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Abstract 

Background:  Instrumental variable (IV) analysis holds the potential to estimate treatment effects from observational 
data. IV analysis potentially circumvents unmeasured confounding but makes a number of assumptions, such as that 
the IV shares no common cause with the outcome. When using treatment preference as an instrument, a common 
cause, such as a preference regarding related treatments, may exist. We aimed to explore the validity and precision of 
a variant of IV analysis where we additionally adjust for the provider: adjusted IV analysis.

Methods:  A treatment effect on an ordinal outcome was simulated (beta − 0.5 in logistic regression) for 15.000 
patients, based on a large data set (the IMPACT data, n = 8799) using different scenarios including measured and 
unmeasured confounders, and a common cause of IV and outcome. We compared estimated treatment effects with 
patient-level adjustment for confounders, IV with treatment preference as the instrument, and adjusted IV, with hospi-
tal added as a fixed effect in the regression models.

Results:  The use of patient-level adjustment resulted in biased estimates for all the analyses that included unmeas-
ured confounders, IV analysis was less confounded, but also less reliable. With correlation between treatment prefer-
ence and hospital characteristics (a common cause) estimates were skewed for regular IV analysis, but not for adjusted 
IV analysis.

Conclusion:  When using IV analysis for comparing hospitals, some limitations of regular IV analysis can be overcome 
by adjusting for a common cause.

Trial registration:  We do not report the results of a health care intervention.

Keywords:  Confounding by indication, Unmeasured confounders, Instrumental variable analysis, Between-hospital 
variation, Observational data, Comparative effectiveness research
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Background
The use of observational data to assess the effectiveness 
of treatments [1] is a useful alternative when randomized 
controlled trials (RCTs) are not feasible. The most impor-
tant methodological challenge in observational data is to 

estimate the causal relation between the treatment and 
outcome while avoiding confounding by indication [2, 
3]. The method most commonly reported to avoid con-
founding by indication in observational data, is control-
ling for known prognostic factors [4] using regression 
analysis. Another way to account for the differences in 
baseline characteristics between treated and non-treated 
patients in observational data is propensity scores. These 
methods share the caveat that any unmeasured con-
founders could still bias the results [5, 6].
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Instrumental variable (IV) methods provide a possibil-
ity to estimate the effects of treatment in the presence of 
unmeasured confounders, circumventing confounding by 
indication [7]. Treatment preference of a provider is one 
of the popular instrumental variables used [8].

For many medical treatments, such as treatment for 
traumatic brain injury, effectiveness has not been fully 
determined [9], leading to a wide variation in treatment 
policies being applied across different hospitals [10]. 
Local preferences may cause interventions to become 
standard practice in some hospitals, but not in others. 
This provides the possibility to use IV methods with 
treatment preference as an instrumental variable to eval-
uate effectiveness of commonly applied treatments in 
observational data.

IV analyses has three main assumptions; (relevance) 
that there is an instrument and that this instrument is 
associated with the exposure, (exclusion restriction) the 
IV can only affect the outcome through treatment, and 
(exchangeability) the outcome and the IV cannot share a 
common cause [11]. The first assumption can be empiri-
cally verified, while the second and third can’t be tested. 
All three assumptions will be addressed in this paper with 
the main concern being exchangeability, since hospitals 
might differ systemically in some general characteristics 
which might be associated with the treatment preference 
of interest. We therefore assume correlation between 
hospital characteristics such as quality of care and treat-
ment preference exist (Fig. 1). To address this assumption 
we adjusted for hospital, which in theory would capture 
differences between hospitals that affect outcome other 
than treatment preference [12, 13].

Our aim is to assess the validity and precision of 
adjusted IV analysis compared to regular IV analysis, 
adjustment at patient level and propensity score match-
ing to estimate treatment effectiveness in observational 
data in the context of between-hospital variation. We 
hereto perform a simulation study motivated by a com-
parative effectiveness study in traumatic brain injury.

Methods
Motivating data
Simulations were based on a dataset with traumatic 
brain injury patients. The traumatic brain injury field 
is known to have a large between hospital variation 
[14]. The International Mission for Prognosis and 
Analysis of Clinical Trials (IMPACT) dataset used, is 
a combination of data from prospective studies and 
phase III trials in patients with moderate and severe 
traumatic brain injury, and has been described in 
detail in previous studies [15–17]. The treatment used 
for comparison was insertion of an intracranial pres-
sure monitor since this is an intervention of which 
effectiveness is currently still uncertain [18]. Patients 
with severe traumatic brain injury either receive this 
intervention or not, depending on the prognostic fac-
tors. The following prognostic factors were sampled 
with replacement from the IMPACT database and 
used for the analyses: Glasgow Coma Scale motor 
score, age, sex, pupillary reactivity, the presence of 
subarachnoid hemorrhages and the Traumatic Coma 
Data Bank computed tomography scan classification 
(henceforth CT scan classification) [19, 20].

