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Abstract 

Background:  Our study aimed to compare the reference distributions of serum creatinine and urea obtained by 
direct sampling technique and two indirect sampling techniques including the Gaussian Mixture Model (GMM) and 
the Self-Organizing Map (SOM) clustering based on clinical laboratory records, so that the feasibility as well as the 
potential limitations of indirect sampling techniques could be clarified.

Methods:  The direct sampling technique was used in the Pediatric Reference Interval in China (PRINCE) study, in 
which 15,150 healthy volunteers aged 0 to 19 years were recruited from 11 provinces across China from January 2017 
to December 2018. The indirect sampling techniques were used in the Laboratory Information System (LIS) database 
of Beijing Children’s Hospital, in which 164,710 outpatients were included for partitioning of potential healthy indi‑
viduals by GMM or SOM from January to December 2016. The reference distributions of creatinine and urea that were 
established by the PRINCE study and the LIS database were compared.

Results:  The density curves of creatinine and urea based on the PRINCE data and the GMM and SOM partitioned LIS 
data showed a large overlap. However, deviations were found in reference intervals among the three populations.

Conclusions:  Both GMM and SOM can identify potential healthy individuals from the LIS data. The performance of 
GMM is consistent and stable. However, GMM relies on Gaussian fitting, and thus is not suitable for skewed data. SOM 
is applicable for high-dimensional data, and is adaptable to data distribution. But it is susceptible to sample size and 
outlier detection strategy.
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Background
Reference interval (RI) is one of the most widely used 
decision-making tools in clinical practice [1]. Pediatric 
RIs are critical for not only the diagnosis and treatment 
of diseases for sick children, but also the presentation 
of physiological conditions for healthy children during 
growth and development. We have recently reported a 
critical gap of pediatric RIs in China, which suggests the 
necessity of establishment of RIs for Chinese children [2].
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In general, directly sampling reference individuals from 
a well-defined “healthy population” is a classic approach 
to establish RIs [1]. Since 2016, a nationwide cross-
sectional study named Pediatric Reference Intervals in 
China (RPINCE) has been conducted, aiming at depict-
ing the reference distributions of laboratory indexes 
based on direct samples [3]. However, direct sampling 
technique is found to be challenging to enroll adequate 
samples of children due to ethical and feasibility reasons, 
particularly for special age groups such as neonates. Over 
the past years, several indirect techniques have been pro-
posed, including the Gaussian Mixture Model (GMM) 
and the Self-Organizing Map (SOM) clustering, by which 
RIs are established based on normal values partitioned 
from routine medical records [4–6]. The main procedure 
of indirect sampling technique can be summarized as a 
subgroup division of potential healthy population from 
the overall population, which is also referred to as unsu-
pervised clustering [7]. For instance, GMM is a good way 
to separate mutually overlapping clusters by describing 
the distribution of variables through multiple Gaussian 
probability density functions [8, 9]. Each density function 
represents a cluster, and the parameters of density func-
tions are independent of each other. When the number 
of density functions is large enough, GMM can approach 
most objects with high precision. On the other hand, 
SOM clustering, as a kind of neural network model, can 
map data points to several grid structures, with each 
grid be spread out from the center point of a cluster [10]. 
SOM clustering can provide more intuitive results and 
are more suitable for processing complex data, and thus 
has achieved many successful applications in engineering 
field [11, 12]. However, SOM clustering has been rarely 
reported in biomedical field till now.

Although indirect sampling technique is simple and 
fast by obtaining laboratory indexes from the hospitals’ 
Laboratory Information System (LIS) database, whether 
it can replace direct technique is always controversial 
[13]. Therefore, it will be interesting to compare the ref-
erence distributions of laboratory indexes (taking serum 
creatinine and urea as examples) of potential healthy 
children partitioned from the LIS database by GMM or 
SOM with those of reference individuals in the PRINCE 
study. By this comparison, the feasibility as well as the 
potential limitations of indirect sampling techniques can 
be clarified.

