38 (74.5%)

  Axillary LN Dissection 4 (7.7%) 5 (9.8%)

  None 8 (15.4%) 8 (15.6%)

Table 2  Detailed accuracy metrics for the NLP system with 
respect to the ground truth (GT) in operative reports

Outcome variable Accuracy Precision Recall F-Score

Laterality 0.90 0.94 0.96 0.95

Surgical Indication 0.96 0.98 0.98 0.98

Pre-Operative Biopsy 0.96 1.00 0.96 0.98

Pre-Operative Diagnosis 0.96 0.98 0.98 0.98

Neoadjuvant Treatment 0.98 1.00 0.98 0.99

Breast Procedure 0.92 0.94 0.98 0.96

Immediate Reconstruction 0.92 0.94 0.98 0.96

Immediate Reconstruction 
Type

0.86 0.90 0.96 0.92

Wire Localization 0.88 0.92 0.96 0.94

Breast Incision Type 0.87 0.89 0.96 0.93

Axillary Surgery 0.90 0.96 0.94 0.95

Overall 0.92 0.95 0.97 0.96
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Inter‑annotator agreement of human‑extracted datasets
Across operative reports, an inter-annotator agreement 
Cohen’s Kappa score of 0.50 was found (moderate agree-
ment). Across pathology reports, a score of 0.90 was 
found (almost perfect agreement). As compared to GT, 
the second human dataset achieved 90.5 and 96.0% accu-
racy on the operative and pathology cohorts respectively. 
Greatest discrepancies were identified for operative report 

variables, with accuracy differences up to 61% for imme-
diate reconstruction type (Table  2). Accuracy, precision, 
recall, and F-scores with respect to each FoI are shown in 
Tables 4 and 5. Across the 48 FoIs extracted by human, 43 
(90% of FoIs), 48 (100%), and 44 (92%) FoIs have higher 
than 0.90 precision, recall, and F-scores respectively; 40 
(86%), 38 (79%), 41 (85%) FoIs have higher than 0.95 pre-
cision, recall, and F-scores respectively.

Table 3  Detailed accuracy metrics for the NLP system with respect to the ground truth (GT) in pathology reports. DCIS; ductal 
carcinoma in situ, LN; lymph nodes

