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Abstract 

Background:  With the spread of COVID-19, the time-series prediction of COVID-19 has become a research hotspot. 
Unlike previous epidemics, COVID-19 has a new pattern of long-time series, large fluctuations, and multiple peaks. 
Traditional dynamical models are limited to curves with short-time series, single peak, smoothness, and symmetry. 
Secondly, most of these models have unknown parameters, which bring greater ambiguity and uncertainty. There are 
still major shortcomings in the integration of multiple factors, such as human interventions, environmental factors, 
and transmission mechanisms.

Methods:  A dynamical model with only infected humans and removed humans was established. Then the process 
of COVID-19 spread was segmented using a local smoother. The change of infection rate at different stages was 
quantified using the continuous and periodic Logistic growth function to quantitatively describe the comprehensive 
effects of natural and human factors. Then, a non-linear variable and NO2 concentrations were introduced to qualify 
the number of people who have been prevented from infection through human interventions.

Results:  The experiments and analysis showed the R2 of fitting for the US, UK, India, Brazil, Russia, and Germany was 
0.841, 0.977, 0.974, 0.659, 0.992, and 0.753, respectively. The prediction accuracy of the US, UK, India, Brazil, Russia, and 
Germany in October was 0.331, 0.127, 0.112, 0.376, 0.043, and 0.445, respectively.

Conclusion:  The model can not only better describe the effects of human interventions but also better simulate 
the temporal evolution of COVID-19 with local fluctuations and multiple peaks, which can provide valuable assistant 
decision-making information.
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Background
The rapid spread of COVID-19 brought unprecedented 
harm to human life, economic development, and social 
stability. How to control the spread of COVID-19 in a 
way that minimizes the risk and the cost has become the 
focus of research. A timely grasp of the characteristics 

of spread and future development of COVID-19 can 
turn passive prevention and control into the initiative. 
However, the prevalence of COVID-19 is influenced by 
a combination of subjective factors (such as population 
activity and human control) and objective factors (such 
as temperature, humidity, and social economy) [1–3], 
which leads to a new curve form of long-time series, large 
fluctuations, and multiple peaks. As shown in Fig. 1, the 
epidemic duration is long (more than 2 years), and the 
trends of the rising and falling curves are asymmetrical 
and not smooth.
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The researches on the prediction of COVID-19 can 
be mainly divided into three parts: classical dynamical 
models of infectious diseases, time-series prediction 
models, and multivariate prediction models. The time-
series prediction models [4–6] use time-series forecast-
ing methods to solve the problem of prediction, such 
as long short-term memory (LSTM), sliding window 
averaging, and Autoregressive Integrated Moving Aver-
age model (ARIMA). However, these models only mine 
the laws of changes in the time series of the epidemic 
curves and still lack the consideration of influencing 
factors, only for short-term predictions. The multi-
variate prediction models [7–9] use regression meth-
ods to establish the relationship between the number 
of confirmed cases and correlated factors. However, 
the effects of these factors are not combined with the 
transmission chain and cannot explain how they affect 
the spread of COVID-19. The dynamical models of 
infectious diseases divide the population into different 
groups based on the epidemiological characteristics of 
individuals and use differential equations to express 
the process of contact infection between populations. 
It has two advantages over the above two approaches: 
it can represent the dynamical process of infectious 
diseases (susceptible - infected - recovered); its epide-
miological parameters are important for the preven-
tion and control of epidemics and pathological studies. 
Therefore, dynamical models are gradually becoming 

the mainstream mathematical approaches for the 
researches of infectious diseases. For example, SEIQR 
[10], SIR-X [11], and SIQR [12], SEIRD [13], SEIRS 
[14], e-ISHR [15], exponential and non-linear growth 
model [16] and new infectious disease models by add-
ing asymptomatic infectors [17–19] and environmental 
infection [20, 21]. However, they are usually only suit-
able for single-peaked and short-term prediction, and 
lack consideration of multiple human or natural factors 
leading to the predicted curves presenting a smooth 
and symmetric form.

Huang firstly proposed the Global Prediction Sys-
tem for COVID-19 Pandemic (GPCP) by combin-
ing dynamical models with meteorological factors [8]. 
Among them, the daily number of confirmed cases (dI) 
was quantified by introducing infection rate (β) and 
adjustment parameters (ε), i.e., dI = βI-εI2. The item 
(εI2) expresses the number of infected people reduced 
due to human interventions. But when the number of 
confirmed cases (I) is large, the value of this item (εI2) 
is much greater than the number of new infections per 
day (βI), which will lead to the daily number of con-
firmed cases (dI) being negative numbers. Therefore, 
this method is more suitable for early short epidemic 
prediction (I is relatively small). Besides, this system 
did not predict epidemics with multiple peaks. Subse-
quently, a second-generation global prediction system 
was proposed [22] and simulated the second wave of the 

Fig. 1  The epidemic Curves of COVID-19 in the word
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outbreak. Because the dynamical models are a forward 
flow model, the number of susceptible individuals keeps 
decreasing and there will be no one infected at the end, 
which makes it impossible for the infection curve to 
continue to rise. Thus, these methods are not suitable 
to describe the characteristics of the development of a 
prolonged outbreak.