Fig. 1  A directed acyclic graph (DAG) showing the causal assumption of the observational data and confounding caused by alternative pathways 
through the unobserved (U) confounders and through hospital (H). H: hospital. Z: treatment preference as instrument: proportion of treated 
patients within each hospital. T: treatment. C: patient characteristics. PS: propensity score. Y: outcome. U: unobserved confounders
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Simulated data
We simulated a hypothetical dataset of patients, 
receiving treatment and not receiving treatment, dis-
tributed over different hospitals (H) in five steps; 1) 
Patients get a value for the patient characteristics, 2) 
Treatment preference of each hospital is randomly 
assigned, which gives patients a higher or lower chance 
on receiving treatment depending on which center 
they are treated 3) Overall performance of the hospital 
(H) is randomly assigned, which gives patients a bet-
ter or worse outcome depending on which center they 
were treated, partly independent of the treatment pref-
erence, 4) whether a patient is treated (T) is predicted 
using patient characteristics (C, U) and preference of 
the hospitals (Hp) in the model T = C ∗ βCT + U ∗ βUT + 
Hp ∗ βhT and 5) the outcome Y (four level ordinal scale) 
per patient is generated using patient characteristics 
(C, U), the treatment (T) and overall hospital perfor-
mance (H) in the model Y = C ∗ βCY + U ∗ βUY + T ∗ βT 
+ H ∗ βHY.

The patients (15000) for the simulation were sam-
pled from the original IMPACT database (n = 8799), 
and were randomly assigned to hospitals (N  = 100). 
Each patient had data on the above mentioned prog-
nostic factors: GCS motor score, age, sex, pupillary 
reactivity, the presence of subarachnoid hemorrhages 
and the CT scan classification [19]. The hypothetical 
dichotomous treatment variable was simulated with 
a beneficial treatment effect (OR = 1.65, correspond-
ing to a Beta of − 0.5) on outcome. To include hospital 
treatment preference every hospital in the simulation 
received a random percentage within the range of 
variation of intracranial pressure monitoring among 
hospitals observed in empirical data (17 to 58%) [21]. 
Proportional odds ordinal regression models were 

used to estimate the impact of each of the prognostics 
factors on the outcome and binary logistic regression 
models on the decision to assign treatment [21]. The 
outcome generated was the Glasgow Outcome Scale 
(GOSE) at 6 months, collapsed into a four-point ordi-
nal scale (death and vegetative state were combined for 
ethical reasons).

The treatment preference and the center effect were 
correlated (mean correlation coefficient 0.3). We repeated 
the simulation with higher correlations (mean correlation 
coefficient 0.5, mean correlation coefficient 0.8).

Statistical analysis
Treatment effects were estimated with five different 
strategies (Table  1). In all analyses proportional odds 
ordinal logistic regression models were used. The 
prognostic factors pupillary reactivity, presence of 
subarachnoid hemorrhages and the CT scan classifica-
tion were disregarded in all analysis to mimic unmeas-
ured confounders (Table  2). In analysis (a) there was 
no adjustment for the observed confounders, this 
adjustment was added in analysis (b). In the propensity 

Table 1  5 different methods of analysis to estimate the association between treatment and outcome

Z: treatment preference as instrument: proportion of treated patients within each hospital

H: hospital

C: patient characteristics

PS: propensity score

T: treatment

β0: intercept

Analysis strategy Formula

a Univariable regression analysis logit(P[Y + 1]) = β0 + T ∗ βT

b Regression analysis with covariate adjustment logit(P[Y + 1]) = C ∗ βC + T ∗ βT

c Propensity score adjustment PS = C ∗ βC
logit(P[Y + 1]) = PS ∗ βPS + T ∗ βT

d IV analysis logit(P[Y + 1]) = Z ∗ βZ

e IV analysis with correction for hospital logit(P[Y + 1]) = Z ∗ βZ + H ∗ βH

f IV analysis with correction for hospital and all measured and unmeasured 
confounders

logit(P[Y + 1]) = Z ∗ βZ + H ∗ βH 
+ C ∗ βC + U ∗ βU

Table 2  Overview of the variables used as observed and 
unobserved confounders

Glasgow Coma Scale (GCS) motor score, pupillary reactivity, the Traumatic Coma 
Data Bank computed tomography (TCDB CT) scan classification, the presence of 
subarachnoid hemorrhages (SAH) and age