Outcome Variable Accuracy Precision Recall F-Score

Invasive Carcinoma 1.00 1.00 1.00 1.00

Invasive Histologic Type 0.94 0.94 1.00 0.97

Nottingham Score 0.98 1.00 0.97 0.99

Glandular Differentiation 0.96 0.95 1.00 0.98

Nuclear Pleomorphism 0.98 0.98 1.00 0.99

Mitotic Rate 0.98 0.98 1.00 0.99

Histologic Grade 0.96 0.97 0.97 0.97

Tumour Size (mm) 0.92 0.95 0.95 0.95

Tumour Focality 1.00 1.00 1.00 1.00

# of Foci 0.98 1.00 0.97 0.99

Tumour Site 1.00 1.00 1.00 1.00

Lymphovascular Invasion 0.96 0.95 1.00 0.98

In situ Component 0.98 0.98 1.00 0.99

In situ Type 0.98 1.00 0.98 0.99

In situ Nuclear Grade 1.00 1.00 1.00 1.00

Necrosis 0.98 0.97 1.00 0.99

DCIS Extent 0.82 0.86 0.79 0.83

Architectural Patterns 1.00 1.00 1.00 1.00

Invasive Carcinoma Margins 0.94 0.93 1.00 0.97

Distance from Closest Margin 0.84 0.97 0.81 0.88

Closest Margin 0.90 0.97 0.89 0.93

DCIS Margins 0.78 0.78 1.00 0.88

Distance of DCIS from Closest Margin (mm) 0.86 0.92 0.81 0.86

Closest Margin DCIS 0.83 0.90 0.76 0.83

Total LN Examined 0.98 1.00 0.98 0.99

# Sentinel LN Examined 1.00 1.00 1.00 1.00

Micro/macro metastasis 0.88 0.87 1.00 0.93

# LN with Micro-metastasis 1.00 1.00 1.00 1.00

# LN with Macro-metastasis 1.00 1.00 1.00 1.00

Size of largest Macro-metastasis Deposit 0.98 1.00 0.91 0.95

Extranodal Extension 1.00 1.00 1.00 1.00

Extent (mm) 1.00 1.00 1.00 1.00

Invasive Tumour Size (mm) 0.94 0.95 0.97 0.96

# Sentinel Nodes Examined 0.96 0.95 1.00 0.97

# Micro-metastatic Nodes 1.00 1.00 1.00 1.00

# Macro-metastatic Nodes 1.00 1.00 1.00 1.00

Pathologic Stage 0.98 1.00 0.98 0.99

Overall 0.95 0.97 0.97 0.97
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Discussion
This study describes the development and evalua-
tion of a customizable automated data extraction NLP 
pipeline for breast cancer outcomes data using a mini-
mal size cohort of patients. Using a combination of 
rule-based (pattern-matching, auto-correction) and 
statistics-based (pre-trained biomedical word embed-
dings) methods, the developed NLP algorithm is robust, 
transparent, and adaptable. In the test cohort, the NLP 
pipeline did not outperform the second, less accurate, 
human-derived dataset for either the pathology or oper-
ative reports (Fig.  2a, b). Notably, the human reviewer 
outperformed the NLP pipeline in pathology reports 
containing both invasive and in  situ disease, with 
interpretation required for DCIS margins (NLP 78% 
accuracy) and extent of disease (NLP 82% accuracy). 
Nevertheless, the NLP pipeline achieved near-human-
level accuracy across most of the 48 targeted outcomes 
relevant to clinical outcomes research. Of the 48 FoI 
variables in the test cohort, NLP extracted 43 (90%) and 
38 (79%) FoIs with an F-score of at least 0.90 and 0.95 
respectively. In comparison, of the same 48 FoI outcome 
variables, a trained human annotator extracted 44 (92%) 
and 41 (85%) variables with an F-score of at least 0.90 
and 0.95 respectively.

Our NLP system agrees with and extends the NLP 
strategies previously described by enhancing trans-
parency, scalability, and adaptability [11–15, 31–36]. 
Ashish et  al. developed enhancements to an academic 
institutional information extraction system to expand 
the data fields of interest for automated capture of data 

from cancer pathology reports [12]. The institutional 
system was built leveraging the existing Unstructured 
Information Management Architecture framework, 
resources from the Open Health Natural Language 
Processing consortium. A Pathology Extraction Pipe-
line was built upon the established Medical Knowledge 
Analysis Tool pipeline, which focuses on pathology 
reports. Xie et al. utilized the Text Information Extrac-
tion System to identify potential new cancer diagnoses 
in real-time using concept terms from the National 
Cancer Institute Metathesaurus and codes to identify 
breast cancer from the Unified Medical Language Sys-
tem Terminology Service [31]. Although promising in 
their application, these software solutions have rigid 
algorithms that lack the capacity to customize outcome 
variables of interest, data source formats, and scripts. 
With the rapidity of novel computational method 
development, it is essential to ensure the programming 
of the algorithm can be updated with advances both 
in NLP strategies and, more importantly, in clinical 
research [31–36]. Adapting and extending such tools 
is computationally challenging, limiting customization 
to meet institutional needs and extensibility to ensure 
long-term use.