In summary, the current dynamical prediction mod-
els have the following shortcomings:①most models are 
only for smooth and symmetric curves with the short 
time and single peak; ②most models lack integrated 
consideration of human prevention and control, envi-
ronmental factors, and transmission mechanisms of 
infectious disease; ③a large amount of unknown data 
is included in the models, which will lead to difficulty 
in verifying the results and bring more ambiguity and 
uncertainty. This study proposed novel prediction mod-
els for COVID-19, aiming to better describe epidemic 
curves with the long time, multiple peaks, and high 
fluctuations and provide valuable auxiliary decision-
making information. Firstly, considering the virus muta-
tions and the effectiveness of the vaccine, the circular 
SEAICRloop model was proposed based on the SEIR 
model, then the IRloop model was established only by 
retaining infected humans and removed humans. Sec-
ondly, the logistic growth function was used to describe 
the change laws of infection rate caused by natural fac-
tors and human interventions in each stage. Finally, 
anomalous values of NO2 concentrations and nonlin-
ear function were introduced to quantify the number 
of infected people reduced due to human interventions, 
which solved the problem of local and large fluctuations 
in the epidemic curve. The main contributions of this 
study are as follows:

(1)	 A theoretical prediction model was proposed to 
describe the epidemic curve with the characteristics 
of long time series, multi peaks, asymmetry, and 
local fluctuations. The model is simple and retains 
the epidemiological significance of model param-
eters. The parameters can be completely verified 
by the actual data, which greatly reduces the uncer-
tainty and fuzziness of results.

(2)	 The model uses the logistic growth function to 
describe the change of infection rate in different 
stages, which can measure the impact of natural 
and human factors. At the same time, the NO2 
concentrations were introduced to quantify the 
number of infected people reduced due to human 
interventions, which effectively integrates the 
characteristics of local fluctuations for epidemic 
curves.

Methods
The spread of COVID-19 is influenced synthetically by 
both natural and human factors. To ensure the accuracy 
and scientificity of the time-series prediction model, it 
is necessary to integrate the influence of these factors. 
Therefore, the SEAICRloop and the IRloop model were 
proposed based on the SEIR model, and the Logistic 
function was used to quantify the infection rate under 
the influences of multiple factors. Meanwhile, the 
impacts on human intervention were modeled using 
NO2 concentrations outliers.

Infectious disease model based on characteristics 
of long‑time series
SEAICRloop model
The classical dynamical models translate the problem of 
the change in the number of infected people into math-
ematical differential equations. Among them, the SEIR 
and SIR model is the most classic. However, the prem-
ise for the use of dynamic models is that population 
movements in and out are not taken into account. In 
addition, the dynamical models are a positive one-way 
population transformation and usually do not return 
from removed humans (R) to susceptible humans (S), 
because the model assumes that people who die or 
acquire antibodies will not be infected again. How-
ever, this is the opposite of COVID-19 infection, and 
the traditional dynamical models are inoperative for 
COVID-19 with the characteristics of long-time series 
and multiple peaks.

The SEAICRloop model was proposed by improving 
the classic model, which has a more complete dynami-
cal mechanism. It divides the population into suscep-
tible (S), exposed (E), asymptomatic (A), infected (I), 
detected (C), and removed (R) humans. At the begin-
ning of the outbreak, all but one or a few migratory 
infected persons are susceptible (S). When they contact 
effectively with infected cases, they, called the exposed 
humans (E), do not show symptoms immediately. After 
a period of incubation, a part of exposed humans show 
clinical symptoms and then become symptomatic 
infected humans (I) and the rest of them still show no 
symptoms but are infectious, and are called asympto-
matic infected humans (A). Subsequently, there are two 
ways for infected humans (A and I) to exit the trans-
mission system. One way is isolation through testing 
and they are called the detected infected humans (C). 
The other way is through immunization, treatment, and 
death and they are called removed humans (R). Finally, 
people who recover will be infected again due to the 
effectiveness of vaccines and viral mutations, which 
can achieve a closed-loop transmission mechanism 
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of infectious diseases to adapt to the COVID-19 pan-
demic. As shown in the following Eqs. (1, 2, 3, 4, 5, 6) 
and Fig. 2.

Where β is the effective transmission rate; σ is the pro-
gression rate from exposed state to infectious state; γ 
is the recovery rate; d is the mortality rate; θ and φ are 
the detection rate of asymptomatic and symptomatic 
infected cases, respectively; ν is the fraction of new infec-
tious humans that are asymptomatic; η is the proportion 
of recovered humans who are likely to be infected again.