Methods
Data sources
The PRINCE study is a typical example of direct sam-
pling technique. It aims to establish and verify pediatric 
RIs based on 15,150 apparent healthy children recruited 
from 11 centers across China between January 2017 and 

December 2018. The eligibility criteria and other detailed 
information have been published in the study proto-
col [3]. In brief, blood specimens were phlebotomized 
by trained pediatric nurses using a BD Vacutainer and 
vacuum tube needles (Becton, Dickinson and Company, 
Dublin, Ireland). Specimens for biochemical markers 
were centrifuged (relative centrifugal force, 1200  g) for 
10 min after clotting, followed by approximately 30 min’ 
quiescence at room temperature (22 to 25 ℃). The serum 
was divided into aliquots (minimum, 0.5 mL) using well-
sealed freezing containers and stored at -80 ℃ within 
8 h after collection. All aliquots were transported to the 
central laboratory at Beijing Children’s Hospital through 
cold chain. The measurement of samples was completed 
within 6  months after collection; repeated freeze–thaw 
cycles were avoided during the examination process. 
Serum creatinine and urea were measured using Roche 
Cobas C702 (Roche Diagnostics GmbH, Mannheim, 
Germany) with enzymatic method. The PRINCE study 
was approved by the Ethics Committee of Beijing Chil-
dren’s Hospital and all participating centers.

Data used for indirect sampling techniques were 
derived from the LIS database of Beijing Children’s Hos-
pital. All serum creatinine and urea measures of outpa-
tients from January to December 2017 were extracted. 
Furthermore, to better evaluate the renal function of out-
patients, uric acid was also obtained. Biochemical mark-
ers were tested by Beckman Coulter AU5800 (Beckman 
Coulter Inc., California, USA) within 2  h after venous 
blood sample collection. The Department of Clinical 
Laboratory Center of Beijing Children’s Hospital is cer-
tificated by ISO15189.

Data cleaning
Data cleaning was performed for the PRINCE data and 
the LIS data, respectively. For the PRINCE data, chil-
dren with unhealthy conditions such as taking medica-
tions within 1 week, having acute illness or fever within 
2 weeks, receiving operation or blood transfusion within 
1  month, or suffering from chronic illness or congeni-
tal disease were excluded. Furthermore, specimens that 
were failed to collect or of substandard quality (e.g., 
hemolysis) were removed. For the LIS data, missing and 
extreme values were firstly deleted from the database. 
Then repeatedly tested children were checked, with an 
assumption that the necessity of multiple testing implies 
higher chances of pathology [14]. If an individual had 
two or more laboratory records within a year, the earliest 
record would be utilized. Taking into account the adverse 
effect of insufficient sample size on the stability of clus-
ter analysis, children aged less than 1  year or beyond 
17 years were not included in the present study.



Page 3 of 10Yan et al. BMC Medical Research Methodology          (2022) 22:106 	

During the process of outlier detection, age and sex 
partitioning were performed by decision tree at first 
(Supplement Fig. 1) [15]. The decision tree of creatinine 
indicated an age partition of 1 to < 6 years, 6 to < 12 years, 
and 12 to < 17 years (Supplement Fig. 2). Since significant 
difference of creatinine was found between boys and girls 
after puberty (Supplement Fig.  1A), the subgroup of 12 
to < 17 years was partitioned by sex as well. Contrary to 
creatinine, urea did not show substantial age and sex var-
iation (Supplement Fig. 1B), and was not partitioned into 
subgroups in the present study. Subsequently, the nor-
mality of test results in each age and sex subgroup was 
checked, and Box-Cox transformation was used as appro-
priate to ensure that the data obeyed Gaussian distribu-
tion [16]. Box-Cox transformation could be expressed 
by the equation of y = (xλ-1)/λ (λ ≠ 0), where y repre-
sents transformed value of x using the power λ, and λ 
was estimated by maximum likelihood approach. Finally, 
Tukey method was used to detect outliers [17], in which 
outlying values were defined as less than Q1-1.5 × IQR 
or more than Q3 + 1.5 × IQR, where Q1 is the 25th per-
centage, Q3 is the 75th percentage, and IQR is the inter-
quartile range (Q3-Q1). The flow chart of data cleaning is 
shown in Supplement Fig. 3.

Transference between biochemistry analyzers
Since the biochemistry analyzers and reagents used by 
the PRINCE study varied from clinical routine, system-
atic errors might exist between measurements of the 
PRINCE data and the LIS data. Therefore, transference 
was made for the PRINCE data from Roche to Beck-
man, in order to provide more objective comparison of 
direct and indirect sampling techniques [1]. Accord-
ing to the published transference formula [18, 19], cre-
atinine (enzymatic) of Abbott ARCHITECT c8000 
was × 0.965–0.447 to transfer to Roche Cobas 6000, and 
was × 0.903–1.192 to transfer to Beckman Coulter AU 
Systems. On the other hand, urea of Abbott ARCHI-
TECT c8000 was × 0.941 + 0.143 to transfer to Roche 
Cobas 6000, and was × 0.961 + 0.110 to transfer to Beck-
man Coulter AU Systems. As the results, the values of 
creatinine and urea in the transferred PRINCE data 
were calculated by (creatinine + 0.447) × 0.936–1.192 
and (urea-0.143) × 1.021 + 0.110 in the PRINCE data, 
respectively.