Overall, our NLP pipeline has three main advan-
tages compared to existing solutions: 1) robust encod-
ing performance metrics; 2) high customizability for 
adapting additional report types as data sources and 
FoIs; 3) consistent and rapid processing of documents. 
The word embedding model has a vocabulary size of 
785,000 words, which we adopted to circumvent the 
need for large-scale, manually labeled training data 
as required by supervised NLP methods. Compared 
to a “black box” DL approach, embedding vectors can 
be interpreted by examining their semantic relation-
ships [37, 38]. Compared to a lexicon-based approach, 
embeddings are more robust to rare words: while lexi-
con algorithm necessitates a lookup dictionary which 
may not cover edge case synonyms, embedding vec-
tors can be generated for any extracted word, which we 
match to its most semantically similar encoding candi-
date (Appendix B). Given the high levels of test accu-
racy, our system may serve as a substitute to manual 
extraction by researchers and clinicians in an end-to-
end, fully autonomous manner. The NLP pipeline was 
successfully developed with a minimal curated dataset 
to provide users with a scalable and applicable system 
at an institutional or regional level. With the goal of 
extending this user-friendly NLP pipeline, the system 
may be used to help guide human reviewers by recom-
mending encodings, highlighting the source of infor-
mation to reduce search time by human extractors. 
For transparency with expanding targeted outcomes 

Table 4  Detailed accuracy metrics for the human annotator 
with respect to the ground truth (GT) in operative reports. All 
scores were computed by averaging the metrics across training 
and test cohorts

Outcome variable Accuracy Precision Recall F-Score

Laterality 0.99 0.99 1.00 1.00

Surgical Indication 0.97 0.97 1.00 0.99

youPre-Operative Biopsy 0.98 0.98 1.00 0.99

Pre-Operative Diagnosis 0.93 0.93 1.00 0.97

Neoadjuvant Treatment 0.98 0.98 1.00 0.99

Breast Procedure 0.97 0.97 1.00 0.99

Immediate Reconstruction 0.89 0.70 1.00 0.80

Immediate Reconstruction 
Type

0.60 0.66 0.99 0.78

Wire Localization 0.90 0.76 0.99 0.84

Breast Incision Type 0.81 0.89 0.84 0.85

Axillary Surgery 0.96 0.96 1.00 0.98

Overall 0.91 0.89 0.98 0.92
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of interest, the NLP system FoIs may be altered and 
easily validated through visual comparisons to opti-
mize the algorithms’ accuracy. Lastly, the NLP system 
can be indefinitely fine-tuned to prevent reoccurring 
errors. With the increasing investment of both data and 
time, this iterative adaptation of the system allows the 
pipeline accuracy to asymptotically approach, or even 
exceed, expert human accuracies.

With the NLP pipeline accuracy above 90% for salient 
outcomes in breast cancer research, this system may be 
applied in clinical population-based research studies. For 
example, this system may be applied to provide timely 
reports on cancer outcomes in comparative effectiveness 
studies following the approval of a new treatment modal-
ity. It may also be used for rapid assessment of implemen-
tation following release of clinical guidelines.

Table 5  Detailed accuracy metrics for the human annotator with respect to the ground truth (GT) in pathology reports. DCIS; ductal 
carcinoma in situ, LN; lymph nodes. All scores were computed by averaging the metrics across training and test cohorts