IRloop model
There are a lot of unknowns in the epidemiology of 
infectious diseases, especially in the face of the sudden 
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outbreak of new infectious diseases, such as the num-
ber of exposed humans, the number of asymptomatic 
infected humans, and the infectivity of the latent period. 
The actual reported data are only the number of con-
firmed people, dead people, and recovered people. How-
ever, the number of latent people is not known. In this 
case, it is inaccurate that the dynamical model parame-
ters are estimated using only the numbers of confirmed 
people, dead people, and recovered people as validation 
data, which will bring some ambiguity and uncertainty 
to the prediction results. Okuonghae [17], Alberti [23] 
and Cao [24] also pointed out that there is great uncer-
tainty in using early sample data to predict the unknown 
parameters. Therefore, the population is only divided 
into infected humans and removed humans. Removed 
humans contain the dead people and recovered peo-
ple. As shown in the following Eqs. (7 and 8). While the 
model is simple, it retains the dynamic mechanism of 
infectious diseases and the significance of epidemiologi-
cal parameters of model parameters.

Improvement of dynamical model parameters 
under the influences of multiple factors
Classical dynamical models are the ideal transmission of 
infectious diseases, and their predicted outcomes usually 
present smooth and standard normal curves. However, 
the spread of infectious diseases is influenced by a vari-
ety of factors, and the infection curve is irregular and has 
large fluctuations, asymmetry, and multiple peaks. There-
fore, dynamical models need to consider the influence of 
multiple factors.

Model of infection rate based on the periodic logistic function
Although many factors have different effects on infec-
tious diseases, they can be attributed to the change 
in infection rate in the dynamic models. For example, 
human interventions are to reduce the infection rate, and 
the infection rate of the influenza virus shows seasonal 
characteristics. In the classical dynamical model, β is 
considered as a constant, which can only be applied when 
the infectious disease is in the ideal spreading state. At 
the beginning of an outbreak, COVID-19 is in a state of 
free transmission and the infection rate is relatively high. 
As the number of infected people continues to increase, 
the interventions will start to perform; the infection 
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Fig. 2  Dynamics diagram of SEAICRloop model
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rate will continue to decrease after some time. When 
the intensity of interventions is alleviated, COVID-19 
may spread again and the infection rate will continue to 
increase again. This process is very similar to the Logistic 
growth function in mathematics, as shown in Fig. 3, and 
its form is shown in Eq. 9 below. The parameters of the 
Logistic function are estimated by using genetic arithme-
tic for approximate parameters solution from the corre-
sponding epidemic data.

Where t is days. During a declining period of infection 
rates, p1 + p2 is the initial infection rate; p1 is the even-
tual infection rate after human prevention and control; p3 
is the hysteresis of human interventions, and the larger 
its value indicates that the intensity of human interven-
tions is high and the infection rate decreases rapidly. On 
the contrary, the smaller its value, the intensity of human 
interventions is low and the infection rate decreases 
slowly. During a rising period of infection rates, p1 + p5 
is the eventual infection rate after relaxing the prevention 
and control; p6 is the hysteresis of relaxation of human 
interventions, and the larger its value indicates that the 
faster the interventions are relaxed, the faster the infec-
tion rate will rise. On the contrary, it indicates that the 
human interventions are relaxed slowly and the infec-
tion rate rises slowly. p4 and p6 are the inflection point of 
changes in infection rate. When the virus mutates, the p1 
will not be the same in both periods because it does not 
belong to the same nature of the virus, and the curve of 
the rising period changes as the dark purple dashed line 
in Fig. 3.

(9)β =

{

p1 +
p2

1+exp (1+p3∗(p4−t)) , declining stage

p1 +
p5

1+exp (1+p6∗(t−p7))
, rising stage

Model of non‑pharmaceutical interventions based on NO2 
concentration
Dynamical models of infectious diseases usually are 
smooth curves. However, the actual curve with large 
fluctuations may be due to the inaccuracy of the human 
detection on the one hand, and the human interven-
tions on the other hand. Researchers [25–27] worldwide 
observed reductions in NO2 concentrations due to lock-
down and related diminished human activities, notably 
the reduced industrial and vehicular use. In addition, 
there are also many studies [28, 29] show that a strong 
correlation between changes in NO2 concentrations and 
COVID-19. NO2 concentrations, as the exhaust gases of 
vehicle emissions and industrial production, can reflect 
indirectly the human interventions to restrict the work, 
travel, and activities of people [8, 22]. The impact of 
human interventions is mainly reflected in the reduction 
of the number of infected people. Therefore, the param-
eter ε is introduced to express the proportion of the 
reduction and added to the dynamics model of infectious 
diseases. The specific improvements are divided into the 
improvement of the SEAICRloop model and IRloop model, 
as the following eqs. (11, 12, 13 and 14). The parameter ε 
is linearized by the difference between the NO2 concen-
trations and the concentrations without the human inter-
ventions, as in Eq. 10.

