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Abstract 

Background:  A lack of available data and statistical code being published alongside journal articles provides a sig-
nificant barrier to open scientific discourse, and reproducibility of research. Information governance restrictions inhibit 
the active dissemination of individual level data to accompany published manuscripts. Realistic, high-fidelity time-to-
event synthetic data can aid in the acceleration of methodological developments in survival analysis and beyond by 
enabling researchers to access and test published methods using data similar to that which they were developed on.

Methods:  We present methods to accurately emulate the covariate patterns and survival times found in real-world 
datasets using synthetic data techniques, without compromising patient privacy. We model the joint covariate 
distribution of the original data using covariate specific sequential conditional regression models, then fit a complex 
flexible parametric survival model from which to generate survival times conditional on individual covariate patterns. 
We recreate the administrative censoring mechanism using the last observed follow-up date information from the 
initial dataset. Metrics for evaluating the accuracy of the synthetic data, and the non-identifiability of individuals from 
the original dataset, are presented.

Results:  We successfully create a synthetic version of an example colon cancer dataset consisting of 9064 patients 
which aims to show good similarity to both covariate distributions and survival times from the original data, without 
containing any exact information from the original data, therefore allowing them to be published openly alongside 
research.

Conclusions:  We evaluate the effectiveness of the methods for constructing synthetic data, as well as providing 
evidence that there is minimal risk that a given patient from the original data could be identified from their individual 
unique patient information. Synthetic datasets using this methodology could be made available alongside published 
research without breaching data privacy protocols, and allow for data and code to be made available alongside meth-
odological or applied manuscripts to greatly improve the transparency and accessibility of medical research.

Keywords:  Simulation, Survival, Data accessibility, Flexible parametric survival models, Reproducible research, Time-
to-event, Synthetic data
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Background
It is common to simulate data with known properties 
to assess the performance of current and newly devel-
oped statistical methods. This approach of simulating 
data is more complex when the data are a time-to-event 
nature; with careful thought required on appropriate 
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distributional assumptions and the impact of censoring 
or competing risks. Often a series of simplistic assump-
tions are made for the data generating mechanisms, but 
there have been suggested improvements to create more 
realistic and complex data, whilst still retaining a known 
functional form. In the survival analysis framework, this 
can pertain to simulating biologically plausible data with 
flexible distributions for both the event censoring times 
and survival times [1, 2]. Many simulation studies gen-
erate data informed by a real-world dataset in order to 
create realistic scenarios. A further simulation approach 
is to generate data that closely resembles a given real-
world dataset- synthetic data generation. It is this latter 
approach which is the focus of this manuscript. We aim 
to generate high-fidelity synthetic data which resembles 
the covariate patterns and survival times of an existing 
real-world dataset.

Commonly, journals request authors to release code 
and data alongside their manuscripts, however this is 
not always feasible due to data access and privacy con-
straints [3], with studies in cancer research releasing 
data in only 11–25% of publications [4–6]. Through syn-
thetic data generation, we can construct datasets which 
appear and behave in a very similar way as the original 
data, which can be publicly released as they contain no 
real-world patient information. Limited access to statisti-
cal code is potentially a barrier to open science, methods 
development and reproducible research [7, 8], and having 
more openly available data should aid in encouraging this 
practice.

The synthetic data generation process is split into two 
key components. We first construct a dataset which rep-
licates the covariate distributions and relationships found 
in the original data using sequential regression model-
ling, then use complex survival modelling conditioned on 
those covariate values to predict synthetic survival times.

In this manuscript, we provide a step by step overview 
of the methods developed to generate a synthetic data-
set which accurately emulates the data structure and 
survival patterns found in a real-world dataset, as well 
as providing evidence for choices made regarding the 
data generation process such as survival model complex-
ity and covariate model ordering. The effectiveness of 
these methods are appraised by comparing agreement of 
both all-cause and relative survival metrics estimated in 
both the original and the synthetic datasets. We imple-
ment a distance measure for individual patient date and 
survival time information to demonstrate the negligible 
probability that a patient could be re-identified from the 
synthetic dataset. We discuss the nuances of data pri-
vacy, and potential applications to preserve it, in detail 
with the view to alleviate concerns pertaining to re-iden-
tification of individuals from the original data. We also 

discuss further applications of these methods, as well as 
potential extensions to make it more broadly utilizable 
by researchers wishing to disseminate their work with 
accompanying data and code.