Indirect sampling techniques
GMM and SOM were used to partition potential healthy 
children from the LIS data. The GMM method was per-
formed in mixtools package of R 3.5.3 (https://​www.r-​
proje​ct.​org) [20]. The main procedure of GMM was 
based on Expectation Maximum algorithm [8]. Three 
clusters were set to represent unhealthy (with low and 

high levels of analytes) and potential healthy individu-
als (with normal level of analytes). The starting distri-
bution parameters of the three clusters referred to the 
transferred PRINCE data, i.e., μ were set as the lower, 
median, and upper quartiles of analytes in the transferred 
PRINCE data, and σ were set as the standard deviation 
(SD)  of analytes in the transferred PRINCE data. By 
simulating the initial distributions of the clusters, which 
cluster each data point was more likely to come from 
could be decided, and the distribution parameters could 
be re-calculated after classifying all data points. The iter-
ation was performed until the distribution parameters 
converged to an ideal state. Then potential healthy chil-
dren could be identified through the final classification.

The SOM method was implemented by JMP 13.0.0 
(https://​www.​jmp.​com). Unlike GMM that screened ref-
erence values for each independent analyte, SOM could 
consider multiple related biochemical markers simulta-
neously through a network structure. Creatinine, urea, 
and uric acid were assigned as column variables and 
were scaled individually, and then SOM with three clus-
ters was structured according to batch algorithm using 
a locally weighted linear smoother. The number of rows 
and columns in cluster grid were set as three and one, 
respectively, to represent children with low, normal, and 
high levels of renal function. The goodness-of-fit of SOM 
was evaluated by cubic clustering criterion. Procedures 
of SOM clustering were conducted as follows: (1) the 
initial center points were determined by principal com-
ponent analysis; (2) a grid was laid out in each principal 
component space with 2.5 standard deviations’ edges 
from the middle in all directions; (3) each data point was 
assigned to the closest cluster; (4) the center points were 
re-estimated by cluster means, and the data points were 
re-classified to the closest clusters. The iteration was pro-
ceeded until convergence.

Statistical analysis
The probability density diagrams for creatinine and urea 
were plotted by age and sex subgroups in the PRINCE 
data, the transferred PRINCE data, the LIS data, the 
GMM partitioned LIS data, and the SOM partitioned 
LIS data, respectively. Reference distributions of analytes 
acquired by direct and two indirect sampling techniques 
were graphically presented, and corresponding RIs were 
calculated by non-parametric method using MedCalc 
15.10.0 (https://​www.​medca​lc.​org).

In view of the complexity of pediatric outpatients in the 
LIS data, a more radical outlier detection strategy was 
implemented, in order to explore the influence of outli-
ers on the results of indirect sampling techniques [21]. In 
this strategy, children with an outlier in either creatinine, 

https://www.r-project.org
https://www.r-project.org
https://www.jmp.com
https://www.medcalc.org
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urea, or uric acid were excluded. Other statistical analy-
ses were same as described above.

To assess the bias of RIs established by indirect sam-
pling techniques from that established by direct tech-
nique, the ratio of between-method difference in 
reference limits to between-individual SD was calculated, 
where between-individual SD is 1/3.92 of RI width estab-
lished by direct technique [22]. The conventional thresh-
old of bias ratio is 0.25 (allowable) or 0.375 (minimal), 
which can be used to judge the performance of GMM 
and SOM.

Results
Original distributions of the PRINCE data and the LIS data
In total, 10,685 measures of creatinine and 10,663 meas-
ures of urea were included in the PRINCE data, while 
123,105 measures of creatinine and 122,421 measures of 
urea were included in the LIS data (Supplement Fig. 3). 
The original distributions of creatinine and urea in the 
PRINCE data, the transferred PRINCE data, and the LIS 
data are shown in Table 1 and Supplement Fig. 4. From 
the probability density diagrams we noticed that, after 
transference, the systematic errors brought by different 
biochemistry assays were largely corrected, especially for 
creatinine. However, creatinine in the LIS data shaped 

more right-skewed than that in the PRINCE data (Sup-
plement Fig. 4A-4D). Meanwhile, the distribution of urea 
in the PRINCE data and the LIS data were similar and 
both close to symmetrical (Supplement Fig. 4E).