• SEAICRloop Model

• IRloop Model

where ε is the moderating parameter of the epidemic 
curve, which mainly corresponds to the uninfected peo-
ple protected due to human prevention and control. C  is 
the average NO2 concentration without human interven-
tions, and C is the daily NO2 concentration in μg/m3.
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Fig. 3  Diagram of Logistic Growth Function (The parameters in the 
figure are all examples)
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Results
To validate the correctness and rationality of the 
improved model, global epidemic data were collected 
from the COVID-19 Data Repository by the Center for 
Systems Science and Engineering (CSSE) at Johns Hop-
kins [30]. The data period is from January 22, 2020 to 
November 30, 2021. Among them, the data from Janu-
ary 22, 2020 to September 30, 2021, will be used as the 
historical epidemic fitting, and the data from October 
1, 2021 to November 30, 2021, will be used to verify the 
future prediction results. Global climate and air quality 
data were collected from a dedicated dataset provided by 
the Air Quality Open Data Platform Worldwide COVID-
19 dataset (WAQI Project, https://​aqicn.​org/​data-​platf​
orm/​covid​19/​cn/). The values of relevant parameters are 
shown in Table 1.

Time‑series fitting of historical epidemic data
The parameters of the dynamical model express the 
epidemic trends under the countries’ state at that time, 
such as the intensity of interventions, economic devel-
opment, and population activity. The fitting of histori-
cal data has two purposes. One is to obtain the number 
of different groups as an initial input parameter for the 
new prediction at the next moment, and the other is 
to evaluate the model parameters at different stages to 
select them to predicting future epidemics. The trans-
mission stages of COVID-19 were divided using the 
methods of curve smooth and first-order difference. In 
the initial phase, there are no human interventions, so 
NO2 will not be considered (ε = 0). The genetic algo-
rithm was used to calculate the optimal parameters 
with 100 cycles to avoid local optima. The parameters 
with the best fit-goodness (R2) as shown in Fig.  4 and 
Tables 2 and 3, and the time is from January 22, 2020 to 
September 30, 2021.

Figure 4 shows: the IRloop and the SEAICRloop models 
can achieve the epidemic prediction, which is reflected 

Table 1  The values of relevant parameters of dynamical models

* Reference from Okuonghae [17] and Cao [24]

Parameter *Baseline value *Range

p1 ~ p7 Fitted Estimated
α 0.5 [0, 1]
υ 0.5 [0, 1]
σ 1/5.2 [1/14, 1/3]
φ Fitted Estimated
θ Fitted Estimated

γC 1/15 [1/30, 1/3]

γI, γA 0.13978 [1/30, 1/3]

dC, dI 0.015 [0.001, 0.1]

Fig. 4  The fitting results of COVID-19 historical data

https://aqicn.org/data-platform/covid19/cn/
https://aqicn.org/data-platform/covid19/cn/
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Table 2  The estimated parameters of the IRloop model at different stages