Methods
Motivating dataset
The initial data requires a set of core covariates that 
are prognostic for our disease of interest which will be 
included in the survival model. In this example focused 
on cancer survival, we include age, stage and year of 
diagnosis, a time-to-event variable and an indicator of 
vital status at the end of follow-up. These covariates 
are included due to their known influence on survival 
[9–11]. There is scope to include further patient level 
information such as deprivation, treatment information 
or tumor grade and anatomical subsite where applica-
ble [12, 13], depending on data availability and the aims 
of the analysis. These papers [9–13], like the majority of 
papers, did not publish data alongside the manuscript 
due to data confidentiality issues with individual patient 
data. A potential concern would also be to create data 
which is so closely correlated, with patients with unique 
covariate patterns that synthetic individuals would have 
patient-level information identical to real data individu-
als. However, survival models have typically low levels of 
explained variation (R2 values) and therefore the chances 
of fitting a model with such high degrees of correla-
tion is very low [14]. Similarly, in time-to-event data we 
generally consider low-dimensional data with common 
covariate groups, and as such the chances of overfitting a 
model to contain enough parameters to perfectly predict 
individuals from the real data is improbable. To demon-
strate the synthetic data generating methods here, we use 
a Colon cancer dataset [15] with diagnoses from 1985–
1994 of 9,064 patients available from: https://​pclam​bert.​
net/​data/​colon.​dta (and as a.csv file in the supplementary 
materials), to create a synthetic dataset from which to 
estimate a range of all-cause and relative survival metrics. 
We use freely-available historical data that has previously 
been used for demonstrative purposes. The data were 
originally collected in accordance with a legal obligation 
to report cancer cases to the national population-based 
register, and the data have been used in the past for illus-
trative purposes to exemplify statistical methods for the 
analysis of population-based cancer data.

It is necessary to recover the distributions of all 
covariates included in the survival model, here: stage at 
diagnosis, sex, age-at-diagnosis and anatomical subsite. 
To reconstruct diagnosis date, which derives the exit 
date and the administrative censoring date, we must 
accurately replicate the distribution of year at diagnosis 
within the whole dataset. The synthetic survival times 
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are predicted from a centile distribution of survival 
times conditional on the generated synthetic individu-
als’ covariate pattern.

All data generation methods and statistical analyses 
here were implemented using Stata 17 [16] with code 
provided as supplementary material, but could also be 
applied in other statistical software such as R using 
equivalent modelling commands.

Table 1 outlines the 12 steps required to execute the 
simulation process for generating synthetic data, each 
of which will be expanded on subsequently.

Data cleaning and formatting (Step 1, Table 1)
We require certain covariates in our initial data in 
order to generate synthetic data of sufficient fidel-
ity. In this example our initial dataset contains: calen-
dar year of diagnosis (1985–1994), stage at diagnosis 
(“Localized”, “Regional”, “Distant” and “Missing”), sex 
(Male or Female), anatomical subsite (“Coecum and 
Ascending”, “Transverse”, “Sigmoid and Descending” 
and “Other and NOS”), age at diagnosis (18–99), vital 
status at time of censoring (Dead or Alive), unique 
patient id number, cancer diagnosis date and exit date 
(diagnosis date + survival time in days, administratively 
censored). We include covariates such as anatomical 
subsite, which is not necessarily included in the final 
analysis model, but incorporates additional heterogene-
ity to increase survival variation above and beyond that 
which is derived solely from the covariates which are 
included in the analysis model [17]. The initial distribu-
tions of these covariates are shown in the first column 
of Table 2. 

Defining date information (Step 2, Table 1)
Following data cleaning, step 2 states we must define an 
administrative censoring date from the original data to be 
used in the final simulated dataset. This is defined as the 
last observed date of follow-up found in the original data, 
here this is 31/12/1995. Using this censoring date, we cre-
ate an exit date variable to help define our data as time-
to-event, constructed by adding the survival time in days 
to the diagnosis date for every individual in the dataset. If 
an individual’s last date of follow-up exceeds the censor-
ing date, is it reassigned to be equal to our administrative 
censoring date.

Data preparation for the survival model (Step 3, Table 1)
Step 3 of the simulation process requires the construction 
of dummy variables for our factor variables which will be 
included in the survival model (stage, subsite, sex), fol-
lowing the reassignment of missing data as its own factor 
level. Here, we have missing data in stage at diagnosis. To 
replicate patterns of missingness, we assign missing val-
ues as an additional level in the covariates of interest and 
treat them as their own unique group. The necessity of 
this process depends on the intended use for the data. If 
the data is being used to assess imputation methods, it is 
paramount to have missing data simulated as accurately 
as possible, if the data is solely for testing analysis meth-
ods it becomes less important.

Model fitting for covariate pattern recovery (Step 4, 
Table 1)
To draw survival time predictions from the fitted sur-
vival model, it is necessary to first accurately recapture 
the joint distribution of the covariates which inform the 

Table 1  Overview of simulation process to construct replicated time-to-event datasets

Simulation Methods:

1.Clean and format the original data which is going to be replicated

2.Define administrative censoring date and create an individual exit variable before assigning data as time-to-event

3.Assign new factor levels for variables with missing data groups, generate dummy variables, and generate any required non-linear and interaction 
terms for the survival model

4.Fit sequentially increasing complex models for individual covariates and store model estimates from which to recover simulated covariate distribu-
tions

5.Fit an all-cause survival model, including between-covariate interactions and time-dependent effects

6.Set a seed and number of observations for the replica data, and using the stored model estimates for each covariate model, sequentially generate 
covariate values in the replica data based on conditional values of earlier covariates in the sequence

7.Recreate any non-linear effects and model interactions which were included in the original survival model

8.Use post estimation predict option from the survival model to generate synthetic survival times based on individual patient covariate patterns from 
the stored survival model estimates

9.Format vital status variable and generate diagnosis date and exit date variables

10.Re-format vital status variable using exit date and the administrative censoring date to reconstruct the original data censoring distribution