Potential healthy population obtained by indirect 
sampling techniques
Creatinine and urea in the LIS data were divided into 
three clusters for each age and sex subgroup. The den-
sity curves of clusters partitioned by GMM and SOM 
are shown in Supplement Fig.  5 and Supplement Fig.  6, 
respectively. Corresponding distribution parameters 
are shown in Supplement Table  1 (GMM) and Supple-
ment Table  2 (SOM). The middle density curve was 
identified as the distribution of potential healthy indi-
viduals that had normal levels of analytes. For GMM, 
children with normal creatinine accounted for 55% of 
the total (67,616/123,105), while children with normal 
urea accounted for 62% (75,489/122,421). For SOM, the 
percentages of potential healthy population were 18% 
(22,410/123,105) and 22% (26,513/122,421) for creatinine 
and urea, respectively, which appeared to be stricter than 
GMM in the partitioning of reference individuals.

Table 1  Original distributions of creatinine and urea in the PRINCE data and the LIS data

PRINCE Pediatric Reference Intervals in China, LIS Laboratory Information System, SD standard deviation

Age Group PRINCE Transferred PRINCE LIS

Boys Girls Boys Girls Boys Girls

n Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n Mean SD

Creatinine (μmol/L)
  1 to < 2 years 269 25.0 3.7 229 24.1 3.7 269 22.6 3.4 229 21.8 3.5 9137 25.27 6.48 6004 25.06 7.05

  2 to < 3 years 320 28.7 4.3 292 28.9 4.5 320 26.1 4.0 292 26.2 4.2 8431 27.34 7.02 5218 26.75 7.14

  3 to < 4 years 462 32.6 4.3 355 31.1 4.1 462 29.8 4.0 355 28.4 3.8 7783 29.79 7.57 5243 29.18 7.43

  4 to < 5 years 315 35.0 4.6 316 34.6 4.4 315 32.0 4.3 316 31.6 4.2 7102 31.85 7.59 4762 31.13 7.55

  5 to < 6 years 307 37.1 4.5 302 37.0 4.5 307 33.9 4.2 302 33.9 4.2 5856 33.57 7.97 3933 32.73 7.83

  6 to < 7 years 384 41.2 5.2 350 40.2 4.9 384 37.8 4.9 350 36.8 4.6 4847 37.18 8.10 3352 36.38 8.01

  7 to < 8 years 414 42.0 5.2 374 41.0 4.9 414 38.5 4.9 374 37.6 4.6 4590 38.94 8.60 3538 38.23 8.44

  8 to < 9 years 405 44.0 5.5 404 43.1 5.6 405 40.4 5.1 404 39.6 5.2 4769 40.98 9.35 3735 39.95 8.78

  9 to < 10 years 389 46.1 5.3 369 45.2 5.3 389 42.3 4.9 369 41.5 5.0 4115 41.82 9.35 3507 40.47 9.06

  10 to < 11 years 402 48.5 5.5 381 45.4 5.3 402 44.6 5.2 381 41.7 5.0 3568 43.74 9.60 2794 42.17 9.56

  11 to < 12 years 292 49.1 5.5 305 45.5 5.7 292 45.2 5.1 305 41.8 5.3 3419 46.25 9.72 2678 43.72 9.80

  12 to < 13 years 408 55.4 8.6 379 51.3 8.1 408 51.1 8.0 379 47.3 7.5 2718 49.18 11.24 2079 45.82 11.01

  13 to < 14 years 287 59.9 10.0 309 53.6 7.9 287 55.3 9.4 309 49.4 7.4 2418 53.81 13.06 1957 48.65 11.55

  14 to < 15 years 229 66.9 11.1 242 55.9 7.7 229 61.9 10.4 242 51.6 7.2 1503 57.31 12.61 1163 50.68 10.94

  15 to < 16 years 311 75.6 11.4 377 60.6 7.7 311 70.0 10.7 377 56.0 7.2 957 59.78 14.38 772 52.32 11.59

  16 to < 17 years 220 77.9 10.8 287 61.9 8.1 220 72.2 10.1 287 57.1 7.6 605 62.66 12.57 552 54.13 11.58