CT classification is based on the Marshall classification

Observed confounders GCS motor score
Age
Sex

Hypothetically ‘Unobserved’ confounders Pupillary reactivity
SAH
TCDB CT classification
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score adjusted model (c) the propensity score was 
estimated based on the observed confounders. The 
outcome was regressed on the estimated propensity 
score using again a proportional odds ordinal logistic 
regression model. In the first IV analysis (d) the same 
model was used as in (a) instead of the actual treat-
ment which the patient would receive, the treatment 
preference (percentage of treated patients in a certain 
hospital) was added as a dependent variable. One extra 
control model was included in the last scenario, where 
all confounders (also unmeasured) as well as the IV 
were regressed on the outcome (Table 1).

Control scenarios
To illustrate the usefulness and pitfalls of IV analysis 
and validate our simulation, six control scenarios were 
used (Tables 3 and 4). The seventh scenario is what we 
believe is closest to the truth and gives us the oppor-
tunity to test the added value of controlling for the 
common cause.

IV analysis and assumptions
To test whether the first assumption relevance would 
hold, the strength of treatment preference was meas-
ured by performing a logistic regression with treatment 
as dependent variable and treatment preference as inde-
pendent treatment variable. To assess whether the IV can 
be regarded as randomly assigned, the population was 
compared as stratified by the treatment versus stratified 
by the IV [20, 22].

In the adjusted IV analysis (e) the treatment prefer-
ence and the hospital were the two independent vari-
ables. With the use of adjustment for hospital in the IV 
analysis we take into account other differences between 
the hospitals, such as other treatment policies that would 
independently affect the outcome and thus the estimated 
treatment effect.

Analysis
The simulation of the data and the analyses were 
repeated 20,000 times. The treatment effects estimated 
in all analyses were expressed as Beta’s (BE) and standard 

errors (SE). The mean estimated treatment effects were 
compared to the simulated treatment effect to assess 
the validity of the different strategies for the analysis. To 
compare the different approaches in terms of precision, 
the standard error of the treatment effect estimates were 
compared between the different approaches. Further, the 
point estimates of 20,000 simulations were plotted for the 
IV and adjusted IV analysis.

All simulations and analyses were performed in R sta-
tistical software R version 3.3.0 (2016-05-03) using the 
following packages: rms, lme4, ordinal, and memisc 
[23–28].

Results
Patient characteristics
In the original data of the IMPACT dataset 3009 (40%) 
of the total of 7552 patients received treatment (place-
ment of the intracranial pressure monitor). Patients 
receiving an intracranial pressure monitor were gen-
erally older (median age of 34), more often male, and 
more often had a mass lesion (Appendix Table 5). The 
patient characteristics were relatively well distributed 
over the level of the instrument, which was percentage 
of patient receiving treatment in this specific hospital 
(Fig. 2).

Simulation adjusted IV analysis
The simulation study showed (Fig. 3) that in the pres-
ence of unobserved confounders, the adjustment 
methods resulted in biased estimates (betas from 0.03 
to 0.06). Using the IV analyses, betas close to the simu-
lated treatment effect (beta = − 0.5) were estimated 
when there was no correlation between treatment 
preference and general hospital characteristics. In the 
scenario where treatment effect and the center effect 
are positively correlated (correlation of 0.3 and correla-
tion of 0.5, Fig. 4) the conventional IV approach over-
estimated the treatment effect (β = − 0.80, β = − 0.93) 
and was significantly different from the simulated 
effect. Adjusted IV analysis however resulted in 

Table 3  Overview of the 7 scenarios, including six control scenarios and the seventh scenario which gives theopportunity to test the 
added value of controlling for the common cause

under 7 different scenarios:
  1. Null scenario: no effect of treatment
  2. RCT scenario: treatment randomly assigned
  3. Confounder-adjusted
  4. Confounder-adjusted with instrument
  5. Confounder-adjusted and subject to selection bias
  6. Confounder-adjusted and subject to selection bias with instrument
  7. Confounder-adjusted and subject to selection bias with instrument and common cause of instrument and outcome
With scenario number 7 being what we believe to be closest to the truth.
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Table 4  Overview of all 7 different scenarios simulated, with DAGs illustrating the assumed causal pathway