11.Clean and label all simulated variables

12.Assign the simulated data as time-to-event for use in future survival analysis
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survival model. Step 4 involves creating separate models 
for each covariate to model the joint distribution using a 
series of conditional distributions which are sequentially 
more complex, with example code provided below. For 
the process of simulating covariate values for individual i 
for the M variables of interest, we fit M regression mod-
els, with each variable, m(= 1..M), being the outcome 
for one of the M models. The form of the mth regression 
model is dependent on the variable type for m (categori-
cal, continuous, etc.). We start with a base model with no 
other covariates to get the marginal distribution of our 
first covariate of interest (age in the example below). We 
then include any prior variables (1, . . . ,m− 1) in the pro-
cess in all subsequent models; effectively with the final 
M

th model containing all the other variables and corre-
sponding interaction terms. We include both the main 
covariate effects and the interaction effects between the 
specified covariates. Factor variables are fitted using a 
multinomial logistic regression model, and fitted in order 
of least-to-most distributional complexity such that the 
most complex covariates are modelled with the most 
information. For continuous covariates we propose a 
linear regression model with spline terms for an inverse-
normal-rank-based-transformation of the covariate of 
interest in order to approximate continuous covariates 

with non-normal distributions. The ranks of the origi-
nal covariate are converted to a normal distribution [18] 
and then we flexibly model the relationship between the 
original covariate and the inverse rank-normal values 
using restricted cubic splines to allow for a non-normally 
shaped distribution to be captured. Increased flexibil-
ity could be incorporated with an increased number of 
degrees of freedom for the rank splines, however this can 
be sensitive and requires user specification.

Continuous covariates could also be simulated by spec-
ifying skewness and kurtosis values to allow non-normal 
distributions or a transformation applied to approximate 
normality. The effectiveness of each method will vary 
depending on the data, but we have found the method 
of using the restricted cubic splines based on the ranks 
to be robust to a range of distributions for the original 
covariate (see Supplementary Material 2).

Fitting the survival model (Step 5, Table 1)
The 5th step is to fit a survival model. The survival time 
predictions we later generate are derived from the param-
eters from a flexible parametric survival model [19], 
implemented using stpm2 in Stata [20]. These models 
are highly flexible and allow for non-proportional haz-
ards. The use of restricted cubic spline functions allows 

Table 2  Comparison of original data and simulated data covariate distributions

Original Data (%) Simulated Data (%) Absolute 
Difference 
(%)

Stage at Diagnosis

  Localized 3716 (40.91) 3724 (41.28) 0.37

  Regional 1148 (12.64) 1140 (12.64) 0.00

  Distant 2907 (32.00) 2836 (31.46) 0.54

  Missing 1313 (14.45) 1319 (14.62) 0.17

Anatomical Tumour Subsite

  Coecum and Ascending 3239 (35.66) 3227 (35.77) 0.11

  Transverse 1607 (17.69) 1569 (17.39) 0.30

  Sigmoid and Descending 3660 (40.29) 3659 (40.56) 0.27

  Other and NOS 578 (6.36) 566 (6.27) 0.07

Age Group

   < 45 379 (4.17) 368 (4.08) 0.09

  45–60 1338 (14.73) 1448 (16.05) 1.32

  60–75 3699 (40.72) 3604 (39.95) 0.77

   > 75 3688 (40.38) 3601 (39.91) 0.47

Sex

  Male 3799 (41.82) 3724 (41.28) 0.54

  Female 5285 (58.18) 5297 (58.72) 0.54

Vital Status

  Alive 3557 (39.16) 3467 (38.43) 0.73

  Dead 5527 (60.84) 5554 (61.57) 0.73
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for far more complex hazard functions than in standard 
parametric models. We model age (and more generally all 
continuous covariates) using restricted cubic splines to 
allow for non-linear effects, and use Winsorizing for age, 
below the 2nd percentile and above the 98th percentile of 
the age distribution to aid with model fitting [21]. Two-
way interaction terms are generated and included in the 
survival model for the age splines and stage at diagnosis, 
anatomical subsite and sex. Age and stage at diagnosis are 
all included as time-dependent effects. The overall model 
is fitted with 5 degrees of freedom, and 3 degrees of free-
dom for each time-dependent effect. We model these 
survival times flexibly to appropriately account for the 
fact that covariate effects are likely to wane in the long-
term. Higher order interactions could be implemented, 
but care must be taken when increasing the complexity 
of models fitted as privacy becomes more of a concern as 
complexity, and by extension fidelity, increases.

An important consideration is the level of modelling 
complexity required. We can generate from a simple sur-
vival model or a very complex one, dependent on what 
we aim to gain from the data. A simple model with no 
time-dependent effects and no interactions will give 
broadly similar marginal all-cause survival estimates, 
however when estimating more complex metrics, or 
looking at comparisons within missing data groups, the 
complex model may provide estimates more similar to 
that which was present in the original data.

When considering model selection we require some 
level of prior knowledge of the dataset, and this relates 
to the complexity of the analysis model that the synthetic 

data is required for. For example, if we were to release 
code with a paper that is considering a complex survival 
model, then this model complexity must be inherent and 
reflected within the data generation process. If we only 
require a simple model, we can generate data from less 
complex models which also alleviates some data privacy 
concerns. This flexibility makes these methods generaliz-
able to reflect the purpose of the data, however it does 
take some degree of fine tuning and decisions on mod-
els to fit and therefore being familiar with the data is 
beneficial.

