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Does group‑based trajectory modeling 
estimate spurious trajectories?
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Abstract 

Background:  Group-based trajectory modelling (GBTM) is increasingly used to identify subgroups of individuals with 
similar patterns. In this paper, we use simulated and real-life data to illustrate that GBTM is susceptible to generating 
spurious findings in some circumstances.

Methods:  Six plausible scenarios, two of which mimicked published analyses, were simulated. Models with 1 to 10 
trajectory subgroups were estimated and the model that minimized the Bayes criterion was selected. For each sce‑
nario, we assessed whether the method identified the correct number of trajectories, the correct shapes of the trajec‑
tories, and the mean number of participants of each trajectory subgroup. The performance of the average posterior 
probabilities, relative entropy and mismatch criteria to assess classification adequacy were compared.

Results:  Among the six scenarios, the correct number of trajectories was identified in two, the correct shapes in 
four and the mean number of participants of each trajectory subgroup in only one. Relative entropy and mismatch 
outperformed the average posterior probability in detecting spurious trajectories.

Conclusion:  Researchers should be aware that GBTM can generate spurious findings, especially when the average 
posterior probability is used as the sole criterion to evaluate model fit. Several model adequacy criteria should be 
used to assess classification adequacy.

Keywords:  Group-based trajectory modeling, Simulated subgroups, Average posterior probability, Relative entropy, 
Mismatch
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Background
The evolution of health outcomes is often heterogenous 
across individuals, prompting researchers to use methods 
to identify subgroups of individuals with similar patterns 
over time [1]. Trajectory modelling is used to identify 
subgroups with the aim of predicting future outcomes or 
targeting an intervention based on the patterns observed 
[1]. Examples of behaviors and health outcomes include 
trajectories of cigarette smoking [2] and progression of 
disability among patients with multiple sclerosis [3, 4].

Group-based trajectory modeling (GBTM) is one of the 
most frequently used approaches to identify subgroups of 
people in longitudinal data. The popularity of GBTM is in 
part due to the availability of routines in standard statisti-
cal programs (e.g., PROC TRAJ in SAS, or TRAJ in Stata) 
that provide easy-to-interpret visual summaries of the 
data. In addition, GBTM is less computationally demand-
ing, simpler to fit and easier to use in samples with 
smaller numbers of observations than its most popular 
alternative, the latent growth mixture modeling (LGMM) 
approach [5, 6]. Such attractive properties, however, are 
mitigated by making strong assumptions about the dis-
tribution of trajectories. For example, while LGMM 
estimates within-subgroup variance parameters, these 
parameters are set to zero in GBTM, which eases con-
vergence of the model, but makes the strong assumption 
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that individual trajectories are homogeneous within sub-
groups [1].

Studies have suggested that violations of GBTM 
assumptions may create spurious findings such as the 
identification of trajectory subgroups that are statistical 
artefacts rather than homogeneous subgroups in the data 
[7–9]. Misspecification of the distribution of the outcome 
may also lead to identifying spurious subgroups [8, 10]. 
For example, estimating a GBTM using a continuous var-
iable with a non-normal distribution tends to inflate the 
number of subgroups because GBTM relies on a mixture 
of normal distributions to estimate the non-normal dis-
tribution of the variable [8, 10]. Studies have also shown 
that models that do not estimate within-class variability 
may induce bias, in addition to reducing subgroup recov-
ery and accuracy of the classification [11, 12]. Further, 
Vachon et  al. recently coined the term “rainbow effect” 
[9] to describe the set of parallel trajectories observed 
in many GBTM applications [3, 13, 14]. The rainbow 
effect appears when the distribution of the values of the 
variable under study does not correspond to a mixture of 
several homogeneous trajectory subgroups but rather to 
gradations on a continuum of values [9].

While criteria of model adequacy for GBTM exist, it 
is unclear whether they can guard against the identifi-
cation of spurious findings. The Guidelines for Report-
ing on Latent Trajectory Studies (GRoLTS) recommend 
using the Bayesian Information Criteria (BIC) to select 
the number of subgroups and the order of the polynomial 
terms used to model the shapes of trajectories [5, 15]. 
Criteria such as the average posterior probability (APP) 
and relative entropy are then used to assess the adequacy 
of the classification of individual trajectories in the sub-
groups identified using GBTM [1, 5].

