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Abstract

We examine the concept of Bayesian Additional Evidence (BAE) recently proposed by Sondhi et al. We derive simple
closed-form expressions for BAE and compare its properties with other methods for assessing findings in the light of
new evidence. We find that while BAE is easy to apply, it lacks both a compelling rationale and clarity of use needed
for reliable decision-making.
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Introduction
We read with great interest the article by Sondhi et al.
[1], which introduces the concept of Bayesian Additional
Evidence (BAE). The authors use a reverse-Bayes argu-
ment to define BAE, and apply it to the important issue
of how new evidence affects the overall credibility of an
existing finding. As they state, BAE is thus closely related
to another reverse-Bayes approach known as Analysis of
Credibility (AnCred) proposed by Matthews [2]; see also
the recent review of Reverse-Bayes methods [3]. In what
follows, we comment on the similarities and differences
of the two approaches and their inferential consequences.
We find that decision making based on the BAE approach
is limited by the restrictive assumption that the additional
evidence must have equal or smaller variance than the
variance of the observed data.

Bayesian additional evidence
We begin by showing that fortunately – and contrary to
the statement by Sondhi et al. on page 4 of their article –
there is a closed-form solution for what they term the BAE
“tipping point”, which is key to their approach.
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Assume, as per Sondhi et al., that both the likelihood of
an effect estimate θ̂ (the “data”) and the prior of the under-
lying effect size θ are represented by normal distributions
θ̂ | θ ∼ N(θ , σ 2) and θ ∼ N(μ, τ 2), with the latter evidence
coming either from pre-existing insight/studies or from
a subsequent replication. Bayes’s Theorem then implies a
posterior distribution θ | θ̂ ∼ N(μp, τ 2p ) whose mean and
variance satisfy

μp
τ 2p

= θ̂

σ 2 + μ

τ 2
and

1
τ 2p

= 1
σ 2 + 1

τ 2

Sondhi et al. further assume that τ 2 = σ 2, that is, the prior
variance τ 2 is equal to the data variance σ 2 which itself
is equal to the squared (known) standard error σ of the
effect estimate θ̂ . It then follows that the posterior mean
is the mean of the data and the prior mean, and that the
posterior variance is half the data variance

μp = θ̂ + μ

2
and τ 2p = σ 2

2
(1)

The BAE “tipping point” is then defined as the least
extreme prior mean that results in a posterior credible
interval which excludes the null value. If the substantive
hypothesis is for positive effect estimates (e. g. log(HR) > 0)
the BAE is the priormeanwhich leads to the lower limit Lp
of the 100(1 − α)% posterior credible interval being zero
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Lp = μp − zα/2 τp = 0 (2)

while for negative effect estimates the upper limit Up is
fixed to zero

Up = μp + zα/2 τp = 0 (3)

with zα/2 the 1 − α/2 quantile of the standard normal
distribution. Combining Eq. (1) with Eq. (2), respectively
Eq. (3), leads to

BAE = sign(θ̂)
√
2 zα/2 σ − θ̂ (4)

where sign(θ̂) = 1 when θ̂ > 0 and sign(θ̂) = −1
otherwise. Re-written in terms of the upper and lower
100(1−α)% confidence interval (CI) limitsU and L of the
effect estimate θ̂ we obtain

BAE = sign(θ̂)
√
2(U − L) − (U + L)

2
(5)

We see from Eq. (4) that Sondhi et al.’s proposal has the
intuitive property that as the study becomes more con-
vincing (through larger effect sizes |θ̂ | and/or smaller
standard errors σ ), the BAE will decrease (increase) for
positive (negative) θ̂ , indicating that less additional evi-
dence is needed to push a non-significant study towards
credibility. Eq. (4) and Eq. (5) also hold for significant stud-
ies but the BAE then represents the mean of a “sceptical”
prior which renders the study non-significant.
These closed-form solutions greatly simplify the use of

the BAE methodology. For example, Sondhi et al. use
a comparison of monoclonals to show how it identifies
additional evidence which, when combined with a non-
significant finding, leads to overall credibility. The trial
estimated the hazard ratio of the bevacizumab+chemo
patients compared to the cetuximab+chemo patients as
HR = 0.42 (95%CI: 0.14 to 1.23), a non-significant finding
with p = 0.11. Expressed as log(HR), we have L = −1.97

and U = 0.21. We use Eq. (5) and find that on log haz-
ard ratio scale BAE = −0.66 equivalent to an HR of 0.52.
Figure 1 shows the corresponding prior mean with 95%
prior credible interval.
Thus additional evidence in the form of prior insight

or a subsequent replication supporting an HR at least as
impressive as this (i. e. anHR < 0.52 in this case), and a CI
at least as tight as that of the original study will render this
non-significant result credible at the 95% level. Sondhi et
al. cite prior evidence from Innocenti et al. [4] who found
an HR = 0.13 (95% CI: 0.06 to 0.30) which meets both
criteria set by the BAE, and renders the original study
credible.