Urea (mmol/L)
  1 to < 17 years 5413 4.44 0.98 5250 4.10 0.94 5413 4.50 1.00 5250 4.15 0.96 71,486 4.35 1.33 50,935 4.15 1.32
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Reference distributions acquired by direct and indirect 
sampling techniques
The probability density diagrams of creatinine and urea 
based on the transferred PRINCE data and the potential 
healthy populations partitioned by GMM and SOM from 
the LIS data are shown in Fig.  1. Since Gaussian fitting 
is the main procedure of GMM, the distributions of cre-
atinine and urea shaped closer to normality, compared 
to direct sampling technique and SOM. Distribution 
parameters of the three methods are shown in Table 2.

RIs of creatinine and urea established by direct and 
indirect sampling techniques are shown in Fig.  2 and 
Table 3. In subgroups of 1 to < 6 years and 12 to < 17 years 
girls where distributions of creatinine for direct samples 
were less skewed (skewness ≤ 0.10), the GMM parti-
tioned LIS data presented similar RIs to the transferred 
PRICNE data. However, in subgroup of 12 to < 17  years 
boys where distribution of creatinine was away from 
normality (skewness was 0.37), SOM showed more 
advantages in RI calculation. As the distribution was 
right-tailed, GMM tended to underestimate, especially 

the upper limit of RI. Similar phenomenon was also 
observed for urea (skewness was 0.43).

Sensitivity analysis
In  sensitivity analysis, a more radical outlier detection 
strategy for the LIS data was used, and 116,144 children 
who had outliers in neither creatinine, urea, nor uric acid 
were included for indirect sampling. Corresponding RIs 
established by GMM and SOM are shown in Table  4. 
Compared with RIs presented in Table 3, SOM displayed 
higher sensitivity to outlier detection strategy than 
GMM. Nevertheless, regardless of which set of outliers 
were excluded, deviations existed in RIs based on direct 
and indirect sampling techniques, with bias ratio > 0.375 
in most cases (Table 5).

Discussion
Establishing RIs in pediatric practice remains a clinical 
challenging conundrum. Blood sample collection from 
healthy voluntary children is often subject to ethical or 
practical constraints. Therefore, in the present study, we 

Fig. 1  Reference distributions of creatinine and urea acquired by direct and two indirect sampling techniques. A Reference distribution of 
creatinine for children aged 1 to < 6 years. B Reference distribution of creatinine for children aged 6 to < 12 years. C Reference distribution of 
creatinine for boys aged 12 to < 17 years. D Reference distribution of creatinine for girls aged 12 to < 17 years. E Reference distribution of urea for 
children aged 1 to < 17 years. PRINCE: Pediatric Reference Intervals in China; LIS: Laboratory Information System; GMM: Gaussian Mixture Model; 
SOM: Self-Organizing Map



Page 6 of 10Yan et al. BMC Medical Research Methodology          (2022) 22:106 

Table 2  Reference distributions of creatinine and urea acquired by direct and two indirect sampling techniques

PRINCE Pediatric Reference Intervals in China, LIS Laboratory Information System, GMM Gaussian Mixture Model, SOM Self-Organizing Map, SD standard deviation

Age Group n Median Mean SD Skewness Kurtosis

Creatinine (μmol/L)

  1 to < 6 years

    Transferred PRINCE 3167 29.2 28.9 5.6 0.10 -0.33

    GMM Partitioned LIS 33,692 30.4 30.4 5.7 -0.00 -0.01

    SOM Partitioned LIS 10,854 28.2 28.2 5.5 0.54 1.88

  6 to < 12 years

    Transferred PRINCE 4469 40.4 40.6 5.6 0.23 -0.28

    GMM Partitioned LIS 26,400 41.9 41.9 7.0 0.01 0.00

    SOM Partitioned LIS 6168 41.1 42.0 8.6 1.13 2.92

  12 to < 17 years boys

    Transferred PRINCE 1455 60.1 60.8 12.7 0.37 -0.36

    GMM Partitioned LIS 3826 59.4 59.3 10.0 0.01 -0.02

    SOM Partitioned LIS 2819 60.4 61.5 11.7 0.57 0.62

  12 to < 17 years girls

    Transferred PRINCE 1594 51.6 52.2 8.3 0.08 -0.30

    GMM Partitioned LIS 3698 52.1 52.0 9.0 -0.01 -0.01

    SOM Partitioned LIS 2569 56.8 58.5 7.8 1.31 2.67

Urea (mmol/L)