In this paper, we describe a case-study using simu-
lated data to illustrate that: (i) GBTM can produce spu-
rious findings; and (ii) model adequacy criteria can fail 
to identify model misspecification. Despite guidelines 
[5] and best practices [16] recommending using numer-
ous criteria to select the number of trajectory subgroups, 
recent reviews of trajectory modelling using GBTM in 
the health-related literature [17–20] suggest that BIC 
and APP are often the only criteria used. Herein we 
investigate the BIC and the APP because they are cur-
rently the only criteria for selecting the number of tra-
jectory subgroups and model adequacy, respectively that 
are computed by the software used by most researchers 
to estimate GBTM [21, 22]. We also consider relative 
entropy and mismatch as additional criteria because they 
can easily be computed in any software including SAS 
(see Appendix for the codes). We generated data similar 
to applications published in the health-related literature 
with a focus on scenarios investigating the variability 

of the variable under study within and across trajectory 
subgroups over time. We then used real-life data to sup-
port the results of the simulations.

Methods
Before presenting the design of the simulation study, we 
briefly present GBTM and describe the conventional 
modelling strategy used to select the number of sub-
groups and the shapes of trajectories, in addition to the 
model adequacy criteria used to assess classification 
adequacy.

Group‑based trajectory modeling [1]
Let Yi = {yi1, yi2, …, yit) be a sequence of t measurements 
of a normally distributed variable Y for i=1, …, N partici-
pants. GBTM is a finite mixture model for which the fol-
lowing equation describes the likelihood of a participant’s 
observed repeated measures:

in which Pj(Y i) represents the conditional probability 
of Yi given membership in group j and πj is the mixture 
parameter that captures the probability that a randomly 
selected participant belongs to subgroup j. The model is 
estimated using a latent class formulation in which each 
subgroup j has a specific sets of regression coefficients 
that corresponds to the variables indexing time, for 
example :

j indicates trajectory subgroups
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variable under study and the time variables. In Eq.  (1), 
temporal variations in Y are captured using cubic poly-
nomials, but models with different polynomial orders can 
be used. Each trajectory subgroup can have a different 
shape that is determined by the coefficients β j
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assigned to the time polynomials in Eq. 1. In this paper, 
we focus on the censored normal distribution but the 
model can be adapted for variables that follow a Bernoulli 
or Poisson distribution [1].

Individual posterior probabilities of subgroup member-
ship can be derived from estimates of the mixing param-
eter πj , in addition to estimated regression coefficients 
from Eq.  1. Such posterior probabilities can be used to 
assign individuals to the subgroup for which their prob-
ability is the highest, according to the maximum-proba-
bility assignment rule [1, 23].
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Model selection and assessment
In most GBTM applications [5], the optimal number of 
trajectory subgroups is selected by estimating models 
with an increasing number of trajectories, using the BIC 
approximation to the Bayes factor as long as the differ-
ence between two adjacent models (e.g., 2 and 3 sub-
groups) was greater than 10 [5]. Cubic polynomials are 
generally used to represent the trajectories. Once the 
number of trajectories is selected, the model is usually 
refitted using lower-order terms if the higher-order terms 
are not statistically significant at 5% [1].

Model adequacy may then be assessed using several 
criteria. The APP is calculated for each trajectory sub-
group by averaging over the individual posterior prob-
abilities of trajectory membership of individuals assigned 
to the subgroup. APPs greater than 70% across trajectory 
subgroups are considered indicative of adequate clas-
sification [1]. The relative entropy measures the degree 
of classification accuracy of placing participants into a 
trajectory based on their posterior probabilities. A value 
greater than 0.80 indicates less classification uncertainty 
[24, 25]. Finally, mismatch is the difference between the 
estimated probability of subgroup membership and the 
proportion of individuals classified in that subgroup 
based on the highest posterior probability. The corre-
spondence between these two probabilities decreases as 
assignment error increases [1]. Therefore, a difference 
close to 0 suggests an adequate fit [1, 16].