Country Stage p1 p2/ p5 p3/ p6 p4/ p7 ε0 ε1(×10−3) γ R2

U.S. 1 0.293 0.138 3.660 94.951 \ \ 0.100 0.936

2 0.245 0.196 0.102 3.588 0.127 0.727 \ 0.289

3 0.425 0.203 0.005 9.569 0.405 1.437 \ 0.964

4 0.217 0.029 0.066 1.493 0.108 0.839 \ 0.851

5 0.334 0.012 0.044 2.914 0.234 0.459 \ 0.870

6 0.934 0.017 0.063 2.079 0.832 0.171 \ 0.954

7 0.002 0.211 0.000 85.210 0.003 0.121 \ 0.385

8 0.001 0.527 0.000 5.426 0.162 0.069 \ 0.844

9 0.405 0.006 0.063 51.481 0.305 0.082 \ 0.559

10 0.531 0.015 0.016 7.067 0.434 0.004 \ 0.103

Prediction by 
predicted NO2

0.047 0.707 0.227 57.699 0.650 0.000 \ 0.064

Prediction by 
actual NO2

0.882 0.005 0.068 1.401 0.781 -0.076 \ 0.284

U.K. 1 0.204 0.899 3.592 75.596 \ \ 0.032 0.907

2 0.283 0.834 0.934 89.311 0.187 2.485 \ −3.099

3 0.143 0.070 0.075 0.157 0.108 0.259 \ 0.905

4 0.390 0.023 0.167 82.711 0.354 0.271 \ 0.951

5 0.142 0.014 0.292 20.555 0.102 0.082 \ 0.692

6 0.055 0.031 0.086 4.131 0.030 0.244 \ 0.936

7 1.033 0.035 0.075 0.000 1.000 0.000 \ 0.970

8 0.240 1.893 0.042 178.847 0.208 0.055 \ 0.975

9 0.054 1.569 0.001 0.794 0.797 0.217 \ 0.947

10 0.221 1.955 1.299 42.713 0.184 0.175 \ 0.537

11 0.612 0.291 0.369 23.030 0.865 0.040 \ 0.829

12 0.589 0.307 0.001 0.464 0.704 0.000 \ 0.556

Prediction by 
predicted NO2

0.566 0.001 0.286 0.000 0.531 −0.017 \ 0.224

Prediction by 
actual NO2

0.885 0.000 1.000 100.000 0.849 -0.058 \ 0.334

India 1 0.199 0.002 0.434 52.312 \ \ 0.064 0.812

2 0.872 0.030 1.000 0.000 0.886 −10.077 \ 0.771

3 0.474 0.041 0.042 0.000 0.407 0.082 \ 0.904

4 0.248 0.022 0.143 74.240 0.182 0.174 \ 0.989

5 0.622 0.037 0.083 0.644 0.556 0.000 \ 0.990

Prediction by 
predicted NO2

0.563 0.465 0.128 137.253 0.959 0.503 \ 0.620

Prediction by 
actual NO2

0.325 0.094 0.000 99.734 0.307 -0.007 \ 0.855
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in the fitting characteristics with large fluctuations 
and multiple peaks. Among them, the IRloop model can 
achieve better results overall than the SEAIRloop model, 
especially for epidemic curves with large fluctuations. 
This is mainly because the parameters of the IRloop model 
have better actual validation and the SEAIRloop model 
contains a large number of parameters that cannot be 

validated (the actual data contains only the number of 
confirmed people and recovered people and dead peo-
ple), which also makes the model more ambiguous and 
uncertain. However, in the second phase in India and 
the US, the SEAIRloop model achieved better results. 
This is mainly because the number of infected cases is 
small at the beginning of COVID-19 and the ambiguity 

Table 2  (continued)

Country Stage p1 p2/ p5 p3/ p6 p4/ p7 ε0 ε1(×10−3) γ R2

Brazil 1 0.357 0.967 1.922 53.753 \ \ 0.044 0.678

2 0.466 0.000 0.967 79.430 0.339 −2.163 \ 0.735

3 0.914 0.124 0.958 92.341 0.846 0.642 \ −0.303

4 0.812 0.049 0.051 0.003 0.764 0.384 \ 0.405

5 0.950 0.017 2.000 0.000 0.916 0.602 \ 0.253

6 0.525 0.018 1.555 103.467 0.493 0.681 \ 0.529

7 0.362 0.060 0.004 6.939 0.343 0.367 \ 0.099

8 0.440 0.759 1.756 59.232 0.393 0.157 \ 0.243

9 0.951 0.005 0.043 0.145 0.906 0.029 \ 0.358

Prediction by 
predicted NO2

0.935 0.005 0.055 0.000 0.890 0.060 \ 0.348

Prediction by 
actual NO2

0.847 0.005 0.031 0.587 0.803 0.033 \ 0.510

Russia 1 0.212 0.020 0.289 42.495 \ \ 0.086 0.996

2 0.754 0.000 0.998 52.113 0.611 −4.018 \ 0.628

3 0.110 0.071 0.048 0.000 0.019 −0.018 \ 0.884

4 0.546 0.008 0.111 28.932 0.456 −0.051 \ 0.991

5 0.520 0.012 0.045 26.391 0.432 −0.003 \ 0.991

6 0.689 0.008 0.046 45.131 0.602 0.013 \ 0.961

7 0.092 0.013 0.009 78.782 0.010 0.015 \ 0.905

8 0.829 0.712 0.277 43.082 0.739 0.052 \ 0.855

Prediction by 
predicted NO2

0.889 0.012 0.035 62.029 0.802 0.007 \ −0.449

Prediction by 
actual NO2

0.572 0.005 0.092 0.276 0.487 -0.070 \ 0.823

German 1 0.295 0.663 4.294 73.495 \ \ 0.099 0.918

2 0.111 0.225 0.129 0.000 0.008 0.418 \ 0.915

3 0.290 0.038 0.119 100.000 0.186 0.276 \ 0.857

4 0.999 0.032 0.120 0.176 0.886 1.221 \ 0.142

5 0.450 0.156 0.009 199.726 0.477 0.006 \ 0.331

6 0.858 0.005 0.158 28.293 0.758 0.283 \ 0.490

7 0.210 0.017 0.028 55.876 0.117 0.381 \ 0.625

8 1.044 0.011 0.046 99.842 0.944 0.034 \ 0.654

9 0.509 0.530 0.398 133.925 0.937 0.110 \ 0.427

Prediction by 
predicted NO2

0.476 0.016 0.044 71.132 0.376 0.152 \ 0.399

Prediction by 
actual NO2

0.639 0.253 1.259 190.671 0.788 0.350 \ 0.262

The closer R2 ∈ (−∞, 1] is to 1, the closer the real value is to the predicted value
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Table 3  The estimated parameters of the SEAICRloop model at different stages