Recovering covariate distributions and survival model 
terms (Step 6 & 7, Table 1)
Having modelled our covariate distributions and fitted 
the survival model from which to draw predictions, we 
now start with a blank dataset from which to recreate 
the data based on the stored parameter estimates from 
models fitted to the original data. Step 6 requires set-
ting the simulation seed and number of observations to 
be generated, the covariate distributions can be recre-
ated by sampling from the stored covariate models. The 
covariate models are restored in the same order the mod-
els were fitted to ensure all model predictions have the 
necessary information. For factor variables direct prob-
abilities define the proportions in each group. Figure  1 
demonstrates the effectiveness of using the inverse-nor-
mal-rank-based transformation with the age distribution 
being recovered accurately due to the increased flexibility 
away from a rigid normal distribution (see Supplementary 

Fig. 1  Comparison of original data age-at-diagnosis distribution with synthetic data age-at-diagnosis distribution derived using the 
Inverse-Normal-Rank-Based transformation method
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Material 2 for further demonstration of the effectiveness 
of this method across various distributions).

The age splines, and any interaction terms fitted in the 
original survival model also need to be recreated prior to 
drawing survival predictions from the stored model esti-
mates, per step 7.

Generating simulated survival times (Step 8, Table 1)
Step 8 generates survival times from the overall sur-
vival model fitted to the original data, using the inver-
sion methods where a random uniform (0,1) variable is 
transformed to a survival time using Brent root finding 
methods. This is implemented using the stpm2 post-esti-
mation predict command, where individual survival 
times conditional on patient covariate patterns are gener-
ated. Because each individuals’ covariate pattern is syn-
thesized from a distributional range rather than a specific 
real-world individual, we do not model survival times 
directly from a true individual, and therefore there is no 
link between a synthetic individual and any individual 
from the real-world dataset.

Formatting vital status and date information (Step 9, 
Table 1)
Step 9 codes vital status using the last observed exit 
time from the original data as a threshold for if an event 
(death) has been experienced for any given individual 
within the datasets follow-up period. Survival times are 
rounded up to the nearest full day.

To reconstruct diagnosis date, month and day of diag-
nosis are generated randomly and uniformly across the 
calendar year, reflecting the patterns of diagnosis found 
in the original data. For disease areas where diagnoses are 
seasonal, month of diagnosis could be treated the same 
as year of diagnosis by more precisely recreating the dis-
tribution of diagnoses across the year. However, cancer is 
not a disease in which diagnoses varies seasonally, so in 
this example this process was not necessary.

Replicating administrative censoring in the simulated data 
(Step 10, Table 1)
Step 10 calculates survival time in days in order to define 
an exit date for all synthetic patients, and then admin-
istrative censoring is implemented using a final date of 
follow-up taken from the original data (31/12/1995). Fur-
ther vital status coding occurs using the generated exit 
times, with patients labelled as alive if their exit dates 
exceed the final date of follow-up. Here we use a combi-
nation of calendar year and the administrative censoring 
date to replicate the censoring distribution found in the 
original data. For this method of synthetic data genera-
tion this is sufficient to accurately capture the known dis-
tribution (see Table  2), rather than modelling censoring 

directly through a Weibull or exponential distribution 
[22]. We generate a model based time-to-event distri-
bution, and artificially construct our time-to-censoring 
distribution, whereas other simulation methods require 
model based estimates of both distributions.

Cleaning and preparing simulated data for survival 
analysis (Step 11 & 12, Table 1)
Step 11 involves basic data cleaning, such as replacing 
assigned missing observations as truly missing data for 
stage at diagnosis, labelling covariates to match the origi-
nal data and removing any unnecessary variables which 
have been created during the data generation process. 
Finally, in step 12 we declare our data as time-to-event in 
preparation for survival analysis.

Data privacy
The nature of synthetic data, especially in high-fidelity 
scenarios, attracts important questions regarding contin-
ued security of individual patient data. Broadly, it is diffi-
cult to fully conceptualize all aspects of what data privacy 
truly means, and how to ensure it. In this scenario, we 
consider the notion of data privacy to pertain to con-
tinued confidentiality and security of individuals’ health 
data [23]. In this context, we require high-fidelity data to 
promote meaningful information sharing with appropri-
ate utility levels to reproduce research and test methods, 
while making data available alongside published work 
to encourage open scientific discourse. In time-to-event 
scenarios, patient prognosis and outcomes are highly 
reflective of their covariate profile, and as such to develop 
any meaningful methodology it is necessary to preserve 
all of the relationships found within the real-world data.