Data simulation and scenarios
We simulated six plausible scenarios illustrating prob-
lems that may arise in practice, two of which mimicked 
published analyses [9, 26]. Rather than using a simulation 
study with many iterations, we opted for simulated case 
studies to analyze each scenario in-depth by contrast-
ing the estimated results with the true data generating 
mechanisms. We simulated longitudinal data for i = 1, 
…, n = 500 individuals with t = 5 repeated measures of 
the variable Yit , except for scenario 2 in which we con-
sidered a smaller dataset (n = 300). The left panel of Fig. 1 
shows subgroup-specific box plots that represents the 
distribution of the simulated data for each scenario and 
the relative size of each subgroup. The simulation model 
is described in Appendix 1, while the scenario-specific 
parameters used in the simulation are presented in Table 
S1. GBTM assumes that the residual variance is constant 
over time and similar across subgroups. To account for 
non-homogeneity between subgroups [25], we used a 
more flexible data generating process. Such heterogene-
ity is taken into account in linear mixed models through 
the random effects. Scenarios 1 to 4 represent examples 
in which Yit was simulated according to three subsets of 

trajectories, while Scenarios 5 and 6 illustrated situations 
in which there were no subgroups in the simulated data.

Scenario 1 is a benchmark example in which GBTM 
is expected to capture the correct number of subgroups 
and shapes of trajectories because the three simulated 
trajectory subgroups were clearly distinct. The first tra-
jectory represents a rapidly increasing pattern, while the 
other two represent parallel decreasing patterns. Sce-
nario 2 represents a dataset in which the range of val-
ues of Y differs importantly across subgroups. To this 
end, we modified Scenario 1 to include a steeper slope of 
the increasing trajectory, with a range of values twice as 
large as in Scenario 1. Scenario 3 investigated the impact 
of overlap in the subgroup-specific distributions of Y at 
given time points during follow-up. We simulated two 
subgroups with increasing parallel trajectories and a sub-
group with a decreasing trajectory. The distribution of Y 
in the two increasing trajectories largely overlapped at 
time 1, while the decreasing trajectory overlapped with 
the first increasing trajectory at time 5. Scenario 4 mim-
icked a study of cigarette smoking initiation [26] in which 
time zero represents the onset of cigarette smoking. 
Participants all started at time zero and cigarette con-
sumption evolved according to three initially distinct tra-
jectories in which the distributions overlapped towards 
the end of follow-up due to increasing within-subgroup 
variability. This scenario would be expected to cause 
GBTM to yield spurious trajectories due to the high sub-
group variability. Scenario 5 illustrated the rainbow effect 
coined by Vachon et al. to describe a variable with a dis-
tribution on a continuum rather than distinct trajectories 
[9]. We generated a uniform continuum of individual tra-
jectories centered around an increasing trend. Finally, to 
assess whether GBTM identified distinct trajectories in 
the absence of any subgroups [7, 27], we simulated a sce-
nario in which there were no subgroups of homogeneous 
trajectories (Scenario 6).

Data analysis
For each scenario, we estimated models with a cubic 
term and considered 1 to 10 trajectory subgroups. We 
used the Bayes factor to select the number of subgroups 
and removed higher order terms that were not statisti-
cally significant at 5%. Model adequacy criteria were 
computed for the models selected.

We compared the estimated number of trajectories and 
the relative size of each subgroup with that generated in 
the simulations. We also compared the estimated trajec-
tory shapes with those generated using visual inspection.

To better understand the potential limitations of 
GBTM, trajectory subgroups were also identified in 
sensitivity analyses using a latent class growth models 
(LCGM) which estimate within-class variability. LCGM 
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were estimated using the hlme function of the latent class 
mixed models (lcmm) package in R software (https://​
cran.r-​proje​ct.​org/​web/​packa​ges/​lcmm/​lcmm.​pdf). The 
models include a subgroup-specific random intercept 
that allows for the estimation of different variances within 
trajectory subgroups [28]. We contrasted the number and 
shapes of trajectories obtained across GBTM and LCGM.

Simulations and analyses were conducted in SAS (ver-
sion 9.4, SAS Institute Inc., Cary, North Carolina, USA) 
using PROC TRAJ (https://​www.​andrew.​cmu.​edu/​user/​
bjones/) to estimate GBTM. Trajectories were plotted 
using R.4.0 (R Core Team, Vienna, Austria; 2014).

Results
Figure  1 presents simulated data for each scenario in 
the left panel, and trajectories estimated using GBTM 
and LCGM, respectively in the right panel. Figure 1 also 
includes the relative size of each generated and esti-
mated subgroup. Model adequacy criteria including APP, 
entropy and mismatch are reported in Table 1 for GBTM.

Scenario 1: three distinct trajectory subgroups
In the benchmark scenario, GBTM recovered the cor-

rect number and shape of trajectories and the relative 
size of the subgroups. All three criteria suggested ade-
quate classification. LCGM recovered the correct num-
ber and shapes of the trajectory subgroups.