Alternatives approaches
In order to get a unique solution for the BAE, Sondhi et
al. make the assumption that the prior variance equals the
data variance, but also other possibilities exist. An alter-
native rationale would be to set the mean of the additional
evidence, rather than variance, to that of the original find-
ing (i. e. μ = θ̂ ), and determining the prior variance τ 2

such that the posterior credible interval includes the null
value. Under this approach, the prior variance is given by

τ 2 = σ 2

z2α/2/z2 − 1

with z = θ̂/σ . The resulting prior represents a study with
identical effect estimate but different precision compared
to the observed one. As the observed study becomes more
convincing (with larger effect estimates |θ̂ | and/or smaller
standard errors σ ), the prior will become more diffuse,
so less additional evidence is needed to render the find-
ing credible. We see in Fig. 1 that prior and posterior are
similar to BAE for the clinical trial data from Sondhi et al.

Fig. 1 Comparison of BAE, AnCred, and fixed mean 95% prior and posterior credible intervals for the data from Sondhi et al. [1]. Additional data from
Innocenti et al. [4] are also shown
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Figure 1 also illustrates that the BAE and the fixed mean
approach can lead to priors which support effect sizes
opposing that of the original finding. This is not possi-
ble with the AnCred advocacy prior whose prior credible
interval is fixed to the null value so that the prior adheres
to the Principle of Fairminded Advocacy [2]. Held et al. [3]
showed that this constraint is equivalent to fixing the coef-
ficient of variation from the prior to τ/μ = z−1

α/2 . Hence,
its mean and variance are given by

μ = 2 θ̂

1 − z2/z2α/2
and τ 2 = μ2

z2α/2
.

We see that – as with the fixed mean approach – the
AnCred prior becomes more diffuse for increasingly con-
vincing studies. However, at the same time the prior mean
also increases (decreases) for positive (negative) effect
estimates, so that only effect sizes in the correct direction
are supported.
Figure 1 shows that the AnCred advocacy prior credi-

ble interval is far wider compared to the other approaches.
Perhaps this observation led Sondhi et al. to state that
AnCred is harder to interpret than BAE, and that it can
lead to prior intervals “wide enough to effectively contain
any effect size, which is unhelpful for decision making”.
We would argue that broad priors are a valuable diag-
nostic of when little additional evidence is needed to
achieve posterior credibility, as it is the case with the
example Sondhi et al. consider. Moreover, we would argue
that AnCred priors are very helpful in decision making

since any additional evidence whose confidence interval
is contained in the AnCred prior credible interval will
necessarily lead to posterior credibility when combined
with the observed data [3]. In contrast, the BAE approach
requires decision makers to keep in mind the variance
of the additional evidence, since only additional evidence
with a point estimate that is at least as extreme as the
BAE and with confidence interval at least as tight as the
observed confidence interval from the study is guaran-
teed to lead to posterior credibility. Assume, for example,
the additional data from Innocenti et al. had been more
impressive, say, HR = 0.05, with a 95% CI from 0.015 to
0.16. Intuition suggests, and direct calculation confirms,
that this would be even more capable of making the origi-
nal finding credible. However, this would not be clear to a
decision maker using the BAE approach as currently for-
mulated, as the confidence interval is wider than the one
of the observed study (on the log scale).
While Sondhi et al. acknowledge the dependence of the

BAE on the choice of the prior variance, they do not give
clear guidance on when it should be set to a value differ-
ent from the observed data variance. Fortunately, when
the prior and data variances differ, there is again a closed
form solution for the BAE “tipping point”

BAE(g) = sign(θ̂)
√
g (1 + g) zα/2 σ − g θ̂ (6)

with relative prior variance g = τ 2/σ 2. We see from
Fig. 2 that Eq. (6) substantially depends on the chosen
prior variance and that the BAE based on g = 1 only

Fig. 2 Relative prior mean vs. relative prior variance for the data from Sondhi et al. The dashed region represents parameter values, which do not
lead to posterior credibility, whereas values in the dotted region lead to posterior credibility (at α = 5%). The colored lines indicate the parameters
which fulfil the side-constraints of the respective method
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captures a limited range of priors which lead to posterior
credibility. Unfortunately, Sondhi et al. do not give a clear
rationale for the default choice of g = 1. It may therefore
be more helpful for decision makers to base their decision
on the more principled AnCred advocacy prior or on a
visualisation of the prior parameter space as in Fig. 2.

Conclusion
In summary, we welcome BAE as an interesting applica-
tion of reverse-Bayes methods, and we hope our deriva-
tion of closed-form solutions will encourage further
research. However, as currently formulated BAE lacks
both a clear rationale for the constraints on which it
is based, and a sufficiently detailed explanation allowing
reliable decision-making.
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