An unavoidable aspect of synthetic data generation is 
the inherent trade-off between privacy and utility [24]. 
We can construct low-fidelity data which reflects the 
structure of the source data but preserves none of the 
relationships and can contain implausible covariate val-
ues. This data poses no risk of information disclosure, 
but has little utility beyond understanding how the data 
is formatted. High-fidelity synthetic data by nature poses 
a higher risk of information disclosure, however using 
these methods the risk is still minimal. In time-to-event 
data, often datasets will have few explanatory variables, 
non-unique covariate patterns and unexplained het-
erogeneity within those covariate patterns and therefore 
re-identification is unlikely to be a genuine risk. In a sce-
nario where every individual had a truly unique covari-
ate profile, we could perfectly predict each individual 
rendering this methodology inappropriate, however in 
practice this would not occur. Here, synthetic individu-
als are generated from a series of regression models each 
with its own inherent unexplained variation, then further 
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generating random date variables within calendar years 
which further ensures no synthetic individuals are genu-
ine reflections of any individual from the real dataset.

To demonstrate the preservation of individual patient 
data privacy using these methods, we consider a range of 
patients from the original data with rare or unique covar-
iate patterns and compare their individual-level date and 
survival time information to 1 million synthetic patients 
directly generated to have a matched covariate profile.

Appraisal metrics
Following the construction of the synthetic data the 
recovery of the covariate distributions will be evaluated 
against the original dataset. Comparisons of all-cause 
survival across the length of follow-up, and 5-year rela-
tive survival will be made between the true data and the 
synthetic data. In population-based cancer studies, it 
is typical to report relative survival estimates. Relative 
survival estimates are used to try to isolate the mortality 
that is directly associated with the diagnosis of cancer by 
removing the impact of deaths due to causes other than 
cancer. This is achieved by incorporating general popu-
lation background mortality rates, making it possible to 
isolate the theoretical survival that is only attributable 
to the disease being investigated [25, 26]. The accuracy 
of the synthetic data here is evaluated across a range of 
metrics.

The consistency of a marginal 10-year relative survival 
estimates is compared with the true data across 25 dif-
ferent simulated datasets, and an age-specific life expec-
tancy measure is also compared between the true data 
and 10 simulated datasets.

Results
Covariate distribution recovery
It is necessary to replicate covariate distributions found 
in the original data with a high degree of accuracy in 
order to ensure that survival predictions being made con-
ditional on unique covariate patterns are reflected appro-
priately in the synthetic data.

For factor covariates simulated from multinomial logis-
tic regression models (stage at diagnosis, anatomical 
tumour subsite, sex, year of diagnosis), the absolute dif-
ference in factor level proportions between the original 
and simulated datasets never exceeds 1% (see Table  2). 
Similarly, there is only discrepancy of 0.84 percentage 
points in the proportion of subjects recorded as being 
dead.

In this example, the simulated data has a higher pro-
portion of 45–60 year olds by 1.32 percentage points. As 
demonstrated in Fig. 1, this redistribution of individuals 
does not vastly affect the overall age distribution being 
reconstructed.

Demonstrating survival pattern replication
The effectiveness of these methods in replicating sur-
vival patterns found in the original data can be demon-
strated by comparing various survival estimates for the 
original and synthetic data. Marginal all-cause survival 
estimates stratified by population subgroups are com-
pared, as well as a model based estimate of 5-year rela-
tive survival.

Figure  2 demonstrates the replication of the marginal 
all-cause survival estimates stratified by anatomical sub-
site (Coecum and Transverse), age group (under 45  s 
and over 75 s), stage at diagnosis and sex. There is some 
slight deviation in agreement in the age group subgroups, 
however it is still close enough to be broadly comparable 
when working with the synthetic data.

Figure  3 demonstrates the agreement in relative sur-
vival estimates over time since diagnosis stratified across 
various patient level variables. Overall, there is good 
agreement between the synthetic data and the original 
data, only marginally overestimating survival in some 
groups. This demonstrates that the methods generate 
good agreement for both all-cause and relative survival, 
despite being generated from an all-cause survival model.

Marginal 10-year restricted mean survival time is esti-
mated for varying covariate patterns across 25 different 
simulation seeds and the distribution of the metric exam-
ined to compare point estimates. Individual conditional 
life expectancy estimates are also compared across simu-
lation seeds for males across a range of ages and stages 
at diagnosis. Figure.  4 demonstrates the consistency of 
the synthetic data at closely replicating survival estimates 
regardless of the simulation seed specified in the code. 
Across 25 different seeds, 10-year restricted mean sur-
vival time predictions have been estimated and compared 
with the corresponding prediction made in the original 
dataset.  

Figure 5 demonstrates the effectiveness of the synthetic 
data at replicating a conditional life expectancy metric 
where extrapolation of survival times beyond the known 
follow-up in the data is necessary. This metric is pre-
dicted for individual males diagnosed with both localized 
and distant stage cancer across ages ranging from 40–90, 
with the survival patterns replicated accurately when 
compared to the same metric in the original data.

Model specifications
Two key questions for constructing the synthetic dataset 
pertained to the complexity of survival model required to 
accurately represent individual survival times conditional 
on patient covariate patterns, and the ordering of covari-
ates in the sequential conditional models used to recre-
ate the overall joint distribution of covariates within the 
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original dataset. The synthetic datasets here have been 
expanded to 1,000,000 observations in order to eliminate 
differences in survival patterns due to random variation.