T: Treatment

C: confounders; patient characteristics

U: Unmeasured confounders

H: Hospital

Z: proportion of treated patients within each hospital

βCT: Effect of C on T

βUT: Effect of U on T; amount of unmeasured patient level confounding

βCy: Effect of C on Y; amount of measured patient level confounding

βUy: Effect of U on Y; amount of unmeasured patient level confounding

βHt (a set of β’s for each level of H) Effect of H on T

βHY (a set of β’s for each level of H) Effect of H on Y separate from Z;

βT The ‘true’ treatment effect (unknown in empirical data)
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estimates close to the simulated effect for lower cor-
relation (β = − 0.41) as well as for higher correlation 
(β = − 0.41). All IV analyses had larger SEs (0.06 vs 
0.03, n = 15,000) than regular adjustment methods for 
every scenario.

Test of relevance of the IV (Logistic regression with 
treatment as dependent variable and treatment prefer-
ence as independent variable) resulted in a R2 of 38% in 
the simulated data.

Simulation for 6 different scenarios
Validity
Because of the presence of confounding factors in the 
last 4 scenarios, the unadjusted model (approach a) 
estimated an opposite effect of treatment in most sce-
narios (Fig. 3). It was only in the first 2 scenarios, which 
did not include confounders that the unadjusted analy-
ses performed well.

In scenarios in which only measured confounders 
impacted treatment and outcome (scenario 3 and 4), 
covariate adjustment and propensity score matching 
(approach b and c) resulted in βs in the range of − 0.55 
to − 0.41, with all estimates not significantly differ-
ent from the simulated effect of − 0.5. However, when 
unmeasured confounders were present in scenarios 
5 and 6, covariate adjustment and propensity score 
matching measured no treatment effect or an opposite 
effect (βs ranging from − 0.10 to 0.06).

When no confounders were included (scenario 1, 2), 
both the conventional (approach d) and adjusted IV 
(approach e) using treatment preference as an instru-
ment did have valid results. As expected the IV meth-
ods resulted in invalid estimates in scenarios in which 
no treatment preference existed, but where confound-
ers were included (β = 0.31, SE = 0.73) in scenario 3 and 
5 (β = 0.35, SE = 0.73).

Fig. 2  Distribution of the IV (treatment preferences) plotted per prognostic factor in the motivating example showing the distribution of 
the treatment preference of the hospitals attributed to each patient, per level of the prognostic factor: sex, Glasgow Coma Scale (GCS) motor 
score, pupillary reactivity, the Traumatic Coma Data Bank computed tomography (TCDB CT) scan classification, the presence of subarachnoid 
hemorrhages (SAH) and age. CT classification is based on the Marshall classification
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However, the IV analyses resulted in estimates close 
to the simulated effect in scenarios with both unob-
served confounders and treatment preference (sce-
nario 6). In the “true” adjustment method in scenario 
6 the estimates were, as expected, exactly as simulated 
(β = 0.50).

Precision
In all scenarios, IV analyses were less reliable com-
pared to the other adjustment methods (Figs. 3 and 4). 
In scenarios 1, 2, 3 and 5 no treatment preference of 
hospitals was simulated, therefore both IV analyses (d 
and e) were shown to be extremely unreliable (Fig. 3). 

Fig. 3  Estimated treatment effects (β) and corresponding standard errors after analysis with 5 different models in scenario 1-6: 1)Null scenario: 
no effect of treatment, 2) RCT scenario: treatment randomly assigned, 3) Confounder-adjusted, 4) Confounder-adjusted with instrument, 5) 
Confounder-adjusted and subject to selection bias, 6) Confounder-adjusted and subject to selection bias with instrument
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In the scenarios in which treatment preference is simu-
lated, the SEs of the IV analyses are smaller but remain 
less reliable (SE between 0.07 and 0.12) than the other 
adjustment methods (SE = 0.06).

To compare IV analysis with and without adjustment 
we plotted the point estimates of 20,000 simulations 
(Fig. 5). The spread in point estimates of the adjusted IV 
analyses are small compared to the unadjusted IV analy-
sis (d), which show a much larger variation. Correction 
for hospital in the IV in the last scenario gives more sta-
ble point estimates, comparable to regular adjustment.