Country Stage p1 p2/p5 p3/p6 p4/p7 ε0 ε1 θ(×10−4) φ R2

U.S. 1 0.000 0.001 0.625 53.153 \ \ 0.975 0.021 0.979

2 0.002 0.019 1.000 0.212 0.000 0.019 \ \ 0.414

3 0.004 0.016 0.104 26.084 0.282 0.036 \ \ 0.931

4 0.010 0.019 0.080 2.044 0.504 0.022 \ \ 0.746

5 0.003 0.354 0.043 123.634 0.471 0.005 \ \ 0.885

6 0.327 0.232 1.00 26.383 0.542 0.013 \ \ 0.881

7 0.009 0.817 0.073 103.328 0.418 0.027 \ \ 0.307

8 0.003 0.033 0.069 0.648 0.899 0.017 \ \ 0.821

9 0.001 0.018 0.117 40.241 0.718 0.000 \ \ 0.576

10 0.013 0.004 1.000 15.132 0.662 0.000 \ \ 0.087

U.K. 1 0.000 0.021 0.123 68.784 \ \ 0.002 0.010 0.974

2 0.006 0.738 0.760 128.029 0.385 −0.039 \ \ −0.370

3 0.001 0.012 0.078 0.000 0.371 −0.023 \ \ 0.904

4 0.003 0.488 0.089 113.493 0.988 −0.010 \ \ 0.955

5 0.288 0.167 1.000 20.777 0.910 0.000 \ \ 0.516

6 0.028 1.000 0.226 30.958 0.228 −0.013 \ \ 0.851

7 0.822 0.004 0.232 100.000 0.221 0.000 \ \ 0.922

8 0.002 0.755 0.078 81.526 0.260 −0.009 \ \ 0.967

9 0.026 0.725 1.000 0.000 0.544 −0.021 \ \ 0.948

10 0.010 0.996 0.036 161.878 0.281 0.012 \ \ 0.320

11 0.007 0.080 1.000 0.002 0.290 0.012 \ \ 0.748

12 0.006 0.791 0.312 36.193 0.155 0.004 \ \ 0.398

India 1 0.000 0.322 0.127 150.974 \ \ 0.998 0.056 0.812

2 0.000 0.014 0.024 176.259 0.894 0.089 \ \ 0.963

3 0.001 0.006 0.041 0.068 1.000 0.060 \ \ 0.868

4 0.000 0.033 0.068 95.547 1.000 0.019 \ \ 0.982

5 0.002 0.012 0.141 15.817 1.000 0.036 \ \ 0.986

Brazil 1 0.000 0.283 0.169 71.120 \ \ 0.773 0.015 0.778

2 0.000 0.042 0.069 63.196 1.000 0.005 \ \ 0.863

3 0.003 0.306 0.019 137.405 1.000 0.004 \ \ 0.192

4 0.010 0.062 0.021 58.595 1.000 −0.009 \ \ 0.326

5 0.026 0.022 1.000 53.233 0.696 −0.005 \ \ 0.139

6 0.000 0.593 0.021 152.796 0.745 0.022 \ \ 0.295

7 0.041 0.003 1.000 20.555 0.905 −0.050 \ \ 0.129

8 0.023 1.000 1.000 56.585 0.963 −0.001 \ \ 0.066

9 0.010 0.006 0.202 50.338 1.000 − 0.092 \ \ −1.057

Russia 1 0.000 0.019 0.140 92.709 \ \ 0.275 0.016 0.996

2 0.002 1.000 0.076 94.411 0.339 −0.020 \ \ 0.923

3 0.002 0.006 0.024 13.978 0.433 0.004 \ \ 0.962

4 0.000 0.068 0.031 84.262 0.901 −0.002 \ \ 0.985

5 0.017 0.030 0.076 46.429 0.994 0.000 \ \ 0.990

6 0.002 0.020 0.099 19.842 0.695 0.003 \ \ 0.974

7 0.017 0.004 0.076 24.714 0.715 0.003 \ \ 0.952

8 0.007 0.960 0.199 41.889 0.531 0.015 \ \ 0.813
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and uncertainty of the model are relatively small. The 
SEAIRloop model has a more complete dynamical mecha-
nism, which can better describe the transmission process 
of COVID-19. However, this ambiguity and uncertainty 
will continue to be superimposed as the epidemic contin-
ues, eventually leading to the prediction of the SEAIRloop 
model does not achieve better results. In addition, the 
SEAIRloop model can obtain better prediction results 
mostly for curves with smooth and small volatility, which 
also reflects that the IRloop model has an advantage in 
terms of volatility.

Time‑series predictions of NO2 concentrations
To predict the development of COVID-19 in the future, 
the intensity of human interventions is a key factor. 
NO2 concentrations can reflect indirectly the intensity 
of interventions. The changes of NO2 have stability in a 
short period and have the timing characteristics of sea-
sonality, long-term trends, stochastic fluctuations, and 
cyclic changes in time series. Therefore, the ARIMA 
model was used to predict the NO2 concentrations from 
October 1, 2021 to November 30, 2021, which provides a 
data basis for the later epidemic prediction in the future. 
The results are shown in Fig. 5.