Figure 6 shows that across all population subgroups it 
is beneficial to include added complexity, through inter-
action terms, to best capture survival patterns across all 

Fig. 2  Marginal all-cause survival estimates stratified by population subgroups (Subsite: Transverse and Coecum; Age Group: Under 45 and Over 75; 
Stage: Localized, Regional and Distant; Sex: Male and Female) comparing true estimates from the original and replicated estimates in the synthetic 
data

Fig. 3  5-year relative survival estimates stratified by population subgroups (Subsite: Transverse and Coecum; Age Group: Under 45 and Over 75; 
Stage: Localized, Regional and Distant; Sex: Male and Female) comparing original and synthetic data
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unique covariate patterns. The simple model includes 
only main effects for stage, subsite, sex and age, with-
out consideration of interactions and time-varying 
effects. The complex model builds on the simple model 
by including interactions between stage and age, stage 
and sex, subsite and age, and finally sex and age. It also 
includes time-varying effects for age and stage. In this 
example, the covariate order which is most consistent 
with the true survival estimates is as follows: Age, Year of 
Diagnosis, Stage at Diagnosis, Sex, and Anatomical Sub-
site. This order, as demonstrated in Fig. 7, provides more 
accurate all-cause survival estimate regeneration com-
pared to ordering the covariates from most to least cat-
egorical levels and vice versa. The ordering of covariate 
modelling gives the best predictive accuracy when covar-
iates are modelled from least to most distributional com-
plexity. By modelling the most complex distribution last, 
we feed the model with the most information in in order 
to capture the shape of that distribution most effectively. 

Modelling the continuous covariates first allows for the 
effect of a continuous variable to be imparted on each 
factor variable model, aiding in preservation of interrela-
tionships. The similarity of these covariate distributions 
in comparison to the original data is shown in Table  2. 
More detailed cross-tabulations of covariate distribution 
recovery can be seen in Supplementary Material  1.

Non‑replication of exact patient information
A significant concern with generating patient level infor-
mation to replicate survival patterns from a real-world 
dataset is the issue of patient confidentiality. Despite 
there being no link between a single synthetic and real-
world individual, it may be necessary to convince data 
controllers that the synthetic data is still not identifiable. 
Utilization of synthetic data is still in its infancy, and as 
such there is still skepticism and lack of understanding 
which inhibits the wider acceptance of these synthetic 
datasets in practice. Using this synthetic data generation 

Fig. 4  Marginal 10-year relative survival predictions estimated across assorted covariate patterns (Top Left: Stage: Localized, Sex: Male, Age Group: 
45–60, Subsite: Sigmoid. Top Right: Stage: Distant, Sex: Male, Age Group: 60–75, Subsite: Coecum. Bottom Left Stage: Localized, Sex: Female, Age 
Group: < 45, Subsite: Sigmoid. Bottom Right: Stage: Distant, Sex: Female, Age Group: > 75, Subsite: Coecum.) for a range of 25 simulation seeds to 
demonstrate synthetic data consistency. (True prediction from original data shown as red horizontal line)



Page 10 of 15Smith et al. BMC Medical Research Methodology          (2022) 22:176 

Fig. 5  Conditional Life expectancy estimated across a range of ages (40–90) for males with either a localized or distant cancer stage at diagnosis 
comparing original and synthetic data (10 different simulation seeds)

Fig. 6  Kaplan–Meier estimates with marginal predictions in the corresponding population subgroups (Subsite: Transverse (dashed lines) and 
Sigmoid; Age Group: Under 45 and Over 75 (dashed lines); Stage: Localized (dashed lines) and Distant; Sex: Female), from two flexible parametric 
models of differing complexity compared with equivalent estimates from the original data
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method, there are very small probabilities that any single 
uniquely measured covariate pattern and corresponding 
survival time and date information will be replicated for 
any single individual within the dataset. Here, we identify 
a series of real-world individuals with very rare or unique 
covariate patterns in our dataset (see Table 3) and create a 
synthetic dataset for each of them consisting of 1 million 
synthetic individuals.

We evaluate the diagnosis date and survival time of 
individuals with rare or unique covariate patterns against 
1 million synthetic observations generated which are 
forced to have an identical covariate profile. We also 
assess the vital status distributions of the synthetic indi-
viduals generated.

Due to the random generation of month and day of 
diagnosis to construct our synthetic diagnosis date, we 
expect that a proportion of synthetic diagnosis dates 
will be within a given range due to chance. Given in this 
scenario the year of diagnosis is fixed, we would expect 
approximately 8.3% (or 83,000) of the 1 million synthetic 

individuals to have a diagnosis date within a 30-day range 
of the real-world individual. This point is demonstrated 
in Table 3. Further to this, when evaluating the vital sta-
tus distributions, there is still discrepancies from the real 
individual, even where a single individual is considered. 
This demonstrates there is no direct link to the real-world 
individual and the synthetic information is generated as a 
result of a distributional probability.

We also generated 1000 synthetic datasets of equal size 
to the original data, and counted the frequency at which 
the synthetic covariate patterns investigated in Table  3 
occur. In no instance do these synthetic covariate pat-
terns, which are rare in the original data, occur in all of 
the synthetic datasets generated. For truly unique covari-
ate patterns, the covariate pattern occurred in 42% or less 
of the 1000 datasets. This is before any date information 
or survival time is considered, and so these individuals 
will be even further anonymized from any original indi-
vidual. This further indicates that we are generating syn-
thetic individuals from probability distributions rather 

Fig. 7  Kaplan–Meier estimates with marginal predictions in the corresponding population subgroups (Subsite: Sigmoid; Age Group: Over 75; 
Stage: Distant; Sex: Female), where covariate distributions are modelled in different orders. Ascending Order: Sex, Stage, Subsite, Year of Diagnosis; 
Descending Order: Year of Diagnosis, Subsite, Stage, Sex; Chosen Order: Year of Diagnosis, Stage, Sex, Subsite)
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than directly taking individuals from the original data 
and generating replicas.