Discussion
In this study we tested the validity and precision of 
analyzing treatment effectiveness using IV analysis 
with treatment assignment per hospital as instrument 

compared to traditional adjustment methods, to avoid 
confounding by indication. Our simulation study sug-
gests that in the presence of unobserved confounders 
and treatment variation between hospitals, IV analysis 
provides more valid treatment effect estimates compared 
to the regular covariate adjustment methods which cor-
rect for established prognostic factors. However, the IV 
analysis was considerably less reliable compared to regu-
lar adjustment. Furthermore, adjusted IV analysis where 
we adjusted for a common cause, gave valid results also 
when there was correlation between treatment prefer-
ence and hospital characteristics, while regular IV analy-
sis resulted in skewed estimates.

Both IV analyses estimate the effect of the treatment 
preference on a hospital level, and as a result, instead 
of the effect of the treatment we estimate the effect of 

Fig. 4  Estimated treatment effects and corresponding standard errors after analysis with no correlation between general hospital characteristics 
and treatment preference, and with mean correlation coefficients of 0.3 and 0.5
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the treatment preference. We note that this is a differ-
ent measure and will therefore not be completely inter-
changeable with the effect of treatment per person. 
Furthermore, while over 15,000 patients were included 
in the analysis, and each simulated hospital was set to 
have 100 patients, this results in 150 hospitals being 
simulated. When comparing the different analyses 
this leads to a 100 fold difference in number of cases: 
n = 150 for IV analyses compared to n = 15,000 in the 
patient level analyses.

Unmeasured confounders and treatment preference
We simulated 6 scenarios which build up in complex-
ity to what we believe to be the most realistic situation. 
In scenario 1, an under the null scenario, treatment is 
attributed randomly and there is no treatment effect. 
Scenario 2, is what we would encounter in a rand-
omized control trial: treatment is still attributed ran-
domly but there is an effect of treatment. In scenario 
3, we simulated the ideal observational study, where 
outcome and treatment are dependent on observed 
confounders. In scenario 4, the treatment preference is 
introduced, but an IV analysis is shown to be useless in 
this scenario, where adjustment for confounding gives 
the most viable results. It is only in scenario 5 when 
unmeasured confounders are cooperated into the anal-
ysis, that bias is introduced by using the regular adjust-
ment methods. On the other hand the scenarios where 
there is no treatment preference (scenario 1,2,3 and 5) 
show clearly what the effect of a very weak instrument 
can be: in this case extremely uncertain and biased esti-
mates from both IV analyses (d and e) which solely rely 
on measuring the effect of treatment preference. The 
estimates are, in these cases, as biased as analysis with 

the univariate model. The strength of the instrument 
can be tested and should always be considered before 
doing the IV analysis.

However, when unobserved confounders are included 
in the simulated scenarios (scenario 4 and 6), the reg-
ular adjustment methods (b and c) that only take into 
account measured confounders, do not sufficiently 
adjust for all confounders. Therefore, regular adjust-
ment methods result in invalid treatment effect esti-
mates in scenarios with unmeasured confounders. 
These scenarios, we believe are closer to the situations 
we face in reality, especially in the absence of evidence-
based treatment recommendations. Scenario 6 includes 
a treatment preference per hospital as well as unmeas-
ured confounders. It is impossible to know the degree 
of bias unmeasured confounders will introduce. Strong 
observed confounding is an indication of systematic 
differences between the treatment groups and thus an 
indication that also unobserved confounders may exist. 
Insight in the treatment allocation mechanisms from 
expert knowledge (i.e. how do doctors decide to treat 
or not) will provide additional information on whether 
unobserved confounders are expected. In our study 
the confounders used as unmeasured confounders just 
serve as an illustration to show the bias, but not to 
quantify the amount of bias.

In scenario 2 we see more conservative estimates for 
the univariate, propensity score and IV analysis. The dif-
ference between the point estimates in a scenario com-
parable to RCT can be ascribed to differences in the 
specific statistical models underlying the analyses. The 
regression analysis with adjustment estimates the treat-
ment effect on patient level. This is a conditional effect 
estimate. The other methods estimate treatment effects 

Fig. 5  Histogram of all estimated βs in the simulations in scenario 7 of both unadjusted IV (model d) and adjusted IV (model e)



Page 10 of 12Ceyisakar et al. BMC Medical Research Methodology          (2022) 22:121 

on average (or the effect of treatment preference); these 
are marginal treatment effects, which are closer to the 
Null value [11, 29].