As can be seen in Fig. 5, the predicted NO2 concentra-
tions remain relatively stable, and the main trends main-
tain the upward or downward of the previous phase. This 
is mainly because NO2 concentrations are meteorological 
factors that vary continuously over time and space. It is 
difficult to have large changes aggregated nationwide in 
short-term time. The predictions of the ARIMA model 
are less volatile compared to the actual NO2 concentra-
tions because multiple predictions are averaged. This 
treatment ensures the stability of the NO2 concentrations 
trends. Among them, the prediction results for India 
differed from the actual one, mainly due to the sudden 

relaxation of the policy that led to a sharp increase in 
NO2. However, such sudden events are difficult to 
predict.

Prediction of the development trends of COVID‑19 
in the future
The epidemic prediction is of great importance for epi-
demic prevention and control. The trends of the infection 
curve are not the same due to the unknown nature of the 
future and the variability of viruses. Meanwhile, sample 
data for the last phase of the epidemic curves are usu-
ally too small, so it is unreasonable to estimate the model 
parameters for that phase using only these data. How to 
determine the model parameters for future curves will be 
a key issue for epidemic prediction.

The parameters of dynamics models can control the 
rise or fall of the overall trend of the epidemic curve. 
However, the changes in the overall trend of the epidem-
ics are due to the occurrence of unpredictable events, 
such as secondary outbreaks caused by virus mutations 
and rapid declines in the epidemic caused by the intensi-
fication of prevention and control measures. Thus, the 
prediction of the epidemic inflection point is very diffi-
cult. The significance of prediction is to let people know 
how the epidemic will develop in the future by continu-
ing the current epidemic status, national interventions, 
and economic status. Then, this can provide decision 
support information to regulate the current epidemic 
prevention and control status in response to future 
changes. The parameters of historical epidemic curves 
contain the development trends of COVID-19 under the 
influence of the current epidemic condition, human 
intervention status, and national economic condition. 
Therefore, the approximate reflection of the future epi-
demic trends can be expressed by these parameters. The 
model parameters with the same trends in the historical 

Table 3  (continued)

Country Stage p1 p2/p5 p3/p6 p4/p7 ε0 ε1 θ(×10−4) φ R2

German 1 0.000 0.018 0.146 67.301 \ \ 0.001 0.018 0.941

2 0.000 0.010 0.132 0.941 0.401 0.000 \ \ 0.911

3 0.002 0.891 0.087 143.050 1.000 0.019 \ \ 0.857

4 0.043 1.000 1.000 63.241 1.000 -0.024 \ \ 0.074

5 0.000 0.023 1.000 29.297 1.000 -0.082 \ \ −2.346

6 0.011 0.016 0.402 29.240 0.998 0.015 \ \ 0.320

7 0.002 0.035 0.137 22.234 0.863 −0.085 \ \ 0.614

8 0.000 1.000 0.057 151.477 1.000 −0.108 \ \ 0.705

9 0.001 0.008 1.000 50.425 1.000 0.025 \ \ -0.149
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stages were selected to predict future epidemic develop-
ment. Meanwhile, the small amount of sample data in the 
last stage could be used as validation to select the results. 

Results were shown in Fig.  6 and Table  1 (time from 
October 1, 2021, to November 30, 2021). Mean Absolute 
Percentage Error ( MAPE = 1

n

n
∑

i=1

|
(

yi − ŷi
)

| ) was used 

Fig. 5  Prediction results of NO2 concentrations (the red dot is the upper and lower interval value of 65% of the predicted value)

Fig. 6  The prediction of COVID-19 (The numbers are the accuracy of the prediction by predicted NO2)
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to measure the accuracy of results. As the effects of tem-
perature and humidity on COVID-19 are still controver-
sial, the influence of this factor on the results is excluded 
from the experiments [22].

As can be seen from Fig. 6, the prediction results have 
good stability in the overall trend. The prediction accu-
racy (MAPE) of the US, UK, India, Brazil, Russia, and 
Germany in October is 0.331, 0.127, 0.112, 0.376, 0.043, 
and 0.445, respectively. There are two main problems: 
firstly, the local fluctuations of the predicted results are 
low, mainly because the NO2 concentrations used were 
the mean of ARIMA model prediction results, and they 
were relatively stable. This treatment can better ensure 
that the general trend of NO2 concentrations change is 
correct because the long-term prediction of future NO2 
concentrations is difficult to achieve. Secondly, in Rus-
sia, the United Kingdom, and the United States, the pre-
dicted trends exit opposite to the actual situation. After 
introducing the actual NO2 concentrations, the pre-
diction curve has a great improvement, but the overall 
trend remains unchanged, which is verified obviously in 
the UK. This is mainly because NO2 concentrations are 
more the adjustment parameter of curve volatility, and 
the parameters of the dynamical model are the main fac-
tor controlling the overall trend change. However, these 
changes in overall trend in epidemic trends are due to 
abrupt and unpredictable events, for example, omicron 
infection was found in the United States and the United 
Kingdom in late November 2021. The significance of 
epidemic prediction is to let people know how the epi-
demic will develop in the future by continuing the cur-
rent epidemic status, national prevention, and control, 
and economic status. Therefore, the prediction model in 
this study pays more attention to the epidemic situation 
under the continuation of the current prevention and 
control status.