The variation in survival time predicted from the model 
is subject to wider variation in predicted values because 
of the lack of explained variation in the survival model, 
even in the given scenario where an individual has a 
unique covariate profile. We see matching survival times 
(when rounded to the nearest day), however this is only 
due to the chance of the true value being in the plausi-
ble value range of the centile distribution for the specific 
covariate pattern. If times were not rounded, we would 
see greatly reduced numbers, if any, of exact matching 
survival times. This further highlights that on the indi-
vidual level, our synthetic data does not aim to accurately 
recreate a patient from the original dataset, but instead 
focuses on generating data with plausible distributions 
across population subgroups to capture the patterns 
found in the real data.

Discussion
The synthetic data generation methods presented in this 
paper describe a way to accurately generate time-to-
event data through the use of flexible parametric sur-
vival models. By generating covariate distributions which 
reflect those found in the original data, we can estimate 

survival times predicted from distributions specific to 
any synthetic individuals covariate profile. Time-to-
event data is not routinely considered in synthetic data 
generation, where financial and consumer data is a more 
prevalent research area. Health data, and by extension 
time-to-event data, is uniquely nuanced and so care must 
be taken to capture this data in such a way that preserves 
the utility of the dataset. Time-to-event data in a regis-
try style setting is unique in that we must consider the 
combination of general censoring and the application 
of administrative censoring dates. We therefore need 
to generate high-fidelity synthetic data across calendar 
time, and apply a date of entry and exit which is plausible 
based not only on the covariate profile of the individual, 
but also in terms of the general incidence patterns and 
exit date from the original data.

Current synthetic data methods focus mainly on artifi-
cial intelligence and machine learning methods [27–30], 
which despite continued growth, are still not widely 
understood by all researchers. We feel that the simplicity 
of these methods where a basic understanding of regres-
sion modelling and survival models is all that is required, 
as well as methods to directly address the specific issues 
of time-to-event data, provides a simple and easily imple-
mentable method of generating synthetic data with 

Table 3  Comparison of survival time and diagnosis date matching when comparing a rare real-world individual to 1 million synthetic 
individuals with matched covariate profiles

Real-World Individual Covariate Patterns

No of Observations 1 3 3 2 1 1

Age at Diagnosis 68 73 81 70 60 45

Sex Female Male Female Female Male Male

Stage at Diagnosis Localised Localised Distant Regional Distant Localised

Year of Diagnosis 1994 1994 1992 1990 1993 1989

Anatomical Subsite Other Sigmoid Coecum Coecum Transverse Sigmoid

Vital Status Alive Alive
Alive
Alive

Dead
Dead
Dead

Dead
Alive

Dead Alive

Synthetic Vital Status (Alive/Dead%) 94.74/5.25 89.36/10.64 9.92/90.08 44.07/55.93 17.22/82.78 78.44/21.56

Diagnosis Date 15/9/1994 14/1/1994
15/10/1994
15/9/1994

21/12/1992
17/3/1992
15/4/1992

20/11/1990
16/5/1990

7/12/1993 14/11/1989

Synthetic Observations with Diagnosis Date ± 15 Days (%) 8.65 7.75
8.32
8.57

7.01
8.36
8.68

8.56
8.37

8.42 8.56

Survival Time (Rounded to Nearest Day) 472 716
442
472

16
46
868

351
2055

77 2238

Synthetic Observations with Survival Time ± 15 Days (%) 8.43 6.74
4.10
8.10

11.61
15.77
0.45

1.61
3.77

7.26 7.01

Survival Time Matches per 1 Million Synthetic Patients 2719 2282
2573
2633

4102
2187
156

2740
2670

1011 2225
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sufficient fidelity to maintain high data utility without 
compromising patient data privacy and provides a unique 
contribution to the literature.

Alternative methods to de-identify data include sup-
pression, generalization, date offsetting, and noise 
injection [31]. Generating a dataset using the meth-
ods presented here does not pose a significant risk to 
re-identification of individuals from the original data, 
while still maintaining the overall structure and internal 
distributions.

Previous literature regarding simulation of survival 
data tends to focus on the creation of entirely new data 
under a range of set parameters [1, 2, 31–33]. Many sim-
ulation studies make use of either exponential or Weibull 
distributions [34, 35], however these are often not flexible 
enough to fully capture the shape of underlying hazard 
functions found in real-world clinicals trial or population 
based data, where at least one turning point is observed 
in the hazard function [21]. Making use of the flexibility 
in a Royston-Parmar model provides a good solution for 
replicating real-world survival data. We are aware of one 
other statistical package for directly generating synthetic 
versions of data, synthpop [36], however this uses a com-
bination of parametric and classification and regression 
tree (CART) methods to accurately recreate covariate 
distributions, and is only currently available in R.