  1 to < 17 years

    Transferred PRINCE 10,663 4.25 4.33 0.99 0.43 -0.06

    GMM Partitioned LIS 75,489 4.31 4.30 0.90 -0.01 -0.01

    SOM Partitioned LIS 26,513 4.25 4.27 0.96 0.70 2.19

Fig. 2  Reference intervals of creatinine and urea acquired by direct and two indirect sampling techniques. A Reference intervals of creatinine for 
children aged 1 to < 6 years. B Reference intervals of creatinine for children aged 6 to < 12 years. C Reference intervals of creatinine for boys aged 12 
to < 17 years. D Reference intervals of creatinine for girls aged 12 to < 17 years. E Reference intervals of urea for children aged 1 to < 17 years. PRINCE: 
Pediatric Reference Intervals in China; LIS: Laboratory Information System; GMM: Gaussian Mixture Model; SOM: Self-Organizing Map
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used the LIS data from Beijing Children’s Hospital to par-
tition potential healthy individuals by two indirect sam-
pling techniques (GMM and SOM). Then, we compared 
the reference distributions based on indirect samples 
with those based on direct samples of the PRINCE study. 
Although the density curves of the three populations 
showed a large overlap, differences were found among 
corresponding RIs. Moreover, SOM demonstrated more 

sensitivity than GMM for different strategies of outlier 
detection, in terms of potential healthy subgroup division 
and RI establishment.

Generally, the accuracy of RI is largely dependent 
on the definition and recruitment of healthy individu-
als. The PRINCE study, as the first national initiative to 
develop pediatric RIs and improve laboratory test inter-
pretation for the pediatric population in China, recruited 

Table 3  Reference intervals of creatinine and urea established by direct and two indirect sampling techniques

PRINCE Pediatric Reference Intervals in China, LIS Laboratory Information System, GMM Gaussian Mixture Model, SOM Self-Organizing Map, LL lower limit, UL upper 
limit, CI confidence interval

Age Groups Transferred PRINCE GMM Partitioned LIS SOM Partitioned LIS

LL (90% CI) UL (90% CI) LL (90% CI) UL (90% CI) LL (90% CI) UL (90% CI)

Creatinine (μmol/L)
  1 to < 6 years 18.9 (17.9, 18.9) 39.5 (39.5, 40.4) 19.2 (19.1, 19.3) 41.6 (41.5, 41.8) 17.8 (17.6, 18.0) 39.8 (39.4, 40.2)

  6 to < 12 years 30.1 (30.1, 30.1) 52.6 (51.6, 52.6) 28.1 (27.9, 28.3) 55.6 (55.4, 55.7) 27.2 (27.0, 27.7) 63.8 (62.6, 65.1)

  12 to < 17 years boys 40.4 (39.5, 41.3) 87.2 (85.3, 89.1) 39.6 (38.9, 40.3) 78.7 (78.1, 79.7) 41.5 (40.8, 42.2) 87.6 (85.5, 88.7)

  12 to < 17 years girls 35.7 (34.8, 37.6) 68.6 (67.6, 69.4) 34.0 (33.4, 34.6) 69.7 (69.1, 70.7) 48.0 (47.8, 48.2) 77.7 (76.7, 79.2)

Urea (mmol/L)
  1 to < 17 years 2.62 (2.62, 2.62) 6.50 (6.50, 6.60) 2.53 (2.52, 2.55) 6.06 (6.05, 6.07) 2.54 (2.51, 2.56) 6.37 (6.31, 6.42)

Table 4  Reference intervals of creatinine and urea established by GMM and SOM with more radical outlier detection strategy

LIS Laboratory Information System, GMM Gaussian Mixture Model, SOM Self-Organizing Map, LL lower limit, UL upper limit, CI confidence interval

Age Groups GMM Partitioned LIS SOM Partitioned LIS

LL (90% CI) UL (90% CI) LL (90% CI) UL (90% CI)

Creatinine (mmol/L)
  1 to < 6 years 19.4 (19.3, 19.6) 41.9 (41.7, 42.0) 17.5 (17.3, 17.7) 49.6 (49.2, 50.3)

  6 to < 12 years 28.5 (28.3, 28.6) 55.8 (55.6, 56.0) 26.5 (26.2, 26.7) 66.3 (65.5, 67.0)