Precision
The estimated SEs show lower precision for the IV 
analyses compared to regular adjustment methods in 
general. Point estimates also vary far more compared 
to regular adjustment methods in the unadjusted IV 
analysis (method d). The adjustment in the IV analy-
sis seems so to solve this. IV analysis will however still 
require a far larger study population than in the patient 
level approaches to compensate for lesser statistical 
precision [30, 31].

Conditions for IV analysis
Although IV analysis can result in valid treatment effect 
estimates, it is dependent on certain assumptions and 
conditions which have to be met [11]; (relevance) that 
there is an instrument and that this instrument is asso-
ciated with the exposure, (exclusion restriction) the IV 
can only affect the outcome through treatment, and 
(exchangeability) the outcome and the IV cannot share 
a common cause. Violation of these assumptions of IV 
analysis can lead to different kinds of bias [32].

The need of a relevant IV is illustrated clearly in sce-
nario 4 and 6 in Fig.  3. If hospitals do not base their 
choice to give treatment on a treatment preference, the 
IV analysis will estimate only noise. The extremely large 
SEs of the IV analysis in scenario 4 and 6, illustrate the 
extreme case in which the instrument has no effect at all 
on the outcome. The R2 of 0.38 shows that the treatment 
preference in the simulation affects the treatment, and is 
therefore relevant.

Further, the exclusion restriction cannot be tested, and 
remains an assumption based on clinical knowledge and 
literature [33]. When looking at the placement of intrac-
ranial pressure monitors it is possible that treatment 
preference could also lead to different clinically relevant 
choices/medication being given to the patient, which 
could be the true cause of the better or worse results. It 
is however assumed not to be the case that placing an 
intracranial pressure monitor will lead to different treat-
ment choices further down the road other than those 
which are unavoidable after the procedure.

As for exchangeability, IV estimates were shown to 
not be biased by case-mix differences between hospitals 
(Table 4, Fig. 2). In our case where we suspect association 
between hospital performance and treatment preference, 
the exchangeability assumption is not met.

We assume that it is realistic to think there would be 
some (but little) correlation between treatment policies. 

In our case it would be imaginable that one treatment 
policy correlates with another treatment policy, or with 
certain facilities a hospital might have. The results of 
the IV analysis without adjustment (d) are therefore in 
line with what is to be expected, and show an overesti-
mation of the treatment (preference) effect. Correcting 
for hospital seems to be a possible solution for analyzing 
data with unmeasured confounders as well as a common 
cause for the IV and the outcome. We see that this no 
longer leads to the overestimation of the treatment effect 
in analysis e.

In scenario 6 where a “true” adjustment was done (IV 
analysis but also adjustment for measured and unmeas-
ured confounders) resulted in a point estimates exactly as 
the simulated treatment effect. This shows us that in the 
case of our simulation there was no difference in measur-
ing the treatment vs. measuring treatment preference. It 
also shows that any noise measured, causing the estimate 
to not be exactly 0.5, is probably due to the case mix of 
the hospitals.

Adjusting for hospital
In case we suspect correlation between general hospi-
tal characteristics and treatment preference we have 
tested the effect of adjusting for hospital, we have done 
this using a fixed effect model. A random effects model 
was not used because it would assume the covariates in 
the model to be independent of the exposure, since we 
explicitly assume they are not independent of each other, 
this assumption would be invalid. In these cases fixed 
effects models are generally advised instead of random 
effects models [34–36].

Strengths and limitations
A limitation of this study is that it is based on a very 
specific real-life situation, we did not test a multitude 
of situation. The results of this study are not general-
izable to other studies unless there are similar condi-
tions. The strength of this study lies in the fact that the 
chosen parameters rely on real observed data. How-
ever, in the simulation study we measure an R2 of 0.38 
for the predictability of treatment by treatment pref-
erence, while in the actual data we see a R2 of 0.21. 
Which shows that in this case our IV would not be 
as strong of an estimator of the real treatment since 
instruments which are too weak can lead to inconsist-
encies and bias [37, 38].

Conclusion
In the presence of unobserved confounders IV analy-
sis provides more valid, but less reliable treatment 
effect estimates compared to the regular patient-level 
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covariate adjustment methods. The IV analysis needs 
a large number of patients included in a study to be 
able to assess treatment effects. For future research, 
where between center differences are used to learn 
about treatment effectiveness, we do recommend IV 
analysis if there are large differences in the policy or 
treatment preference to guarantee relevance of the 
IV. If an association between the instrument and per-
formance of the hospital is expected, correction for 
hospital effects should be considered for less biased 
results.
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