Scenario 2: different range of values of Y values across 
subgroups

GBTM identified two trajectory subgroups, whereas 
three were simulated. The shape and relative size of the 
steep trajectory subgroup was well-identified, but the 
increasing and decreasing simulated trajectories were 
combined into one single flat trajectory that included 
66% of participants. All three criteria suggested adequate 
classification. We estimated LCGM with different num-
bers of trajectory subgroups, but none converged.

Scenario 3: time point-specific overlap in the distribu-
tion of Y

The relative size of the subgroups and the shapes of 
the trajectories did not match those simulated. The 
simulation included two increasing trajectories and one 
decreasing trajectory; GBTM identified three parallel 
decreasing trajectories. While the mismatch was high 
and the relative entropy was poor, suggesting poor clas-
sification, the APP suggested poor classification for one 
trajectory subgroup only. LCGM recovered the correct 
number and shape of the trajectory subgroups.

Scenario 4: increasing within-subgroup variance
Instead of the 3 trajectories that were simulated, GBTM 

identified 6 trajectories by dividing each of the 3 simu-
lated subgroups into two subgroups with parallel trajec-
tories. The shape of estimated trajectories corresponded 
to those generated. All three criteria suggested adequate 
classification. LCGM failed to identify the correct num-
ber of trajectories (i.e., four trajectory subgroups were 
identified, although three were simulated).

Scenario 5: rainbow effect
Although data were generated as a uniform continuum 

of individual trajectories, GBTM identified three sub-
groups, with relative sizes including 25.8%, 57.8% and 
16.4% of the sample. The APP suggested satisfactory clas-
sification for each subgroup. Unlike the APP, the rela-
tive entropy and mismatch identified misclassification. 
LCGM did not identify any trajectory subgroups for this 
scenario.

Scenario 6: no temporal patterns
Although no patterns or subgroups were generated, 

GBTM identified four trajectories with relative sizes of 
5.4%, 52.4%, 33% and 9.2%, suggesting that GBTM iden-
tified random fluctuations as trajectory subgroups. The 
APP suggested adequate classification. The mismatch 
indicated poor classification for two of the four trajec-
tory subgroups. The relative entropy indicated poor clas-
sification. Again, LCGM did not identify any trajectory 
subgroups.

There was agreement among the three criteria for clas-
sification adequacy for three of the six scenarios. This 
included Scenario 1 for which GBTM correctly identified 
the number and shapes of trajectories and the three crite-
ria suggested adequate classification, but also Scenarios 2 
and 4 in which all three criteria failed to identify the spu-
rious trajectories. In the remaining three scenarios, both 
the relative entropy and the mismatch criteria correctly 
suggested poor classification, while the APP only identi-
fied it once.

Overall, LCGM outperformed GBTM in the pres-
ence of time point-specific overlap in the distribution of 
Y (Scenario 3) and when there were no trajectory sub-
groups in the data (Scenarios 5–6).

Application
Data from the Nicotine Dependence in Teens (NDIT) 
Study were used to identify trajectories of difficulty 
initiating and maintaining sleep. The NDIT study is a 

(See figure on next page.)
Fig. 1  Simulated data (left panel) and identified trajectories (right panel) for each scenario

aTo make the boxplots for scenario 1–4 more legible, the boxes representing each subgroup at each time point were shifted slightly so that they 
would not overlap

https://cran.r-project.org/web/packages/lcmm/lcmm.pdf
https://cran.r-project.org/web/packages/lcmm/lcmm.pdf
https://www.andrew.cmu.edu/user/bjones/
https://www.andrew.cmu.edu/user/bjones/
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A) B) C)

Fig. 1  (See legend on previous page.)
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longitudinal investigation of 1293 students recruited 
in 10 Montreal high schools in 1999–2000 [29]. Self-
report questionnaires were completed by students every 
3 months from grade 7 to 11 (i.e., total of 20 data collec-
tion cycles during high school). The study was approved 
by the Montreal Department of Public Health Eth-
ics Review Committee, the McGill University Faculty 
of Medicine Institutional Review Board, and the Eth-
ics Research Committee of the Centre de Recherche du 
Centre Hospitalier de l’Université de Montréal. Difficulty 
initiating and maintaining sleep was assessed by: “During 
the past 3 months how often have you had trouble going 
to or staying asleep?” Response options included “never”, 
“rarely”, “sometimes”, or “often”. We restricted the analy-
sis to students from the largest school to avoid modelling 
the within-school correlation induced by the clustered 
sampling. The illustrative example is thus estimated using 

169 students with at least three observations during the 
follow-up.