  12 to < 17 years boys 38.0 (37.2, 38.5) 73.4 (72.9, 74.4) 39.6 (39.0, 40.1) 83.9 (82.6, 84.8)

  12 to < 17 years girls 35.1 (34.6, 35.6) 69.2 (68.9, 69.6) 30.3 (29.3, 31.2) 83.5 (80.6, 87.4)

Urea (mmol/L)
  1 to < 17 years 2.55 (2.53, 2.56) 6.05 (6.03, 6.06) 2.45 (2.43, 2.47) 5.93 (5.91, 5.97)

Table 5  Bias ratio of reference intervals of creatinine and urea establihsed by direct and two indirect sampling techniques

LIS Laboratory Information System, GMM Gaussian Mixture Model, SOM Self-Organizing Map, LL lower limit, UL upper limit

Age Groups GMM Partitioned LIS SOM Partitioned LIS GMM Partitioned LIS 
with radical outlier
detection strategy

GMM Partitioned LIS 
with radical outlier
detection strategy

LL UL LL UL LL UL LL UL

Creatinine (μmol/L)
  1 to < 6 years 0.06 0.40 -0.21 0.06 0.10 0.46 -0.27 1.92

  6 to < 12 years -0.35 0.52 -0.51 1.95 -0.28 0.56 -0.63 2.39

  12 to < 17 years boys -0.07 -0.71 0.09 0.03 -0.20 -1.16 -0.07 -0.28

  12 to < 17 years girls -0.20 0.13 1.47 1.08 -0.07 0.07 -0.64 1.78

Urea (mmol/L)
  1 to < 17 years -0.09 -0.44 -0.08 -0.13 -0.07 -0.45 -0.17 -0.58
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reference individuals from communities or schools using 
pre-specified eligibility criteria [3]. By contrast, the LIS 
data contained all outpatients from a hospital, regard-
less of whether their disease might affect the laboratory 
test results or not (e.g., myopia, autism). Thus, algorithm 
such as GMM and SOM was needed to select potential 
healthy children for the establishment of RIs. Except for 
the disparity in sample sources, the difference between 
the PRINCE data and the LIS data also included: (1) 
the pre-analytical confounding factors such as fasting 
period, body temperature, or medication exposure were 
not recorded by the LIS data; (2) the sex, age, and region 
composition of the LIS data was not as strictly designed 
as the PRINCE data; (3) the specimens of the LIS data 
were fresh serums, compared with the frozen–thaw 
serums of the PRINCE data; (4) the different analyzers 
and reagents used might bring systematic errors in test 
results despite of transference. All above aspects might 
partially explain the deviations of reference distributions 
between the PRINCE data and the LIS data. Neverthe-
less, the identification of reference individuals (direct or 
indirect samples) was undoubtedly the main reason for 
the difference in RIs.

As for indirect sampling techniques, the number of 
clusters was set as two in some studies to represent 
healthy and unhealthy individuals, respectively [23, 24]. 
However, such approach is more suitable when the over-
all population is distributed skewedly, and unhealthy 
individuals mainly gather in the right or left tail of the 
density curve [25]. Neither the distribution of creatinine 
nor urea of the LIS data in the present study satisfied the 
above condition because both lower and upper levels of 
concentration could imply abnormality (Supplement 
Fig. 4). Thus, three clusters were specified to distinguish 
potential healthy individuals with moderate values of cre-
atinine or urea from others.

In the GMM method, potential healthy population are 
partitioned based on the normality assumption, so that 
the reference distribution of indirect samples is appar-
ently different from the original distribution of the LIS 
data. Assuming measures of both pathological and non-
pathological children obeyed Gaussian distribution is 
an inherent limitation of GMM. Compared with GMM, 
SOM shows more advantages in the adaptability to data 
distribution. When the distribution of test results in 
healthy population is right-skewed, GMM may underes-
timate, especially the upper limit of RI, while SOM can 
give closer RI estimation to direct sampling technique. 
Moreover, SOM can simultaneously handle multiple 
related variables, and thus is particularly suitable for pro-
cessing complex human physiological data. In our study, 
we explored the methodological application of SOM by 
taking renal function as an example, where 3 × 1 matrix 

of cluster grid was appropriate. If we focused on more 
health-related aspects, a more complicated matrix would 
be used.