Outcome Variable Accuracy Precision Recall F-Score

Invasive Carcinoma 0.98 1.00 0.98 0.99

Invasive Histologic Type 0.95 0.97 0.98 0.97

Nottingham Score 0.62 1.00 1.00 1.00

Glandular Differentiation 0.97 0.99 0.98 0.98

Nuclear Pleomorphism 0.97 0.98 0.98 0.98

Mitotic Rate 0.96 0.95 0.98 0.97

Histologic Grade 0.96 0.99 0.95 0.97

Tumour Size (mm) 0.98 0.96 0.98 0.97

Tumour Focality 0.96 0.97 0.98 0.97

# of Foci 0.96 0.98 0.97 0.97

Tumour Site 0.95 0.74 0.94 0.81

Lymphovascular Invasion 0.97 0.98 0.98 0.98

In situ Component 0.95 0.99 0.94 0.97

In situ Type 0.97 0.99 0.97 0.98

In situ Nuclear Grade 0.96 0.98 0.96 0.97

Necrosis 0.96 0.96 0.96 0.96

DCIS Extent 0.98 0.97 0.95 0.96

Architectural Patterns 0.96 0.93 0.95 0.94

Invasive Carcinoma Margins 0.96 0.97 0.98 0.97

Distance from Closest Margin 0.97 0.99 0.96 0.97

Closest Margin 0.97 1.00 0.96 0.98

DCIS Margins 0.94 0.94 0.97 0.95

Distance of DCIS from Closest Margin (mm) 0.95 0.99 0.94 0.96

Closest Margin DCIS 0.97 1.00 0.94 0.97

Total LN Examined 0.98 1.00 0.98 0.99

# Sentinel LN Examined 0.98 1.00 0.98 0.99

Micro/macro metastasis 0.98 1.00 0.98 0.99

# LN with Micro-metastasis 0.98 1.00 0.96 0.98

# LN with Macro-metastasis 0.98 1.00 0.96 0.98

Size of largest Macro-metastasis Deposit 0.98 1.00 0.95 0.98

Extranodal Extension 0.98 1.00 0.94 0.97

Extent (mm) 0.98 1.00 0.90 0.95

Invasive Tumour Size (mm) 0.97 1.00 0.97 0.98

# Sentinel Nodes Examined 0.96 0.96 0.96 0.96

# Micro-metastatic Nodes 0.98 1.00 0.95 0.98

# Macro-metastatic Nodes 0.97 1.00 0.93 0.96

Pathologic Stage 0.98 1.00 0.98 0.99

Overall 0.96 0.98 0.96 0.97
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Limitations of the NLP system are inherent in the 
nature of the data extracted. Error analysis revealed 
that some difficulties could be attributed to unexpected 
signpost phrase variations, which may be resolved with 
larger training datasets to cover these edge cases. Some 
other errors resulted from the industrial OCR module, 
which converts the scanned image to text incorrectly. 
Auto-correction mechanisms may be a solution, rely-
ing on the iterative growth of the ontology. Note that 
the OCR step can be skipped (and thus eliminate many 
issues) if the NLP system has access to reports in raw 
text file format. Although the use of a minimal data-
set is a strength of the developed pipeline, the smaller 
subset of curated information may limit the encodings 
of the algorithm, leading to disagreements between 
the NLP system and human annotator. Fortunately, 
the pipeline can rapidly adopt new FoIs with the addi-
tion of a custom word embedding function without the 
need for thousands of reports. For example, text such 
as “cannot be determined – larger than 10 mm” could 
be embedded near the “10 mm cluster”, rather than the 
“N/A cluster”, or vice versa.

Lastly, the current pipeline cannot perform data 
extraction with sufficient levels of accuracy with com-
pletely unstructured data. Further work is underway to 
analyze unstructured text in the EHR by applying and 
augmenting the NLP strategies of auto-correction, doc-
ument segmentation, name-entity recognition, tagging, 
syntactic parsing, information extraction, and classifi-
cation. Integrating these approaches with the current 
workflow will improve the generalizability, robustness, 
and interpretability of the system.

Conclusion
The NLP system successfully extracts targeted outcome 
variables to serve as a fruitful data source for down-
stream clinical research. This system uniquely pro-
vides a robust solution for transparent, adaptable, and 
scalable data automation using minimized sources of 
curated medical information.

Abbreviations
NLP: Natural Language Processing; EHR: Electronic health record; NER: Named 
entity recognition; IE: Information extraction; TC: Text classification; DL: Deep 
learning; OCR: Optical Character Recognition; FoI: Field of Interest; GT: Ground 
Truth; DCIS: Ductal Carcinoma In Situ disease.
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Fig. 2  a NLP versus the second human reviewer as compared to the 
GT in operative reports. b NLP versus the second human reviewer as 
compared to the GT in pathology reports
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