We considered models with 1–10 trajectory subgroups 
and assumed a censored-normal distribution for dif-
ficulty initiating and maintaining sleep, which is used 
routinely in applications of GBTM to ordinal variables 
[30] when other options available (i.e. binomial, zero-
inflated Poisson) are not suitable. For example, Jones and 
Nagin used a censored-normal distribution to study the 
level of childhood opposition, which varied from zero to 
seven [30]. Comparison of the Bayes factor across mod-
els resulted in selecting the three-subgroup model (Table 
S5). While the APP and the relative entropy for the model 
suggested adequate classification (Table S6), the absolute 
value of the mismatch criterion was larger than two for 
two trajectory subgroups, suggesting poor classification.

We investigated the source of disagreement between 
the classification criteria by inspecting the distribution of 

Table 1  Model adequacy criteria using GBTM for each scenario

a  APP > 0.70 and mismatch close to 0 suggest that the classification is good. Entropy close to 1 indicates that participants were classified with more confidence. Bold 
values indicate poor classification

Criteriaa Scenario 1: Three distinct trajectory subgroups Validity of classification

1 2 3

Average posterior probability 1.00 0.99 0.98 All criteria suggest good classification

Mismatch 0.03 0.23 -0.26

Relative entropy 0.98

Scenario 2: Different range of values of Y values across 
subgroups

Average posterior probability 1.00 1.00 All criteria suggest good classification

Mismatch 0.00004 -0.00004

Relative entropy 1.00

Scenario 3: Time point-specific overlap in the distribution 
of Y

Average posterior probability 0.93 0.56 0.92 All criteria suggest that the classification is not optimal

Mismatch 26.44 -35.27 8.82
Relative entropy 0.34

Scenario 4: Increasing subgroup with variance

1 2 3 4 5 6

Average posterior probability 0.91 0.89 0.90 0.86 0.91 0.88 All criteria suggest good classification

Mismatch 0.19 0.05 0.23 -0.89 0.49 -0.07

Relative entropy 0.87

Scenario 5: Rainbow effect

1 2 3

Average posterior probability 0.84 0.83 0.84 Mismatch and entropy suggest that the classification is not 
optimalMismatch 1.30 -2.89 1.59

Relative entropy 0.65
Scenario 6: No temporal patterns

1 2 3 4

Average posterior probability 0.89 0.89 0.84 0.90 Mismatch and entropy suggest that the classification is not 
optimalMismatch 0.52 -1.97 0.45 1.00

Relative entropy 0.66
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difficulty initiating and maintaining sleep and the mag-
nitude of individual changes in each of the trajectory 
subgroup. The left panel of Fig. 2 shows estimated trajec-
tories superimposed on subgroup-specific box plots of 
difficulty initiating and maintaining sleep, while the right 
panel displays random selection of individual patterns in 
each subgroup. Estimated trajectories were mostly flat 
and mirrored the subgroup-specific median difficulty 
initiating and maintaining sleep. The boxplots suggest 
larger cycle-specific variation in subgroups 2 and 3 rela-
tive to subgroup 1. The right panels revealed important 
within-individual acute changes in difficulty initiating 
and maintaining sleep that were not reflected in the esti-
mated trajectories because they occurred throughout the 
follow-up and not at a specific age for a significant subset 
of the sample.

Based on the results of our simulation, GBTM may pro-
vide the misleading impression that individual patterns of 
difficulty initiating and maintaining sleep are flat through 
adolescence. That only the mismatch criterion suggested 
poor classification may reflect that by assessing the dis-
cordance between estimated and assigned group prob-
abilities, the mismatch criterion provides a more general 
fit assessment than the other two criteria.

Discussion
We used simulated and real-life data to demonstrate how 
GBTM may create spurious trajectories in scenarios that 
mimic published studies. We further showed that the 
widely used APP criteria for classification adequacy failed 
to detect spurious trajectories in most scenarios.