Although SOM has its theoretical superiority, it 
encounters several limitations in practice. For instance, 
the stability of clustering may be affected by sample size. 
As displayed in Supplement Fig. 6, the separation of clus-
ters by SOM was not consistent across four age groups 
of creatinine, which might be attributed to the relatively 
small sample sizes of 12 to < 17  years boys and girls. 
Because the boundary between children and adults blurs 
with age, adolescents may be diverted to general hospitals 
for medical treatment. Meanwhile, gender distinction is 
also required due to the appearance of secondary sexual 
characteristics after puberty. The above reasons together 
led to a sharp decrease in the sample size of children over 
12 years of age, which further led to an unstable separa-
tion of clusters in Supplement Fig. 6C and 6D. Therefore, 
we recommend to use SOM in populations with sample 
size > 10,000. Beyond that, SOM has proven to be more 
susceptible to outliers, which suggests that outlier detec-
tion strategies should be carefully considered when using 
indirect sampling techniques to extract potential healthy 
individuals from the LIS data.

Another consideration is about the consistency and 
unbiasedness of GMM and SOM. As shown in Fig. 1 and 
Supplement Figs. 5 and 6, GMM tends to present more 
consistent results than SOM, but SOM tends to be closer 
to direct sampling  technique. That being said, although 
GMM is more consistent, it may have some bias. Simi-
lar findings could also be drawn from Table  5, that is, 
among the five RIs acquired by GMM, only one had the 
bias ratio of both upper and lower limits less than 0.375, 
while three of the five RIs acquired by SOM reached the 
allowable threshold. In addition, potential healthy popu-
lation partitioned by GMM tends to have smaller SD 
than SOM, and thus RIs based on GMM generally have 
narrower ranges than that based on SOM.

Furthermore, both GMM and SOM are unsupervised 
learning methods which are categorized as exploratory 
analysis. The process of data partitioning does not rely 
on any background knowledge or corresponding assump-
tions, but simply according to the similarity rules. In 
other words, the relationship of data in one cluster par-
titioned by GMM or SOM is as similar as possible, and 
the relationship of data among different clusters is as dif-
ferent as possible. Therefore, the interpretation of results 
based on indirect sampling techniques should carefully 
refer to professional knowledge and clinical implication.

To our knowledge, this study is the first attempt to 
directly compare indirect sampling techniques with clas-
sical direct sampling technique for RI establishment in 
Chinese children. Unlike most previous researches that 
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could not explicitly determine whether the distribution 
of normal group acquired by indirect techniques was 
close enough to the actual healthy population, the major 
strength of our study is the availability to use the RPINCE 
data as a gold standard. Similar approach was also found 
in a recent paper, which made successful comparison 
between direct and four indirect methods, including 
Hoffmann, Bhattacharya, Arzideh, and Wosniok [22]. 
Our study reported another two methods, GMM and 
SOM, which could jointly guide the application of indi-
rect sampling techniques in real world research.

The limitation of our study is that, pre-cleaning of 
the LIS data might not be vigorous enough, so that the 
distribution of the LIS data was biased from that of the 
PRINCE data, with regard to shifted peak or unmatched 
distribution width (Supplement Fig. 4). Although bias is 
inevitable due to the inherent difference between healthy 
children and outpatients, such bias might be reduced if 
more attempts were made in the first place. Furthermore, 
apart from data cleaning, pre-definition of the inclu-
sion and exclusion criteria before data extraction is also 
important. Such issue has received little attention in current 
studies of indirect methods, and there is no existed guide-
line on how to set the eligibility criteria. Our team are con-
ducting further research on advocating indirect sampling 
techniques based on the LIS data with pre-designed inclu-
sion and exclusion criteria rather than only data cleaning.

Conclusions
On all accounts, GMM and SOM could well identify 
potential healthy individuals from the LIS data, despite 
the reference distributions of indirect samples demon-
strated certain difference from direct samples. Direct 
sampling technique is still a more accurate approach, 
while indirect sampling techniques can be used as a sup-
plement when direct method is impractical or uneco-
nomic in some circumstances. The performance of GMM 
is quite satisfactory, with consistent and stable estimation 
of RI. However, GMM relies on Gaussian fitting, and thus 
is not suitable for skewed data. By contrast, SOM shows 
advantages in the adaptability to data distribution, and is 
applicable for high-dimensional data. But it is susceptible 
to sample size and outlier detection strategy. It is impera-
tive to develop more available indirect sampling tech-
niques and to assess their feasibility by comparing the 
reference distribution with direct sampling techniques in 
future researches.
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