Discussion
COVID-19 is still in a very serious state and is also show-
ing multiple different-scale outbreaks. All countries need 
to prepare for proactive prevention and control rather 
than passive defense. The prediction of the epidemic is 
important assistant information. This study proposed a 
novel model to predict the COVID-19 pandemic with the 
characteristics of long-time series, multiple peaks, and 
large fluctuations.

There are several points worth explaining here. Firstly, 
the problem of long-time series refers to the histori-
cal duration of the epidemic, such as foreign epidemics 
that have lasted more than 2 years. Our model can well 
describe the transmission process of such a long-time 
series of infectious diseases. The prediction of long-time 
series refers to the forecasting for almost 1–3 months 

under the continuation of the current state of prevention 
and control, which is also more suitable for the asym-
metric and non-smooth epidemic curves with large fluc-
tuations. Secondly, the fitting of historical epidemics is 
also very good using our model. However, there are still 
two limitations to the prediction of future epidemics. 
First, the model is difficult to predict the outbreak of new 
epidemics and the inflection point of epidemics. The 
introduction of NO2 concentrations is only a parameter 
to regulate the fluctuation feature of the epidemic curve 
and the parameters of the dynamic models of infectious 
diseases are a major factor in regulating the upward or 
downward trend of the epidemic curve. However, the 
changes in the overall trend of the epidemics are due 
to the occurrence of unpredictable events, such as sec-
ondary outbreaks caused by virus mutations and rapid 
declines caused by the intervention of prevention and 
control measures. Authors think that the significance of 
epidemic prediction should be to let people know how 
the epidemic will develop in the future by continuing the 
current epidemic status, national prevention, and con-
trol, and economic status. Thus, the future development 
of COVID-19 can be predicted by selecting epidemic 
parameters with similar trends in past periods. Because 
these historical parameters contain the development 
trends of COVID-19 under the current conditions of 
epidemic conditions, human prevention and control, and 
the national economy. This study provides an idea to pre-
dict the trend of future epidemics if the current preven-
tion and control situation continues. This prediction is 
not focused on the specific daily changes in the number 
of infected cases and more reflects the long-term trends 
of the future epidemics. Second, there is still room to 
improve the volatility of the future prediction curve. This 
fluctuation is mainly caused by the restriction on peo-
ple’s activities of human intervention measures, which is 
reflected by NO2 concentrations. When we bring in the 
real NO2 data, the prediction curve has better improved. 
But it is difficult to predict well the NO2 concentrations 
for a longer period in the future. The predictions of the 
ARIMA model are very different in the multiple simu-
lations. Therefore, we choose the mean value of multi-
ple simulations so that prediction curves are relatively 
smooth. This way can avoid subjective errors but also 
lead to the unobvious fluctuations. Finally, the epidemio-
logical mechanisms of the SEAICRloop model are more 
complex. The more complex mechanism also leads to the 
fact that a large number of parameters cannot be verified 
by actual report data, which will increase the fuzziness 
and uncertainty of the model. Therefore, the prediction 
result of the SEAICRloop model is better than that of 
the IRloop model only in the early stage of the epidemic 
because the number of infected people is relatively small 
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in this term. However, as the number of infected people 
increases, the fuzziness of the model will increase, and 
the advantages of the IRloop model will be more reflected.

Conclusion
This study proposed a new dynamical model of infec-
tious diseases, which aims to quantify the COVID-19 
pandemic with the characteristics of long-time series, 
multiple peaks, and large fluctuations and predict the 
development trend of the epidemic. Through experi-
mental results, the model could realize the epidemic 
prediction with high accuracy and reasonableness, 
especially for the epidemic curve with a large fluc-
tuation. The method also breaks the limitation of the 
traditional epidemic curve with smooth and sym-
metrical characteristics. The goodness-of-fit R2 of the 
prediction for the US, UK, India, Brazil, Russia, and 
Germany were 0.841, 0.977, 0.974, 0.659, 0.992, and 
0.753, respectively. The model used the trends of epi-
demic changes in the historical stages as the empirical 
parameters and the predictions have high consistency 
in the overall trend. The prediction accuracy (MAPE) 
of the US, UK, India, Brazil, Russia, and Germany in 
October is 0.331, 0.127, 0.112, 0.376, 0.043, and 0.445, 
respectively.

The model is still in an early stage of research and still 
lacks the incorporation of a large amount of data, such 
as local medical conditions, the degree of population 
aging, and the travel characteristics of the population, 
which would greatly reduce the uncertainty of the epi-
demic prediction. The strength of the model lies more 
in describing the characteristics of long series, multi-
ple peaks, and large fluctuations for COVID-19, which 
will also help to understand and mitigate the impact 
of the epidemic and provide a valuable reference for 
decision-makers.
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