We found that GBTM creates spurious trajectories 
when there are no trajectories in the data, an observation 
that others have reported previously [7, 8]. Aligned with 
Vachon et al. [9], we also observed that GBTM identified 
spurious subgroups when individual trajectories are on 
a single continuum of values of the variable under study. 
It thus appears that GBTM overestimated the number of 
trajectories when individual trajectories have the same 
shape and are distributed on a continuum around the 
mean trajectory. This result suggests that the assumption 
of within-subgroup homogeneity may be the main driver 
behind the spurious identification of subgroups in the 
“rainbow effect” scenario, since LCGM did not identify 
trajectory subgroups.

Our results further suggest that GBTM overestimated 
the number of subgroups in several scenarios of simu-
lated data which included subgroups. For example, in the 
scenario in which within-subgroup variance increased 
over time, GBTM identified twice as many subgroups as 
expected, although it did identify the correct trajectory 
shapes. This suggests that the large variance observed 
towards the end of follow-up drove the model to split 

each trajectory subgroup into two. While this may not be 
as problematic as not identifying a subgroup or misspeci-
fying the shape of a trajectory, doubling the number of 
trajectories necessarily results in smaller subgroups. This 
in turn may complicate inference in terms of detecting 
associations between the trajectories and factors or dis-
tant outcomes by unduly increasing the degrees of free-
dom and limiting the precision of the estimates.

Finally, spurious trajectories were observed in scenar-
ios with different ranges of values of the variable under 
study across subgroups or when time-point specific of 
the variable under study overlapped in the distribution 
of the variable under study. These two scenarios were 
characterized by high within- and between-subgroup 
variability, which may have affected the performance of 
GBTM. Moreover, the assumption that individual tra-
jectories are homogeneous within subgroups may not be 
valid in these two scenarios. Hence, LCGM may be more 
appropriate in terms of taking variability between sub-
groups into account. However, LCGM are known to have 
convergence issues [11, 31]; they estimate a larger num-
ber of parameters than GBTM and are thus more compu-
tationally intensive. This was observed in our simulation 
study in which LCGM failed to converge in the scenario 
that had the largest within-subgroup variation (Scenario 
2).

Our results emphasize the importance of using more 
than one criterion to assess classification adequacy, as 
others have suggested previously [16, 32]. While the 
GRoLTS checklist prioritizes measures of relative entropy 
to assess classification adequacy [5], a large number of 
applications relied on the APP. For example, a recent 
literature review on cigarette smoking trajectories in 
youth [2] showed that, among 17 studies which reported 
model adequacy criteria, 15 (88.2%) used the APP and 
two (11.8%) used entropy. The high level of reporting 
APP may relate to its availability in PROC TRAJ, which 
was used in most studies reviewed. We provide the SAS 
code for the relative entropy (inspired by Blaze’s work 
[33] and the mismatch calculation in the Appendix (Code 
S1). Cut-offs to assess the accuracy of the classification 
have been proposed for some criteria (e.g., APP, relative 
entropy). However, our results suggest that a criterion 
above the cut-off should not be considered sufficient.

The finding that all three model adequacy criteria 
failed to identify spurious trajectories in two of the six 
scenarios also highlights the importance of consider-
ing additional methods to assess the validity of findings. 
Our results do not suggest that LCGM always performs 
better than GBTM and should therefore always be used. 
Further, they do not suggest that it is possible, a priori, 
to determine the correct model to use. Therefore, aligned 
with Sijbrandij et  al. [11], we suggest that researchers 
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Fig. 2  Individual trajectories of difficulty initiating and maintaining sleep for identified trajectories (left panel) and a sample of participants (right 
panel), NDIT Survey cycles 1–20
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estimate more than one latent class model and choose 
the optimal model based on different fit indices as well 
as interpretation of the subgroups. Our other recom-
mendations include: (i) a visual inspection of individual 
patterns within subgroups using a spaghetti plot (i.e., 
simultaneously in small samples or in a random subset of 
observations in larger samples); (ii) plotting raw data by 
subgroup as estimated by GBTM or using a discriminat-
ing time-invariant characteristic such as sex/gender or 
socio-economic status to investigate whether individual 
trajectories are homogeneous across subgroups; (iii) dis-
cussion with content experts; and (iv) comparing GBTM 
results to alternative clustering algorithms or latent class 
models such as the 3-step procedure proposed by Leffon-
dré et al. [34, 35] and the latent class linear mixed model 
[28]. However, the partial implementation of such models 
in the most popular statistical software may limit the fea-
sibility of the latter point.