Significant time was dedicated to conceptualising and 
putting into practice notions of data privacy and how 
best to preserve them. We considered other common 
data privacy methods such as differential privacy [37] 
and k-anonymity [38]. K-anonymity does not include 
any true observational modifications to the data, and 
therefore potential data attackers can still make logi-
cal inferences from the data which may compromise 
individuals. Similarly, this method can potentially skew 
the results of a dataset if data is supressed or general-
ised disproportionately, therefore decreasing the utility 
of the data and rendering it unsuitable for the purposes 
previously described. Differential privacy assumes a 
“worst-case scenario” where the data attacker already 
has information from the original data. In practice, with 
healthcare data this is an unlikely scenario given the rig-
orous protective measures already in place for the real 
data. Even so, because there is no relationship between 
a synthetic and real-world individual, combined with 
mostly low-sparsity covariate patterns, it is highly 
unlikely the synthetic data poses a risk of re-identi-
fication. Given the majority of health data is already 
anonymised, we believe that the synthetic data methods 
provide a second layer of de-identification from a real-
world individual by predicting from distributions rather 
than attempting to directly generate exact individuals 
from the original data.

Similarly, we considered generating values from catego-
risations of continous covariate prior to randomly assign-
ing a continous value within that category as an extra 
privacy layer, however based on our results we feel in this 
instance it is unecessary, but provides a potential solution 
in other contexts. It would also be possible to reduce the 
complexity of the covariate and survival models being fit-
ted, for example by not incorporating interaction effects, 
as a way to generate synthetic data if the reason for the 
data generation is purely for illustrative purposes along-
side a manuscript. This is likely to remove more com-
plex relationships found in the original data, and could 
be used as another layer of data privacy if full data utility 
wasn’t required in a particular circumstance. Using these 
methods, we feel it is unecessary to implement further 
data privacy methods, and the risk of identifying an indi-
vidual from the real-world data within the synthetic data 
is minimal.

We consider these methods to be easily adaptable to 
most time-to-event datasets, given only a set of covari-
ates and an initial understanding of which covariates are 
prognositic for the disease of interest is necessary. The 
provided code in the supplementary file provides the 
direct methodology to recreate the synthetic data from 
this paper, and can be easily altered to generate synthetic 
data from a different real-world data source. A further 
consideration for the application of these methods is 
within smaller datasets such as clinical trials. Here we are 
demonstrating the efficacy of these methods in a dataset 
of approximately 9000 patients, and specific adaptations 
and considerations for smaller datasets will form part of 
future work.

A development of the example data we use here would 
be the inclusion of an increased number of covariates. To 
include additional covariates it is necessary to not only 
recover their distributions, but also include them in the 
survival model if we are interested in survival differences 
within that covariate. In doing so, we increase the com-
plexity of the model significantly with each additional 
model parameter. It is important to balance increasing 
model complexity without overfitting the model [39]. In 
real-world cancer registry data there is scope for much 
more detailed patient information, treatment information 
and molecular information, all of which could be incor-
porated using this methodology should it be required by 
the user. Any method which is effective at predicting sur-
vival could be used, for example data with high covari-
ate to observation structure could benefit from lasso type 
modelling with shrinkage. Future work will extend into a 
competing risks framework.

Despite comparing relative survival estimates on the 
generated data, we originally fitted an all-cause model 
in the data generation procedure. We did so because of 
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complications found when predicting from the relative 
survival model in certain settings, particularly when the 
relative survival curves for a specific covariate pattern 
reached a plateau. This led to unstable predicted values of 
the survival times because of the influence of the plateau 
on the survival time predictions, which are based on cen-
tiles of the covariate-specific survival distribution.

We handled factor variables with missing data by 
assigning the missing group as a separate individual level 
of the variable so that the patterns of missingness could 
be preserved and recovered in the simulation process. 
Throughout this paper we have shown that there is a neg-
ligible possibility for an individual from the original data 
to be identified within the synthetic data, we have shown 
the all-cause and relative survival estimates are consist-
ently accurate when compared to equivalent estimates 
made in the original data, and the covariate distributions 
are recovered accurately throughout.

Conclusions
The approach that we have outlined allows the possibil-
ity for realistic synthetic individual patient data to be 
made available while simultaneously protecting patient 
confidentiality. We have focused on the construction of 
data that are typical in population-based cancer survival 
research, but the ideas are transferrable to other time-
to-event settings. Our proposal to closely capture the 
distribution of continuous, but non-normal covariates 
has great flexibility. The benefits of making data avail-
able with corresponding code to run the main analyses 
of a published paper are numerous; allowing reproduc-
ible research, offering greater transparency and enabling 
extensions by other researchers.

Some research suggests that synthetic data can be 
used as a proxy for the real dataset in analyses [35, 40]. 
We believe that the synthetic data constructed here is 
accurate enough to make predictions consistent with the 
real data, but do not advise that it currently be used in 
place of the real data as a proxy. We wish to address bar-
riers with synthetic data by encouraging clear lay term 
explanations of synthetic data, increasing awareness and 
understanding of synthetic data and its potential, and 
alleviate potential concerns stakeholders may have with 
implementing synthetic data generation on real-world 
data.
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