When possible, substantive criteria may also help 
increase confidence in the validity of the subgroups iden-
tified. For example, Vachon et al. [9] used four criteria to 
investigate whether the development of alcohol use is con-
tinuous or categorical: i) trajectory analyses indicating a 
greater number of subgroups always fit the data better 
than a lesser number; ii) a relatively normal distribution 
of participants across trajectory arcs; iii) relatively parallel 
subgroups; and iv) changes in external correlates of trajec-
tories reflecting rank-order stability of the trajectories. The 
authors concluded that their results support the notion 
that the development of alcohol use is continuous, and the 
existence of true trajectories can only be defined by strong, 
discriminating, and categorical factors that place partici-
pants on a deterministic natural course [9]. This argument 
was reinforced by Smeden et al., who argued that a cluster-
based approach must build on existing theory to support 
the identification of valid subgroups [36].

Our work has clinical and substantive implications. 
Systematic reviews of trajectory analyses in health-
related research [1–4, 20] report heterogeneous results, 
suggesting that studies generally do not replicate trajecto-
ries previously identified. This may be explained partially 
by spurious findings [20], although differences across 
samples including number of data points and longer time 
intervals between data points may also underpin failure 
to replicate previous findings. The use of GBTM in stud-
ies linking patterns of exposure to outcome measures at 
the end of follow-up (or subsequent clinical outcomes) 
may also lead to invalid results if the trajectories identi-
fied are spurious. Further, the use of trajectory analysis 
may not optimally relate patterns to outcomes. Sylves-
tre et  al. show that trajectories are not always the most 
informative representation of longitudinal data because 
they can sometimes refer to different points in time 

during follow-up or to different subgroups, making it 
necessary to define specific periods over which to com-
pare individuals [18]. In addition, use of trajectory sub-
groups may result in loss of power and in this case, using 
discrete measures may be more informative. Moreover, 
trajectory subgroups modeled as an exposure variable 
necessitates defining a reference subgroup, which may 
render comparison with other studies challenging.

Limitations of our work include that our investigation 
was restricted to BIC to select the number of trajectory 
subgroups, and three commonly used model adequacy 
criteria. Other criteria such as the Lo-Mendall-Rubin 
Likelihood Ratio (LMR-LRT) and the parametric boot-
strapped likelihood ratio test (BLRT) sometimes outper-
form the BIC in selecting the number of groups [15, 37], 
but they are not yet computed in PROC TRAJ. Elbow 
plots of BIC values can also help in the selection of the 
number of subgroups [38]. Although sample size cutoffs 
are always used in the literature, we did not report this 
in the paper because all selected models had sample sizes 
greater than 5 (see Appendix, Tables S2-S3). While sev-
eral alternative criteria exist to assess model adequacy, 
we excluded those that did not contribute any additional 
information over the criteria under investigation. For 
example, the odds of correct classification, which rep-
resents the ratio of the odds of a correct classification 
into each subgroup based on the maximum probability 
classification rule and the estimated class membership 
proportions, is a reformulation of the APP [1, 16]. How-
ever, recently proposed criteria such as the discrimina-
tion index should be evaluated [32]. Our analytical plan 
involved identifying the number of subgroups using the 
Bayes criterion and may not reflect the iterative process 
that is used in empirical studies in which classification 
criteria or substantive knowledge may lead to the selec-
tion of a different number of subgroups [5]. Neverthe-
less, our results suggest that a careful use of assessment 
criteria is warranted. Simulation studies involving a large 
number of iterations are required to quantify the bias 
caused by improper use of GBTM, although this will 
require automating all the modelling steps involved in fit-
ting GBTM, which may not reflect the decision-making 
process that analysts use.

This paper extends previous works illustrating how 
improper assessments of model adequacy and variance 
constraints [11] in GBTM may lead to spurious findings. 
For example, insufficient flexibility in the modelling of 
nonlinear trajectories (i.e., using polynomials of orders 
that are too low) may lead to the so-called “cat’s cradle 
effect”, a tendency of GBTM to repeatedly identify four 
trajectories across different datasets (i.e., including both 
low and high flat patterns, in addition to increasing and 
decreasing trajectories crossing towards the middle of 
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follow-up [39–41]). Analysts need to be aware of such 
pitfalls and the recent guidelines on the conduct and 
reporting of trajectory studies are a welcome addition to 
the growing literature on GBTM [5, 16].

In conclusion, while GBTM may provide a useful 
depiction of longitudinal data, it should be used with 
caution. Due to the data driven nature of the method, the 
accuracy of the results should be assessed and reported 
at each step of the analysis.
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